
...

FAT CACHES FOR SCALE-OUT SERVERS
...

THE AUTHORS PROPOSE A HIGH-CAPACITY CACHE ARCHITECTURE THAT LEVERAGES

EMERGING HIGH-BANDWIDTH MEMORY MODULES. HIGH-CAPACITY CACHES CAPTURE THE

SECONDARY DATA WORKING SETS OF SCALE-OUT WORKLOADS WHILE UNCOVERING

SIGNIFICANT SPATIOTEMPORAL LOCALITY ACROSS DATA OBJECTS. UNLIKE STATE-OF-THE-

ART DRAM CACHES EMPLOYING IN-MEMORY BLOCK-LEVEL METADATA, THE PROPOSED

CACHE IS ORGANIZED IN PAGES, ENABLING A PRACTICAL TAG ARRAY, WHICH CAN BE

IMPLEMENTED IN THE LOGIC DIE OF THE HIGH-BANDWIDTH MEMORY MODULES.

......Scale-out datacenters host a vari-
ety of data-intensive services, such as search
and social connectivity. To concurrently
support billions of users, latency-sensitive
online services and analytic engines that cre-
ate user-specific content (such as advertise-
ments and recommendations) rely on large
amounts of memory to minimize dataset
access latency. The ever-growing popularity
of the in-memory computing paradigm—
which will be further broadened by the
emergence of storage-class memory—leads
to datacenter deployments in which memory
accounts for a big share of the datacenter’s
total cost of ownership (TCO).1

Optimizing for a datacenter’s TCO calls
for customized architectures that maximize
computational density. Following a consider-
able amount of research identifying the
requirements of scale-out workloads, and indi-
cating that these workloads benefit from
thread-level parallelism and fast access to multi-
megabyte instruction footprints,2,3 the indus-
try has started employing specialized many-core
processors with modestly sized last-level caches
(such as Cavium ThunderX and EZchip Tile-
MX) due to the substantial performance and
TCO advantages offered by specialization.

Memory systems in scale-out servers are
of paramount importance because they need
to sustain the vast bandwidth demands of
many-core chip multiprocessors (CMPs).3,4

Recent advances in on-chip stacked DRAM
technology eliminate the bandwidth bottle-
neck that plagues conventional DRAM.5

This technology is capacity-limited owing to
thermal constraints, so prior research advo-
cates for using it as a cache to provide access
to secondary data working sets.4,6–8

Our analysis shows that on-chip stacked
DRAM caches are unattractive for scale-out
servers. We find that memory accesses follow
power-law distributions, so that a modest
portion of memory (about 10 percent)
accounts for the majority of accesses (65 to
95 percent). Thus, although the vast working
sets of scale-out workloads are amenable to
caching, high-capacity caches (tens of
Gbytes) are required, given main memory
sizes trending toward hundreds of Gbytes.
The required cache capacities greatly exceed
those of low-capacity caches, including on-
chip stacked DRAM caches.

This article seeks to develop a scalable,
high-capacity, and high-bandwidth memory
system for scale-out servers by leveraging

Stavros Volos

Microsoft Research

Djordje Jevdjic

University of Washington

Babak Falsafi

EPFL

Boris Grot

University of Edinburgh

...

90 Published by the IEEE Computer Society 0272-1732/17/$33.00�c 2017 IEEE

emerging high-bandwidth memory modules
as a high-capacity cache. High-bandwidth
interconnect technologies allow for connect-
ing the processor to multiple high-bandwidth
memory modules via a silicon interposer (for
example, Hynix High Bandwidth Memory
[HBM]), thus forming an on-package cache,
or via high-speed serial links (for example,
Micron Hybrid Memory Cube [HMC]),
thus forming an off-package cache.

In contrast to prior stacked DRAM cache
proposals, which advocate for block-based7,8

and sector-based organizations,4,6 we find
that page-based organizations are favored in
scale-out servers. High-capacity caches—
effective in capturing the secondary data
working sets of scale-out workloads—
uncover significant spatiotemporal locality
across dataset objects due to long cache resi-
dency periods. The improved spatiotemporal
locality allows for employing a page-based
cache organization, thereby minimizing tag
storage requirements and enabling a practical
in-SRAM tag array architecture, which can
be implemented in the logic die of the high-
bandwidth memory modules. This design
offers fundamental complexity advantages
over state-of-the-art DRAM caches, which
suffer from high tag and/or metadata over-
heads that mandate in-DRAM storage.

Emerging Scale-Out Servers and DRAM
Technologies
In this section, we examine the memory
requirements of emerging scale-out servers
and review the features of emerging DRAM
technologies.

