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Abstract
To provide low latency and high throughput guarantees,
most large key-value stores keep the data in the mem-
ory of many servers. Despite the natural parallelism across
lookups, the load imbalance, introduced by heavy skew in
the popularity distribution of keys, limits performance. To
avoid violating tail latency service-level objectives, systems
tend to keep server utilization low and organize the data in
micro-shards, which provides units of migration and repli-
cation for the purpose of load balancing. These techniques
reduce the skew, but incur additional monitoring, data repli-
cation and consistency maintenance overheads.

In this work, we introduce RackOut, a memory pooling
technique that leverages the one-sided remote read primitive
of emerging rack-scale systems to mitigate load imbalance
while respecting service-level objectives. In RackOut, the
data is aggregated at rack-scale granularity, with all of the
participating servers in the rack jointly servicing all of the
rack’s micro-shards. We develop a queuing model to evalu-
ate the impact of RackOut at the datacenter scale. In addi-
tion, we implement a RackOut proof-of-concept key-value
store, evaluate it on two experimental platforms based on
RDMA and Scale-Out NUMA, and use these results to vali-
date the model. Our results show that RackOut can increase
throughput up to 6× for RDMA and 8.6× for Scale-Out
NUMA compared to a scale-out deployment, while respect-
ing tight tail latency service-level objectives.

Categories and Subject Descriptors C.4 [PERFORMANCE
OF SYSTEMS]: Modeling techniques
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1. Introduction
Datacenter services and cloud applications such as search,
social networking, and e-commerce are redefining the re-
quirements for system software. A single application can
comprise hundreds of software components, deployed on
thousands of servers organized in multiple tiers. Such ap-
plications must support high connection counts and operate
with tight user-facing service-level objectives (SLO), often
defined in terms of tail latency [9, 21, 46]. To meet these
objectives, most such applications keep the data (e.g., a so-
cial graph) in memory-resident distributed Key-Value Stores
(KVS). Distributed KVS use consistent hashing to shard and
distribute the data among the servers of the leaf tier.

The use of sharding has inherent scalability benefits: ap-
plications perform lookups in parallel by leveraging a hash
function to locate the requested data in the leaf tier. In its
basic form, however, sharding data limits the maximum
throughput respecting the SLO whenever the popularity dis-
tribution of data items is skewed and unknown. A large pop-
ularity skew among data items can result in severe load im-
balance, as a small subset of the leaf servers will saturate
either their CPUs or their NICs, thereby violating the tail
latency SLO, while the majority of the other leaf servers
remains mostly idle.

In this work we introduce RackOut, a memory pooling
technique that leverages the one-sided remote read primitive
of emerging rack-scale systems to mitigate the skew-induced
load imbalance and achieve high throughput at low latency.
A RackOut unit is a group of servers (i.e., a rack) augmented
with an internal secondary fabric allowing any node within
the rack to access the memory of other nodes through one-
sided operations (i.e., without involving the remote CPU).
Consequently, the data in RackOut is partitioned at rack-
scale granularity, with the entire rack responsible for a col-
lection of data items mapped to the rack’s servers. RackOut
leverages the concurrent-read/exclusive-write (CREW) data
access model at rack scale, which has previously been shown
to dramatically improve the scalability of single-server per-
formance on multicore servers [23, 37, 45]. By decoupling



data access from data storage, RackOut substantially reduces
the negative impact of skew on the entire KVS’ performance.

To implement the CREW model in RackOut, the client
identifies the server holding the target micro-shard and there-
fore the RackOut unit it belongs to. Read requests are load-
balanced among all the servers within each RackOut unit,
while write requests are always directed to the server hold-
ing the micro-shard. Even though data is never replicated
within a RackOut unit, RackOut is compatible and syner-
gistic with dynamic replication [11, 21, 31, 32]. Since the
RackOut technique already balances requests within a Rack-
Out unit (using one-sided operations rather than replication),
replication is only required across RackOut units, which re-
duces the overheads associated with load monitoring, creat-
ing replicas, and ongoing consistency maintenance.

This paper makes the following contributions:
• We provide a detailed analysis of the impact of data pop-
ularity skew on the load imbalance across the servers of a
datacenter deployment. Technology trends towards extreme
scale-out server deployments [26] will further exacerbate
this problem, increasing the pressure on existing skew miti-
gation techniques, such as dynamic replication.
•We provide a detailed analysis of the impact of rack-level
aggregation on mitigating the effect of skew. We develop a
queuing model for RackOut that assumes globally accessible
memory within the rack. We evaluate the benefits of Rack-
Out as a function of server count, size of the RackOut unit,
and read/write ratio for datasets following a power-law pop-
ularity distribution. For a Zipfian read-only distribution with
α = 0.99, the model predicts that a RackOut deployment of
512 servers grouped into 16-server RackOut units increases
throughput by 6× with RDMA and 8.6× with Scale-Out
NUMA (soNUMA) [18, 19, 47] without violating SLO.
•We evaluate the combination of RackOut with an idealized
dynamic replication scheme. Our results show that RackOut
is synergistic with dynamic replication and dramatically re-
duces the number of replicas required for load balancing.
• We implement RackOut KVS (RO-KVS), a proof-of-
concept KVS using a conventional network for client access
and an RDMA fabric for memory access. RO-KVS is based
on FaRM [23] and is ported to both Mellanox RDMA [44]
and soNUMA. We evaluate RO-KVS in terms of its 99th
percentile tail latency for the hottest rack of a 512-server de-
ployment. We show that organizing this rack as a 16-server
RackOut unit using soNUMA can deliver 6× more requests
than 16 independent servers for a workload with 5% writes
and 8.2× more requests for a read-only workload. Discrep-
ancies between the model and the measured system remain
below 6%, which validates the model.