Scale-Out Server Requirements
Processor and system vendors resort to many-
core processors (such as Cavium ThunderX)
to boost server throughput and rely on buf-

fer-on-board chips (such as Cisco’s extended
memory technology9) to increase memory
capacity. In doing so, datacenter operators
can deploy fewer servers for the same
throughput requirements and dataset size,
thus lowering TCO significantly.9,10

We quantify the memory bandwidth and
capacity requirements of emerging scale-out
servers for various manufacturing technolo-
gies in Table 1. Our configuration maximizes
throughput by integrating the maximum
number of cores for a given die area and
power budget of 250 to 280 mm2 and 95 to
115 W. The modeled organization resembles
that of many-core servers, such as Cavium
ThunderX.

Bandwidth. We measure the processor’s off-
chip bandwidth demands by scaling per-core
bandwidth consumption with the total num-
ber of cores. We measure per-core bandwidth
by simulating a 16-core server and find that
per-core bandwidth ranges from 0.4 to 1.2
Gbytes/second (GBps). Peak bandwidth
demands are 115 GBps (2015), 216 GBps
(2018), and 384 GBps (2021).

High bandwidth utilization levels can
adversely impact end-to-end memory latency
because of heavy contention on memory
resources. Because performance of scale-out
services is characterized by tail latencies,
memory latency and queuing delays must be
minimized. Thus, system designers overpro-
vision memory bandwidth to ensure low uti-
lization (less than 40 percent) and avoid
queuing.2 As such, memory systems need to
supply 288 GBps (2015), 540 GBps (2018),
and 960 GBps (2021). Such requirements
exceed the capabilities of conventional
DRAM systems by 5.5 to 7.5 times.

Capacity. We estimate required memory
capacity by examining various system

Table 1. Requirements of one scale-out server.

Year

Processor Memory system

Cores Bandwidth Bandwidth Capacity

2015 96 115 Gbytes/s 288 Gbytes/s 384 Gbytes

2018 180 216 Gbytes/s 540 Gbytes/s 720 Gbytes

2021 320 384 Gbytes/s 960 Gbytes/s 1,280 Gbytes

...

MARCH/APRIL 2017 91

deployments. Today, data analytic engines
are provisioned with 2 to 8 Gbytes per core
(Cloudera), web search engines deploy 64
Gbytes for 16 cores (Microsoft Bing), and
web and streaming servers require 1 to 2
Gbytes per core.2 With the emergence of
extended memory technology and storage-
class memory, we anticipate that datacenter
operators will continue deploying 4 Gbytes
of per-core memory cost effectively, resulting
in the deployment of several hundreds of
Gbytes of memory per server.

Emerging DRAM Technologies
Stacked DRAM can provide an order of
magnitude higher bandwidth than conven-
tional DRAM due to dense through-silicon
vias. It also offers low latency and low DRAM
energy due to reduced wire spans and smaller
page sizes. However, existing deployment
options for stacked DRAM fail to satisfy the
joint capacity, bandwidth, and power require-
ments mandated by scale-out servers. Next,
we review the deployment options for stacked
DRAM and their respective limitations.

On-chip and on-package stacked DRAM.
Through-silicon vias provide high-bandwidth
connectivity between the processor and on-
chip stacked DRAM. Thermal constraints,
however, limit the number of DRAM stacks
that can be integrated on top of the pro-
cessor, confining on-chip stacked DRAM to
sizes that are two to three orders of magni-
tude smaller than the servers’ memory
capacity demands. Similarly, the high cost of
big packages and area-intensive silicon inter-
posers limit the number of stacked DRAM
modules in on-package stacked DRAM sys-
tems. When combined with the thermally
constrained capacity of a few Gbytes per
module, an on-package DRAM solution fails
to provide the requisite memory capacity for
servers.

Off-package stacked DRAM. High-speed
serial interfaces can break the bandwidth wall
by connecting the processor to multiple off-
package stacked DRAM modules. The high
signal integrity of serial interfaces allows for
achieving an order of magnitude higher data
rates than double data rate (DDR) with the
same number of pins.

Although off-package stacked DRAM
systems deliver much greater memory
capacity than on-chip and on-package
stacked DRAM systems, two main factors
prevent such systems from replacing con-
ventional DRAM. First, serial channels
impose high idle power because keep-alive
packets must be sent at frequent intervals to
maintain lane alignment across the channel’s
lanes. Second, thermal constraints limit the
number of stacked layers per module and
necessitate a blade-level network of these
modules for a big-memory server. Such a
network comes at the cost of high idle power
consumption due to the use of many serial
links resulting from a multihop chip-to-chip
network.