The rest of the paper is organized as follows: §2 motivates
the problem in terms of application trends and dataset access
patterns. §3 discusses the key architectural trends providing
cost-effective, rack-scale memory pooling. §4 provides a de-
tailed analysis of the RackOut queuing model, which we val-

idate in §5 using an implementation of our proof-of-concept
RO-KVS. We discuss related work in §6 and conclude in §7.

2. Background
A significant portion of important contemporary web-scale
applications is latency sensitive [9, 21, 46]. Designing a
datacenter-scale system that delivers tight latency guaran-
tees for the majority of user requests is notoriously challeng-
ing [21, 22]. The flexibility and scalability of using KVS im-
plemented as an in-memory, distributed hash table has led to
its broad use as a state-of-the-art approach for low-latency
data serving applications. In this section, we explain the vul-
nerability of the traditional scale-out approach to the skewed
popularity distribution that naturally exists in large data col-
lections, and argue that existing approaches to alleviate load
imbalance through data replication are not adequate solu-
tions.

2.1 In-memory Key-Value Stores
An in-memory KVS is a critical component of many modern
cloud systems. Several large-scale services are powered by
well-engineered KVS, which are designed to scale to thou-
sands of servers and petabytes of data and serve billions
of requests per second [9, 11, 22, 46]. KVS such as Mem-
cached [2], Redis [3], Dynamo [22], TAO [11], and Volde-
mort [5] are used in production environments of large ser-
vice providers such as Facebook, Amazon, Twitter, Zynga,
and LinkedIn [6, 39, 46, 59]. The popularity of these sys-
tems has resulted in considerable research and development
efforts, including open-source implementations [1], research
prototypes [7, 51] and a wide range of sophisticated, highly
tuned frameworks that aspire to become the state-of-the-art
of KVS [23, 36, 37].

Service architects set strict service-level objectives (SLO)
to ensure high quality, designing the service deployment to
respond to user requests within a short and bounded delay.
For high fan-out applications, designing for the average la-
tency is not enough; a good service guarantees the vast ma-
jority of the requests will meet the SLO, and thus targets a
99th or even 99.9th percentile latency of just a few millisec-
onds [21, 22].

2.2 Skew in scale-out architectures
KVS typically handle very large collections of data items
and millions or billions of requests per second. In such a
setting, skewed distributions emerge naturally, as data popu-
larity varies greatly. Previous work has shown that data pop-
ularity distributions in real-world KVS workloads follow a
power-law distribution [9, 11, 27, 32], resulting in an access
frequency imbalance, commonly referred to as skew. This
skewed distribution is accurately represented by the power-
law Zipfian distribution [9, 15, 17, 27, 37, 55]. Based on
Zipf’s law, and given a collection of popularity-ranked data
items, the popularity y of a data item is inversely propor-
tional to its rank r: y∼ r−α , with α close to unity. A classic
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Figure 1: Grouping of 250M data items with a power-law
popularity distribution in 128 servers.

example of such skewed popularity distribution is a social
network, where a very small subset of users is extremely
popular as compared to the average user. These two distinct
user categories (popular versus the rest) result in a popularity
distribution with a skyrocketing peak and a long tail.

The exponent α is determined by the modeled dataset.
α = 0.99 is the typical data popularity distribution used in
KVS research [16, 23, 31, 36, 37]. Some studies show that
the popularity distribution skew in real-world datasets can
be lower than that (e.g., α = 0.6 [55], α = 0.7−0.9 [8, 53]),
but also even higher (e.g., up to α = 1.01 [15, 27]).

Sharding the data across the deployment’s collection of
servers is typically done by grouping data items into so-
called micro-shards, each server being responsible for host-
ing and serving hundreds or thousands of them from its local
memory [21, 28]. This data distribution is done by applying a
hash function on the key of the data items, which maps each
of them to a micro-shard (e.g., [1, 43, 56]) and each micro-
shard to a server. Hash functions aim at probabilistically re-
ducing load imbalance by evenly distributing data items to
servers, but are distribution-agnostic, as data item populari-
ties cannot be predicted in advance or controlled, and may
change over time. In practice, a collection of micro-shards
mapping to a single server represents a single data shard
that is served by its corresponding server. Thus, even after
grouping data items together into shards, the presence of the
inherent popularity skew of data items is still observable as
a popularity skew across shards [48].

Fig. 1 illustrates the access distribution of a dataset of
250 million items of randomly generated keys, distributed
across 128 servers, and accessed with a power-law (Zipfian)
popularity distribution of exponent α = 0.99. In such a dis-
tribution, the most popular item is accessed 11 million times
more than the average item. After sharding the dataset across
128 servers through a hash function, the hottest server holds
a shard with a set of keys that is 6.5× more popular than the
average shard. Popularity skew has significant implications
as the hottest server will receive a 6.5× higher load than the
average, and may saturate while the majority of the servers
are largely idle. In the absence of any dynamic replication

or migration scheme, the number of micro-shards per server
does not impact the skew.

We define the shard skew as the access ratio between
the hottest and the average server. Shard skew arises in a
datacenter deployment as a function of three parameters: (i)
the exponent α of the dataset’s power-law distribution, (ii)
the number of data items comprising the dataset, and (iii)
the function used to distribute data items to micro-shards.
We discuss the impact of each parameter below.

Fig. 2a shows the shard skew as the number of servers
scales for different popularity distribution exponents α .
While the shard skew is insensitive to scaling out for low
α values (e.g., α = 0.6), large exponents dramatically in-
crease shard skew, which in turn becomes a performance
limiter. For example, doubling the number of servers from
1024 to 2048 with α = 0.99 leads to shard skew increasing
near-linearly by 1.97×, meaning that the resulting improve-
ment in expected performance would be only 1.01×.

Fig. 2b shows the impact of the data item population size
on the shard skew. While larger datasets result in better load
distribution to shards and hence lower shard skew, the varia-
tion of shard skew with the dataset size is minimal. Finally,
given a set of keys, the hash function used to distribute the
data items to shards affects the absolute value of the resulting
shard skew. However, since hash functions are static, state-
less, and distribution-agnostic, they cannot predict or dy-
namically handle the shard skew that is inevitably derived
from a heavily skewed data item popularity distribution.

2.3 Replication: a thorny solution
Service providers are well aware of the problems that arise
from skew-induced load imbalance [20, 21, 32]: servers
holding the most popular micro-shards can quickly become
overwhelmed with user requests, degrading the whole sys-
tem’s performance and service quality. Data replication is a
widely used technique that deals with such load imbalance
in the datacenter. It is based on a simple concept: by replicat-
ing data N times, N servers, rather than a single server, can
access the same data items, thus providing higher flexibility
and robustness against skew. In its simplest form, replica-
tion is static; the whole dataset is replicated a fixed number
of times. However, this approach comes at a great cost, as it
multiplies the memory capacity requirements, which is the
most critical resource of modern datacenters [38, 51]. Fur-
thermore, static replication only provisions for a predefined
amount of skew; any skew higher than the replication factor
was provisioned for results in the service’s quality degrada-
tion.

Recent research has focused on optimizations beyond
static replication. In particular, dynamic replication can flex-
ibly calibrate memory overprovisioning and sudden changes
in skew (i.e., thundering herds [46]). The main principle is
that the system dynamically monitors the load on a set of
micro-shards, and takes replication decisions on the fly to
mitigate load imbalance. Dynamic replication could oper-
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Figure 2: Shard-skew sensitivity for a Zipfian distribution as a function of its exponent, server count, and dataset size.

ate on individual keys or on entire micro-shards [31, 32].
The latter is often preferred as it simplifies the updates of
the KVS metadata and minimizes routing overheads. The
effectiveness of such methods is highly dependent on the
fine-tuning of several parameters, such as the timeliness,
cost, and accuracy of load imbalance detection, the speed
of replication, tracking the changing number of replicas,
timely deallocation of replicas that are no longer useful,
etc. [11, 31, 32, 34].

Dynamic replication is never free: (i) load monitoring to
detect bursts in micro-shard popularity, the actual replication
of micro-shards, and the updates to the KVS metadata all
add CPU, memory, and network overheads; (ii) a replicated
micro-shard is more expensive to maintain as consistency re-
quirements introduce both correctness and performance con-
cerns [10, 12, 22, 33, 35, 49, 58]. Even in a weakly consistent
KVS [22], each replica must eventually be updated, which
reduces the system’s effective throughput.

2.4 Summary
Distributed KVS shard the data using a hash function and
hence are subject to skewed access patterns. The popu-
larity skew that appears in most real-world cloud applica-
tions directly translates to load imbalance that manifests
itself in poor datacenter utilization. To make better use of
resources and achieve higher throughput without violat-
ing the agreed-upon SLO, dynamic replication techniques
have emerged [11, 21, 31, 32]. However, dynamic repli-
cation comes with considerable overheads: the consistency
semantics expected by the application, the dataset’s change
rate [22], the precision of the monitoring algorithm, and the
micro-shard size, all critically impact the system’s behav-
ior [27, 31, 32].

3. Memory pooling at rack scale
An intuitive approach to mitigating the effects of shard skew
while avoiding the challenges and overheads of dynamic
replication is to reduce the number of nodes involved by
increasing each node’s size in order to have fewer larger
shards. As Fig. 2 illustrates, a reduction in the node count

can dramatically reduce the shard skew. Even though the
overall architecture remains that of a KVS consisting of
multiple independent building blocks, each building block
is designed to scale in terms of throughput and memory
capacity. The design space for such solutions is broad, but
can be broken down into architectural considerations (§3.1),
concurrency issues (§3.2) and fault tolerance (§3.3).

3.1 Architectural building blocks
Since the CPU or the NIC is the performance bottleneck at
high load, growing the node size mandates increasing the
per-node processing and networking capacity. Addressing
this challenge involves either building bigger, more capable
server nodes or aggregating multiple existing server nodes
into larger logical entities.

The first approach simply leverages the technologies en-
abled in large-scale cache-coherent NUMA servers (e.g.,
based on Intel’s QuickPath Interconnect or AMD’s Hyper-
Transport technology). Such machines provide the conve-
nient shared memory abstraction and a low-latency high-
bandwidth inter-node network. The downside of such large-
scale machines is that their cost grows exponentially with
the number of CPUs due to the complexity of scaling up the
coherence protocol, increased system design and manufac-
turing cost, as well as a focus on low-volume, high-value
applications such as online transaction processing for a mar-
ket that is less price sensitive.

The second approach leverages conventional datacenter-
grade servers or individually less capable server building
blocks [7, 14, 25, 26, 42, 57] augmented with a rack-
level RDMA fabric. This approach is used in commercial
products providing analytical (e.g., Oracle ExaData / Ex-
alogic [50]) or storage (e.g. EMC/Isilon [24]) solutions
to clients connected via a conventional network. Applied-
Micro’s X-Gene2 server SoC [40] and Oracle’s Sonoma
[41] integrate the RDMA controller directly on chip, HP
Moonshot [30] combines low-power processors with RDMA
NICs, and research proposals further argue for on-chip sup-
port for one-sided remote access primitives [18, 47]. Build-
ing larger logical entities using such rack-scale memory



pooling approaches instead of the cache-coherent NUMA
approach comes at a lower cost and complexity.

The fundamental premise for rack-scale memory pooling
is that all servers within a rack can access the whole mem-
ory of the rack within a small premium over local memory,
thus the rack’s aggregate memory can be perceived as a sin-
gle, partitioned global address space. We further assume that
remote memory can be accessed through one-sided opera-
tions, and that the fabric efficiently supports the access of
data items residing in remote memory. Such remote access
capability is readily available in commercial fabrics such as
InfiniBand or RoCE [44].