State-of-the-Art DRAM Caches
Given the disparity between memory capacity
requirements and the capacity provided by
emerging DRAM technologies, most pro-
posals advocate employing stacked DRAM as
a cache to filter accesses to main memory.
State-of-the-art cache proposals—leveraging
mainly on-chip stacked DRAM—have to
contend with relatively high miss rates owing
to limited capacity. As a result, they are pri-
marily optimized for low cache-memory
bandwidth utilization through block-based
organizations,7,8 sector-based footprint-
predicting organizations,4,6 and address-
correlated filter-based caching mechanisms.11

Unfortunately, such organizations come
with high tag and/or metadata overhead
and high design complexity, making such
cache designs impractical. For instance,
state-of-the-art block-based and footprint-
predicting caches require 4 Gbytes and 200
Mbytes of tags, respectively, for a capacity
of 32 Gbytes. Due to the prohibitive tag
array overhead, recent proposals implement
the tag array in DRAM.6–8 In-DRAM tag
arrays, however, require substantial engineer-
ing effort, making state-of-the-art caches less
attractive. In addition, footprint-predicting
caches rely on instruction-based predic-
tion.4,6 However, the program counter of an
instruction is not available in the memory
hierarchy, thus requiring the core-to-cache
transfer of the program counter for all
memory references, further increasing design
complexity.

..

MEMORY SYSTEMS

..

92 IEEE MICRO

Memory Access Characterization of
Scale-Out Servers
High-bandwidth memory modules are an
ideal building block for a high-capacity,
high-bandwidth cache. However, state-of-
the-art DRAM caches are hindered by the
need to keep metadata in DRAM. In this sec-
tion, we study the application characteristics
that enable architecting an effective, practical,
and scalable cache.

Temporal Characterization
We examine the memory access distribution
of scale-out applications by looking at the
characteristics of the dominant types of
memory accesses.

Dataset accesses. We examine the dataset
object popularity (that is, how frequently a
dataset object is accessed) of search query
terms (AOL), tweets (Twitter), videos (You-
Tube), and webpages (Wikipedia) based on
publicly available data. Figure 1 plots the
probability for a dataset object to be refer-
enced as a function of popularity, showing
that the dataset object popularity is highly
skewed with a small set of dataset objects
(10 to 20 percent) contributing to most of
the dataset object accesses (65 to 80 percent).
For instance, a small fraction of users and
their pictures account for most of the user
traffic in picture-sharing services, such as
Flickr. Due to power-law popularity distribu-
tions, dataset accesses in data stores, object
caching systems, streaming servers, web search
engines, and web servers exhibit power-law
distributions.

Accesses to dynamically allocated memory.
Server applications frequently access dynami-
cally allocated memory with high temporal
reuse.

For instance, server applications use soft-
ware caches to keep a set of hot objects, such
as rows in data stores and compiled script
code in web servers. As they host dataset-rele-
vant data and metadata, the distributions of
their accesses will follow those of the datasets.
Another example is data structures employed
by server applications or operating systems
(OSs) per client or network connection, such
as buffers for media packets in streaming

servers and OS data structures storing TCP/
IP state. The large number of concurrent
connections in many-core CMPs results in a
footprint that dwarfs on-chip cache capacity.
The reuse of these structures is high because
they are accessed multiple times during a
connection.

We expect the skew in object popularity
and temporal reuse of dynamically allocated
memory to be mirrored in the memory
access distribution. To confirm this, we
examine the memory access distribution of
a simulated 16-core scale-out server. To esti-
mate the hot memory footprint of scale-out
applications, we employ a state-of-the-art
DRAM cache and measure its miss ratio for
various capacities.8

Figure 2 plots the cache miss ratio for
various cache-to-memory capacity ratios.
The markers denote measurements while
contiguous lines show x-shifted power-law
fitted curves. The figure shows that memory
accesses are skewed so that 6.25 to 12.5 per-
cent of the memory footprint accounts for
65 to 95 percent of total accesses. The figure
confirms that existing low-capacity caches
(left points)—such as on-board SRAM
caches (IBM Centaur), on-package
embedded DRAM (eDRAM) caches, and
on-chip stacked DRAM caches—cannot
exploit temporal locality in scale-out serv-
ers. In extreme cases, such as Data Serving
and Online Analytics, on-chip stacked
DRAM caches are bandwidth-constrained
with less than 40 percent of memory

Dataset object rank

10–1

100

10–2

10–3

10–4

10–5

101 102 103 104100
10–6

A
cc

es
s

fre
q

ue
nc

y

AOL Twitter YouTube Wikipedia

Figure 1. Dataset object popularity exhibits power-law distribution. Power-

law relationships show linear trends in log-log scale.