3.2 Concurrency model
In a traditional scale-out deployment, each server manages a
collection of micro-shards, stored in its own memory. De-
spite the simplicity of the design, such deployments of-
fer a wide range of concurrency models that can indepen-
dently provide concurrent or exclusive access to either read
or write objects. The concurrent-read/exclusive-write data
access model (CREW) has been shown to provide solid scal-
ability at low complexity. In CREW, the memory is managed
as a single read-only pool, with changes being handled by a
specific thread based on the location of the object in mem-
ory. Recent work has demonstrated the scalability benefits of
the CREW model on Xeon-class servers [36, 37]. As most
workloads are read-dominated [9, 11, 16, 52], CREW offers
a sweet spot in terms of scalable performance by keeping
synchronization requirements to a minimum.

The suitability of the CREW model has also been demon-
strated on rack-scale systems using RDMA. FaRM [23] and
Pilaf [45] follow a CREW model where each server is re-
sponsible for the modification of objects stored in its mem-
ory, but other servers can directly read them using one-sided
RDMA read operations.

3.3 Availability and durability
Memory pooling is not a substitute for replication when it
comes to data availability and durability. Indeed, scale-out
applications are fundamentally designed to handle node fail-
ures [22, 51, 56]. In such cases, the central system relies on
replication across nodes to ensure the availability of the data,
and removes the faulty node from the KVS. While this may
seem problematic when an individual node consists of an en-
tire rack, datacenter deployments already assume that phys-
ical racks have single points of failure in the infrastructure
(e.g., in terms of power distribution and top-of-rack network-
ing [13]) and thus fault tolerance must be handled across
rack-scale building blocks. Failures must also be handled
within the rack to detect and report partial system failures,
such as individual node failures, which would make portions
of the dataset inaccessible.
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4. RackOut data serving
The basic building block of RackOut is a group of servers,
typically within the same datacenter rack, that are tightly in-
terconnected with an internal high-bandwidth, low-latency
fabric and can directly access each other’s memory using
one-sided operations. Thanks to this internal fabric, the ag-
gregate memory of the server group is perceived as unified.

RackOut leverages the capability for fast memory access
within the boundaries of a rack to achieve better load balanc-
ing across the set of servers participating in memory pool-
ing. We refer to the number of intra-rack servers pooling
memory as the Grouping Factor (GF). Popular data resid-
ing in the local memory of heavily loaded servers can be
directly accessed by less loaded servers in the same rack,
thus alleviating the queuing effects on the busy server own-
ing that memory. This optimization is enabled by the fact
that the rack’s internal fabric and each individual server’s
memory bandwidth are under-subscribed while the CPU or
the external-facing NIC is fully utilized.

Fig. 3 illustrates two RackOut units of eight servers each.
Each RackOut unit connects the eight servers via an internal
fabric which supports one-sided RDMA operations. Each
server in the unit stores hundreds or thousands of micro-
shards as in conventional KVS. A RackOut unit exposes
the abstraction of a single super-shard comprised of all the
micro-shards within the unit.

Fig. 3 also clearly illustrates the key assumption behind
the model: by confining the fabric to the unit, the RackOut
model sits between the traditional scale-out model and the
full-scale RDMA fabric deployment. From an application
perspective, the proposed RackOut and scale-out models
are similar: clients connect to servers via the network and
applications rely on replication to scale beyond the unit of
capacity (i.e., rack or server) and ensure data availability.
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Figure 4: Ideal throughput speedup for different GFs (250M keys, Zipfian α = 0.99).

Confining the fabric to a bounded-size unit avoids the
emergent safety, performance and monitoring challenges of
large-scale fabrics. For example, recent work has shown that
scaling RDMA over commodity Ethernet introduces issues
of congestion control, dealing with deadlocks and livelocks,
and other subtleties of priority-based flow control [29, 61].

RackOut leverages the CREW model. This means that
write requests must be directed to the specific server within
the rack that owns the data, but that read requests can be
load-balanced to any server of the rack. Therefore, from
the perspective of a KVS, the hash function determines the
micro-shard and its associated server, which is used directly
to select a specific server on write requests. For reads, the
client schedules the request to a random server within the
target server’s RackOut unit.

In the rest of this section, we present a first-order analysis
showing the maximal speedup attainable by RackOut as a
function of the read/write mix and the GF (§4.1), and subse-
quently build a queuing model for RackOut to study service
time implications at the tail latency (§4.2). We analyze the
sensitivity of the skew to the dataset distribution (§4.3), the
synergy of RackOut with dynamic replication and migration
(§4.4), and the impact of remote read penalties on perfor-
mance (§4.5). Throughout the analysis, we assume identical
server building blocks in terms of processing and memory
capacity for both scale-out and RackOut configurations.

4.1 Load balancing with RackOut
We define the rack skew as the rack-scale analog to the shard
skew, specifically as the ratio of the traffic on the most pop-
ular rack over the average traffic per rack. In the follow-
ing analysis, we use Lmax to refer to the load (expressed
as a fraction of requests) of the server/rack with the hottest
shard/super-shard, and Lavg for the average server load. The
straggler (i.e., the system’s node with the highest load) deter-
mines the highest aggregate stable throughput. The straggler
in a traditional scale-out environment is the server with the
highest load:

Lmax = shard skew1×Lavg

where shard skew1 is the shard skew in the scale-out de-
ployment. In a RackOut organization, the building blocks
are racks rather than servers. In such a deployment with a
rack size of GF servers, the straggler rack’s load is:

Lmax = rack skewGF ×GF×Lavg

where rack skewGF is the rack skew in a RackOut environ-
ment with a Grouping Factor of GF .

The time a straggler needs to crunch through its load is
inversely proportional to the available resources that can be
utilized. We assume that the single-server compute power
that can be used to serve the hottest shard in the scale-
out model is compute1. The compute power that can be
used on the hottest super-shard in the case of RackOut
is computeGF = GF × compute1. Overall, for a read-only
workload, the ideal speedup derived from the RackOut
model over the scale-out model is:

Ideal speedup =

shard skew1×Lavg
compute1

rack skewGF×GF×Lavg
computeGF

=
shard skew1

rack skewGF
(1)

Given a CREW model, Eq. 1 provides only an upper bound
on the speedup for read-write workloads, as writes cannot be
balanced within the rack.