...

MARCH/APRIL 2017 93

accesses filtered. We thus conclude that the
combination of poor cache performance
and technological complexity of die stack-
ing limits the usefulness of on-chip stacked
DRAM caches in servers.

Spatial Characterization
Scale-out applications often operate on bulk
objects (such as database rows), thus exhibit-
ing a high incidence of coarse-grained
accesses.12 To allow for the retrieval of an

object in sublinear time, objects are pin-
pointed through pointer-intensive indexing
structures, such as hash tables and trees. For
instance, data stores and object caching sys-
tems use a hash table to retrieve data objects.
Although objects are accessed at coarse
granularity, finding them requires perform-
ing a sequence of pointer dereferences. Thus,
a non-negligible fraction of accesses is
fine-grained.12

We examine the granularity at which
high-capacity caches access memory by meas-
uring the access density at which page-sized
lines are fetched from and written back to
memory in Figure 3. We define page access
density as the fraction of 64-byte blocks
within a page accessed between the page’s first
access and the page’s eviction from the cache.
We use a page size of 2 Kbytes because it
reduces the tag array size significantly with
limited tolerance for overfetch. Thus, fine-
grained pages have low access density (up to
8 unique cache blocks accessed), whereas
coarse-grained pages have high access density
(at least 24 unique cache blocks accessed).
For comparison, we include a low-capacity
cache, labeled “Die-Stacked.”

We find that Die-Stacked exhibits bimo-
dal memory access behavior—that is, fine-
grained and coarse-grained accesses account
for 21 and 68 percent of accesses, respec-
tively. Although coarse-grained accesses are
prevalent, the frequent incidence of fine-
grained accesses must also be accommodated
effectively. Due to the limited capacity of on-
chip stacked DRAM caches, pointer-contain-
ing pages show low temporal reuse and are
frequently evicted. To avoid massive band-
width waste in accesses to such pages, state-
of-the-art stacked DRAM caches rely on
block-based or footprint-predicting organiza-
tions that are bandwidth-frugal but carry a
high metadata storage cost.

In contrast, high-capacity caches exhibit
coarse-grained memory access behavior—
that is, 93 percent of all accesses. This behav-
ior is attributed to two phenomena. First, the
lifetime of pages in the cache is on the order
of tens to hundreds of milliseconds. Thus,
pages containing a collection of fine-grained
objects (such as hash bucket headers) can
enjoy spatial locality uncovered through long
cache residency times, stemming from

0

25

50

75

100

Cache-to-memory capacity ratio

Data Analytics Data Serving Media Streaming

Online Analytics Web Serving

1:128 1:64 1:32 1:16 1:8

C
ac

he
 m

is
s

ra
tio

 (
%

)

Figure 2. Miss ratio for various cache-to-memory capacity ratios. Lines

denote x-shifted power-law fitting curves.

0

25

50

75

100

F
W

B

W
B

W
B

W
B

W
B

W
B

W
B

W
B

W
B

W
B

W
B

W
BF F F F F F F F F F F

DS HC DS HC DS HC DS HC DS HC DS HC

Data
Analytics

Data
Serving

Media
Streaming

Online
Analytics

Web
Search

Web
Serving

Fine (≤25%) Other (25−75%) Coarse (≥75%)

M
em

or
y

ac
ce

ss
es

 (
%

)

Figure 3. Granularity at which page-sized lines are fetched (F) from and

written back (WB) to DRAM for the Die-Stacked (DS) cache and a high-

capacity cache (HC) of 1:128 and 1:8 cache-to-memory capacity ratio,

respectively.

..

MEMORY SYSTEMS

..

94 IEEE MICRO

skewed access distributions. Second, low-
access-density pages containing pointer-
intensive indexing structures with good tem-
poral reuse (for example, intermediate tree
nodes) are preserved across accesses.

Summary
Our study demonstrates that high-capacity
caches are needed to capture the skewed
memory access distributions of servers. We
also find that the improved spatiotemporal
behavior of high-capacity caches offers an
opportunity to use a simple page-based
organization, thus avoiding the storage and
complexity overheads associated with state-
of-the-art stacked DRAM caches.

Memory System Architecture for Scale-Out
Servers
We present MeSSOS, a memory system
architecture for scale-out servers that provides
the required bandwidth and capacity for a
scale-out server. High bandwidth is delivered
through caching of data working sets in a
high-capacity scale-out cache (soCache),
which comprises multiple off-package
stacked DRAM modules. High memory
capacity is achieved through the deployment
of multiple conventional (DDR-based)
memory modules (DIMMs).