We are not aware of a closed-form formula that deter-
mines the per-server load, Lserver. Instead, we perform the
following experiment: we generate a 250M-key dataset built
out of a randomly-generated sparse key space, then allocate
keys to micro-shards according to a hash function, and, fi-
nally, compute each key’s popularity according to the power-
law distribution. A server’s popularity is the sum of its keys’
popularities; for RackOut, a GF-sized rack’s popularity is
the sum of the popularity of the GF servers in that rack.

Fig. 4 shows the impact of GF on the rack skew. Fig. 4a
shows the benefit of perfect load balancing within a rack
of a given GF according to Eq. 1; for a given 512-server
configuration, grouping the servers into RackOut units of 64
servers (i.e., GF=64) provides an ideal speedup opportunity
of 16×. Fig. 4b quantifies the impact of having 5% of writes
on the ideal throughput speedup. Even though such a work-
load is clearly read-dominated, the CREW model bounds
the speedup, similar to Amdahl’s law; the maximum per-
formance improvement with GF=64 drops from 16× to 9×.
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Figure 5: CREW client and server queuing model.

Fig. 4c illustrates the sensitivity to the read/write mix for
various GF configurations.

4.2 A queuing model for RackOut
Eq. 1 suggests that the expected benefit of a RackOut or-
ganization is commensurate to the reduction in shard skew.
We now reinforce the claim that this is a good approxima-
tion metric for the expected improvement in performance
under a given SLO by leveraging basic queuing theory prin-
ciples. Under a simple open-queuing system approach for
real-world systems that service millions of client requests
and serve huge datasets, we assume that the requests follow
a Poisson distribution, data popularity follows a power-law
(Zipfian) distribution, and that each key has the same aver-
age read/write ratio. The three distributions are orthogonal,
but equally critical to the queuing effects that arise in the
system. Given Poisson request arrivals, queuing theory pro-
vides the tools to determine stability conditions (λ < µ), as
well as each server’s performance under a given SLO.

Fig. 5 describes the queuing model’s key elements. Re-
quests follow an open-loop arrival process with a given rate
λ and Poisson inter-arrivals. Each request carries a times-
tamp, a key selected randomly according to popularity, and
a read/write tag selected uniformly according to the mod-
eled probability. The client-side process maps the key to a
micro-shard using a perfect hash function. Requests for each
micro-shard P follow a Poisson arrival process with a rate:

λP = λ × ∑
k∈KP

zip f (k);KP = {k|hash(k) = P}

According to CREW, the micro-shard directly determines
the server node for write requests, but read requests are load-
balanced among the nodes of the selected RackOut unit. In
our model, queuing happens on the server side, with one
queue per server, and requests are served in FIFO order.
The model distinguishes between three types of requests T :
i) read requests that can be served from the local memory
of the server (LR), ii) read requests that require one-sided
operations on the RackOut fabric interconnect (RR), and iii)
local write requests (LW). On any given server i, the power-
law distribution of the keys, the hash function, the RackOut

GF and the read/write mix together determine the per-server
arrival rate for each request type t, λit :

λ =
Nnodes

∑
i=1

∑
{t∈T}

λit ;T = {LR,RR,LW}

The system is stable if and only if:

∀i ∈ {1..Nnodes} : ∑
{t∈T}

λit × S̄t < 1

The resulting queuing model depends on the service time
distributions St . To extract performance results from our
queuing model, we instrument it with realistic service times,
which we derive from the RackOut KVS system (RO-KVS)
described in §5. Using RO-KVS, we measure the maximum
node throughput 1/S̄t for each of the three request types. To
simplify the model, we assume that each of these has a de-
terministic distribution of service times equal to its average.
Local reads are the most lightweight operations, and as such
are associated with the lowest service time. In RO-KVS run-
ning on top of our Mellanox RDMA cluster, local writes and
remote reads are 1.38× and 1.68× slower than local reads,
respectively (see Table 1). The service times include all the
CPU processing, such as network packet processing, to ser-
vice a single key-value lookup or update.

Fig. 6 studies the 99th percentile behavior of this queuing
model for a deployment of 512 nodes and a Zipfian key
popularity distribution with α = 0.99. Given the lack of a
closed form, we rely on discrete event simulation with 10
million arrival events for each measurement. We configure
the model with RO-KVS service times and the propagation
delay that we obtain on RDMA (Table 1). We define the
datacenter throughput (on the x-axis) as the fraction of the
throughput achieved compared to a uniform workload with
100% read requests on a scale-out deployment (GF=1). We
use the model to determine the maximum utilization at an
SLO defined as handling 99% of requests in less than 1
millisecond, provided that none of the nodes are saturated.

Fig. 6a shows the impact of RackOut on read-only work-
loads. For smaller GFs (including scale-out, GF=1), the
datacenter-wide tail latency spikes rapidly as the hottest
RackOut unit (or scale-out node) reaches saturation. With
larger groupings, the intra-rack load balancing reduces the
skew in arrival rates and the tail latency rises with load ac-
cording to the familiar pattern of open-loop models. When
considering the SLO, RackOut with GF=16 achieves a
speedup of 6× over scale-out. This is a substantial increase
in performance due to better load-balancing, even though the
majority of requests will suffer the 1.68× penalty associated
with accessing remote memory over RDMA. In comparison,
Fig. 4a’s idealized model predicts the maximum speedup
for the same power-law distribution of keys to be of 9.9×.
However, the idealized model does not account for the re-
mote memory access penalty or the requirement to meet any
particular SLO.
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Figure 6: Datacenter-wide 99th percentile latency vs. utilization, determined using the queuing model and RDMA parameters
(512 servers, Zipfian α = 0.99).
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Figure 7: Datacenter utilization for 500 different datasets of
50 million objects with Zipfian α = 0.99 data popularity dis-
tribution (5% writes). The red dots represent the key distri-
bution used throughout this paper.

Fig. 6b shows the same results for a workload with 5% of
writes. While the key distribution remains identical, the in-
ability to balance the write requests limits the performance
improvements. The imbalance in writes is also the reason
for the latency spike at the saturation point: while the aver-
age datacenter utilization is still low, resulting in low 99th
percentile latency, the server with the hottest shard saturates
while all the other servers, including the ones in the same
RackOut unit, are still far from saturated. This is particu-
larly obvious with GF ≥ 16, where the tail latency hardly
increases before saturation.

4.3 Sensitivity to skew
Fig. 6 shows the result of experiments conducted on a single,
randomly generated dataset of sparse keys, using a balanced
hash function. We performed these experiments multiple
times, with different random seeds and noticed some non-
trivial variability in the results.

Fig. 7 shows the CDF of the saturation points for 500 dif-
ferent datasets of 50 million objects, for the configuration of
512 servers with 5% writes. Each point in this figure cor-

responds to the datacenter saturation point of one randomly
generated dataset. The distribution of these saturation points
shows that (i) traditional scale-out achieves consistently very
low utilization, as it always suffers from high shard skew;
(ii) the distributions do not overlap, meaning that the data-
center’s utilization grows monotonically with an increase in
GF; (iii) the relative standard deviation for the five shown
GFs ranges from 2.7% to 8.6%.

4.4 Synergy with dynamic replication and migration
The results of the queuing model in §4.2, including Fig. 6,
assume that the key-value store has no provision for dynamic
replication or migration. We extend the queuing model to
include the dynamic migration and replication of micro-
shards. The model extension runs a greedy algorithm oper-
ating as follows: (i) it identifies the hottest server node in
the cluster and its corresponding RackOut unit; (ii) for that
RackOut unit, it identifies the micro-shard contributing most
to the load; (iii) if this micro-shard has never been migrated
or replicated, it first migrates it to the least loaded node in
the cluster; (iv) else it replicates the micro-shard to the least
loaded node in the cluster; (v) in both cases, the hash table
metadata is updated and the system load-balances the read
traffic equally across replicas. Replicas are only made across
different RackOut units. The model assumes that all writes
to a micro-shard eventually propagate to all of its replicas.
Using this model, we determine analytically the datacenter-
wide utilization after each migration/replication step.

The model is optimistic in a number of ways: first, it as-
sumes that migration and replication events do not impact
CPU utilization, but instead happen instantly. The model
does account for the full cost of maintaining consistency,
but only to the extent of updating each replica. Furthermore,
the model assumes perfect monitoring of the load on each
server, and that the popularity distribution does not change
over time. Any realistic implementation of micro-shard dy-
namic replication and migration would incur higher CPU
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Figure 8: Dynamic replication applied to RackOut.

overhead (e.g., load monitoring) and consistency mainte-
nance costs, and would have to rely on partial and potentially
outdated metrics to make policy decisions [22, 27, 31, 32].

Fig. 8 evaluates the improvement in datacenter utilization
after each step in the greedy algorithm for the scale-out
(GF=1) and RackOut (GF>1) configurations. As in previous
experiments, the model is sized with RDMA service times
from Table 1. The model is configured with 1 billion keys,
with Zipfian α = 0.99 key popularity, hashed into 512×1000
micro-shards on the cluster (i.e., with 1000 micro-shards per
server). The key-space is representative of key-value stores
used in large social networks, and the granularity of micro-
sharding is aggressive for modern key-value stores (e.g.,
FaRM [23] defaults to ∼100 micro-shards on a server with
only 16 GB of RAM). Fig. 8a shows the trend for a read-
only workload. This is a degenerate case where consistency
maintenance is a non-issue. All configurations converge to a
point where skew is eliminated and utilization is primarily
determined by the local:remote service times; hence scale-
out can outperform RackOut when given enough replicas,
simply because all of its accesses are local.

Fig. 8b shows the trend assuming a workload with 5%
writes. We observe that: (i) the recurring cost of maintaining
replica consistency with each write inherently limits the per-
formance in all configurations; (ii) for small replica counts,
RackOut configurations with larger GFs outperform smaller
GFs; (iii) given enough replicas, all configurations tend to
converge to roughly the same overall datacenter utilization;
(iv) the number of replication/migration steps required in-
creases substantially for smaller GFs and scale-out (GF=1).
All curves plateau at a datacenter utilization of ∼30%. For
GF1, 45 replicas are required to reach the plateau, includ-
ing 20 for the hottest micro-shard alone. In practice, scale-
out KVS systems tend to cap the number of replicas to a
much smaller number, e.g., according to Huang et al., Face-
book allows for up to 10 replicas of each micro-shard [32].
With GF16, only 3 replicas achieve the same result as GF1
with 45 replicas. Therefore, RackOut is superior to scale-
out as it requires fewer replicas to absorb a given load skew,

and consequently reduces the overheads associated with dy-
namic replication.

4.5 The impact of faster remote reads
The impact of node grouping in RackOut depends on the
ratio between RR and LR service times. The higher the ra-
tio, the smaller the impact. So far, we relied on the per-
formance of RO-KVS on RDMA to estimate the impact of
RackOut through simulation. Modern RDMA technology al-
ready provides remote memory access latency that is low
enough for effective rack-scale resource aggregation [54]. In
addition, the increasing trend toward higher integration and
low-latency fabrics will further lower the RR/LR ratio and
improve the effectiveness of the RackOut approach.

A representative of such emerging tightly integrated so-
lutions is Scale-Out NUMA (soNUMA) [18, 47], which de-
livers remote memory access latency within a small factor
over local memory access. soNUMA is an architecture and
protocol that supports one-sided remote read and write op-
erations, i.e., a strict subset of RDMA operations. soNUMA
relies on a remote memory controller (RMC), which is in-
tegrated within the cache-coherence hierarchy of the CPU,
and layers a lean remote memory access protocol on top of
the standard NUMA transport, thereby removing all major
sources of latency and throughput overheads found in to-
day’s commodity networks: the PCIe bus, DMA, and deep
network stack. Prior work showed that soNUMA delivers
memory access latency that is 3− 4× of local DRAM ac-
cess, with low CPU overheads.

Fig. 9 shows the speedups at saturation of RackOut over a
traditional scale-out deployment for different grouping fac-
tors as a function of the RR/LR ratio, derived by our Rack-
Out queuing model, using the same server configuration and
dataset as in §4.2 (Fig. 6). We present only the read-only data
as it is the most sensitive to the RR/LR ratio and highlight
two points on the RR/LR curve, which correspond to: (i) the
actual ratio measured on a commercially available solution
based on Mellanox ConnectX-3 Pro adapters and (ii) the so-
NUMA ratio extracted from a soNUMA cycle-accurate sim-
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ulation model [18] (Table 1). While RackOut over RDMA
already delivers substantial performance improvements over
the traditional scale-out approach, soNUMA’s faster remote
memory access further highlights the potential of RackOut.
For instance, for GF16, soNUMA delivers 1.45× higher per-
formance improvement than RDMA.

5. A RackOut key-value store
This section describes RackOut KVS (RO-KVS), a proof-of-
concept KVS tailored to the RackOut model which we use
to validate the RackOut queuing model.

5.1 RO-KVS architecture
RO-KVS consists of (i) a coordinator node managing the key
hash space; (ii) a client library and an access protocol; (iii)
RackOut nodes that hold the data. RO-KVS is built on top of
FaRM [23], a framework for distributed data serving appli-
cations that provides the basic mechanism enabling a CREW
key-value store. In particular, FaRM offers atomic one-sided
remote access to objects over RDMA. FaRM implements
atomic remote object reads via optimistic concurrency con-
trol by encoding versions in objects. Should an object write
overlap with a remote read request, the framework detects
the inconsistency and retries the operation. Next-generation
rack-scale fabrics such as soNUMA propose to add hardware
support for atomic, multi-cache line remote reads [19] that
eliminate the software overheads associated with atomicity
checks and data layout.

We perform three major modifications of FaRM: (i)
FaRM was designed with the core assumption that the clients
would have direct access to the RDMA fabric; instead we
augment FaRM with a TCP/IP network front-end that re-
ceives client requests, processes them in a run-to-completion
manner using the FaRM framework, and sends back the
replies; (ii) out of necessity we ported FaRM to Linux and
its RDMA stack – OFED; (iii) we ported the FaRM core
from the standard RDMA interface to use the low-overhead
soNUMA operations.
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Figure 10: Experimental setup for RackOut evaluation.

The coordinator maintains a distributed hash table ring
mapping key hash ranges to servers and a map associating
each server with its own RackOut unit. This information is
available to both clients and servers. Client nodes use the
ring to route requests directly to the appropriate server node
(for writes) or RackOut unit (for reads). Server nodes rely
on the hash table ring to ensure the integrity of the KVS.

5.2 Experimental methodology
We evaluate RO-KVS on two platforms: RDMA and so-
NUMA. We use the former to measure the latencies of basic
RO-KVS operations on existing hardware, used to instru-
ment the model, as described in §4.2. We use the latter to
measure the throughput of RO-KVS under SLO tail latency
constraints for different RackOut configurations, and com-
pare the results to the RackOut queuing model.

Our RDMA setup comprises six Intel Xeon E5-based
servers running at 2.4GHz, each featuring 128GB of DRAM
and a Mellanox ConnectX-3 Pro adapter. The adapters con-
nect the servers via Converged Ethernet (RoCE), allowing
them to access each other’s memory using standard RDMA
verbs. We use this setup to measure the throughput of RO-
KVS performing GET and PUT operations that drive the el-
ementary CREW operations: local read (LR), remote read
(RR), and local write (LW).

Table 1 shows the average service times measured on
our RDMA platform, as well as the client propagation de-
lay, which is a constant offset used to compare latency mea-
surements done from a client machine. These service times
are used to size the queuing model for Fig. 6, 7, 8 and 9.
Table 1 also shows projected service times for soNUMA,

Table 1: Average service time of basic operations used to
size the queuing model.

Operation LR RR LW RR/LR Propagation
RDMA

5µs
8.4µs

6.9µs
1.68

34.9µssoNUMA 5.8µs 1.16(projected)
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Figure 11: 99th percentile latency vs. throughput for the hottest rack measured on the experimental platform.

which does not currently exist in hardware. We derive the
remote read service time for RO-KVS for soNUMA to be
5.8µs by adjusting the measured RDMA RR latency (8.4µs)
by the difference between the bare latency of a remote read
operation on RDMA (measured to be 2.8µs in our RDMA
setup for a 512-byte hashtable bucket) and the soNUMA re-
mote read latency (∼240ns [18]). For that projected latency,
the resulting RR/LR ratio for soNUMA is 1.16.

Fig. 10 describes the emulation platform for the so-
NUMA architecture. This platform [47] is designed to (i)
run server nodes at regular wall-clock speed, and (ii) ap-
proximate the latency and bandwidth of the fabric. The em-
ulation platform relies on hardware virtualization to create a
RackOut unit of up to 16 nodes. Each node comprises a ded-
icated CPU, dedicated NIC for client-facing traffic (exposed
via PCI SR-IOV), and an RMC, implemented on a dedicated
CPU. We fine-tune the remote access latency exposed by the
RMC to match the RR/LR ratio of 1.16 (Table 1).

The load generators use the RO-KVS client library to
run a YCSB workload [16]. The client library uses Spooky-
Hash [4], a public domain hash function that produces well-
balanced hash values, to map keys to servers. Nine external
servers generate load, and a tenth runs a closed-loop YCSB
process issuing synchronous read/insert/update requests to
the RO-KVS nodes, for the purpose of measuring the la-
tency. Another eight servers run 128 throughput YCSB gen-
erators in total, whose purpose is to put a specific load on the
system under evaluation. Each generator issues up to 8 con-
current operations, each on a separate TCP/IP connection.

5.3 Validation of the queuing model
We use our soNUMA platform to evaluate RO-KVS for a
workload that follows the key distribution highlighted in
Fig. 7. Although the system manages a distributed hash table
ring for 512 servers, the clients only issue requests to the
same group of 16 servers with the most traffic (i.e., the
”hottest rack”). These 16 servers are organized in 16/GF
RackOut units for the various experiments. We report the

tail latency of requests issued to that 16-server group. For
comparison purposes, we extract the tail latency for the same
group of servers from the queuing model.

Fig. 11 shows the 99th percentile latency for the hottest
rack, with throughput expressed as a fraction of the maxi-
mum processing capacity of 16 nodes. We compare the ex-
perimental results with the behavior predicted by the Rack-
Out queuing model configured with the soNUMA parame-
ters (Table 1). We do not deploy a dynamic replication algo-
rithm as the experimental setup is limited to a single rack.

The platform’s behavior is closely predicted by the
model, with the tail latency spiking as the server saturates.
For the YCSB-C read-only workload (Fig. 11a), each node
observes the same arrival rate, but the node with the least
popular keys issues mostly remote read requests, which are
more expensive than local memory accesses. For YCSB-B
workload with 5% writes (Fig. 11b), the inability to load-
balance writes limits the maximum rack throughput with
GF=16 to 57% vs. 84% in the read-only workload. A work-
load with 20% of writes reduces the speedup from 6× for
YCSB-B to 3.2×, and YCSB-A (50% writes) reduces it to
1.7×. However, workloads with atypically high fraction of
writes are rare [9, 11, 16, 52]. We observe a difference be-
low 6% between the model and the platform at 1ms SLO.
The difference is likely due to contention within the emu-
lation platform that is not captured by the model. Despite
such system complexity of the RackOut platform—in terms
of the application itself, the robust FaRM framework, the so-
NUMA fabric, and the underlying emulation platform—the
queuing model provides a solid approximation of the behav-
ior of the actual system, including the tail latency behavior.

Overall, the RackOut queuing model serves as a useful
tool to analyze the impact of skew and skew mitigation
techniques on KVS. Furthermore, it enables us to accurately
predict the performance improvement for arbitrarily large
datacenter configurations and RackOut organizations with
larger GFs, which exceed our platform’s scale limitations.



6. Related work
Resource pooling. RackOut leverages fast remote access
within a rack to tackle shard-skew through memory pool-
ing. Multi-socket shared memory machines also offer this
feature, but have known scalability limitations. Disaggre-
gated memory [38] introduces dedicated memory blades to
increase the memory-to-compute capacity ratio and enable
sharing between servers, but does not consider fast remote
memory access to combine memory chunks into a larger
memory pool. Finally, the benefits of resource pooling pow-
ered by rack-level RDMA solutions are also leveraged in
commercial database and storage solutions [24, 50].
Concurrency models in KVS. State-of-the-art KVS im-
plementations represent a compromise between maximum
theoretical performance and implementation complexity.
Specifically, (i) concurrent-read/concurrent-write (CRCW):
the memory is managed as a single pool, which can be con-
currently accessed for reading and writing by any thread
running on the server. This is the case of a single-instance de-
ployment of memcached; (ii) exclusive-read/exclusive-write
(EREW): the memory is managed as N distinct pools. This
is typical for multi-instance deployments of memcached;
(iii) concurrent-read/exclusive-write (CREW) specifically
has been proven to provide solid scalability at low com-
plexity. MICA [37] shows that CREW delivers scalable per-
formance for read-dominated workloads, circumventing the
complexity and synchronization overhead of CRCW.

Most RDMA-based distributed KVS systems also avoid
the complexity of CRCW. RamCloud [51] is based on
EREW, while FaRM [23] and Pilaf [45] implement CREW,
where reads are direct one-sided accesses to remote mem-
ory, while writes are transformed into RPCs. To our knowl-
edge, DrTM [60] is the only RDMA-based distributed KVS
system that implements CRCW by building a sophisticated
concurrency mechanism that relies on HTM. Our RO-KVS
is based on a modified version of FaRM for soNUMA that
uses TCP/IP to receive and reply to client requests.
Replication. Replication is the common remedy for load
imbalance in scale-out environments. Static replication is a
simple technique providing robustness to skew, but incurs
fixed increased memory requirements, and is not flexible
to skew changes. Dynamic replication effectively addresses
these limitations, but has intrinsic CPU, memory and net-
work overheads [32, 53]. RackOut is synergistic with dy-
namic replication and substantially reduces the need to dy-
namically replicate content. Fan et al. [27] observe that the
load imbalance introduced by highly popular data items can
be turned into an opportunity by exploiting temporal locality
using software caching techniques at the front-end (client).
Our work focuses on the back-end without assuming front-
end caching, steering clear of the consistency issues.

7. Conclusion
The recent evolution of datacenters points to a steady in-
crease in the overall size of the deployment, and to a stan-
dardization of the compute infrastructure at the rack level,
with each rack a unit of purchase, operation, IP routing,
and possibly failure domain. With RackOut, we advocate for
augmenting this building block with a NUMA-style internal
fabric and a fast one-sided read primitive to enable mem-
ory pooling at the rack level. The RackOut model quantifies
the scalability benefits of the internal fabric as a function
of key popularity distribution, the number of nodes within
each rack, the number of racks, and input load. We study
the benefits of RackOut when serving datasets that follow a
power-law distribution, and show, both analytically and with
a proof-of-concept prototype, that the approach can provide
substantial benefits over the scale-out baseline, and that it is
synergistic with dynamic replication of micro-shards.
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