Figure 4 shows the design overview. In
MeSSOS, an on-board building block com-
prises an soCache slice fronting a set of
DIMMs. The design of each building block
(for example, serial link and DDR band-
width, cache-to-memory capacity ratio) is
guided by our memory access characteriza-
tion. Capacity and bandwidth can be seam-
lessly scaled by adjusting the number of
building blocks. Next, we examine the
soCache architecture and its integration with
the rest of the system.

soCache Architecture
MeSSOS uses multiple off-package stacked
DRAM modules as a high-capacity cache. To
avoid communication between soCache sli-
ces, memory addresses are statically inter-
leaved across the slices. Figure 5a shows the
organization of an soCache slice. Stacked
DRAM is internally organized as a set of

vaults, which are connected to the serial link
via an interconnect.

Cache organization. soCache uses a page-
based organization, which leverages the
observation that high-capacity caches uncover
spatial locality that is beyond the temporal
reach of lower-capacity caches. The page-
based design not only naturally captures
spatial locality, but also minimizes metadata
storage requirements over block-based and
footprint-predicting designs thanks to fewer
cache sets and/or smaller tag entries. The
page-based design also reduces dynamic
DRAM energy by exploiting DRAM row
buffer locality and fetching the entire page
with one DRAM row activate, thus mini-
mizing the number of DRAM row activates
that dominate energy consumption in con-
ventional DRAM.12

CMP

Serial

DDR
DIMMs

so-
Cache

so-
Cache

so-
Cache

so-
Cache

Figure 4. Overview of MeSSOS, a memory system architecture for scale-

out servers. MeSSOS employs multiple off-package stacked DRAM

modules as a scale-out cache (soCache) in front of DDR-based memory.

(a)

DDR PHY and controller

DDR PHY and controller

Vault

Tag

Request address

…

Tag V D LRU

… … …

5 01017 133247

Ways

Tags
soCache

CTRL

soCache
sliceVaultIndex Offset Block

S
er

D
es

 c
on

tro
lle

r

In
te

rc
on

ne
ct

(b)

Figure 5. The organization of an soCache slice. (a) Logic die organization and

(b) tag array architecture.

...

MARCH/APRIL 2017 95

On the basis of page-size sensitivity analy-
sis, we find that a page size of 2 Kbytes offers
a good tradeoff between tag array size and
bandwidth overhead stemming from over-
fetch. We also observe that low associativity
(four-way in the preferred design) is sufficient
for minimizing the incidence of conflicts
while also reducing tag and least recently
used (LRU) metadata costs.

Tag array. The page-level organization
reduces the tag array overhead significantly.
For instance, an soCache of 32 Gbytes, con-
sisting of eight 4-Gbyte slices, requires
5 Mbytes of tags per slice, or 20 mm2 in
40-nm technology (obtained using CACTI).
The small tag array size lets us embed it in
the logic die of the modules comprising
soCache. These logic dies are underutilized,
typically housing per-vault memory control-
lers, an on-chip interconnect, and off-chip
I/O interfaces and controllers. In our special-
ized HMC, these components occupy
approximately 70 mm2 in 40-nm technology
(estimated by scaling die micrographs), leav-
ing sufficient room for the tags on a typical
HMC logic die (approximately 100 mm2).

To enable low tag lookup latency, we dis-
tribute the tag array across the high-band-
width memory module, placing each tag
array slice beneath a vault. For a 4-Gbyte
four-way associative soCache slice, each slice
of the in-SRAM tag array requires only 320
Kbytes. A tag array slice corresponds to
32,768 sets, and each tag entry is 20 bits—
that is, 15 bits for the tag, 2 page-level valid
and dirty bits, and 3 bits for maintaining the
pseudo-LRU tree. Low associativity and
small in-SRAM tags allow for searching the
ways in parallel at small latency (three to four
processor cycles) and energy overheads,
allowing for a feasible and practical set-asso-
ciative cache organization.

Processor-soCache Interface
The processor is connected to the soCache
via high-bandwidth serial links. Both the pro-
cessor and soCache slices implement simple
controllers to orchestrate communication
(see Figure 4). The controllers comprise a
pair of queues to buffer incoming and out-
going packets, and a SerDes interface. Pro-
cessor-side controllers serialize outgoing

requests into packets before routing them to
the soCache slice based on corresponding
address bits (Figure 5b), and they deserialize
incoming data and forward them to the last-
level cache. An soCache-side controller
deserializes incoming memory requests and
forwards them to the vault’s soCache control-
ler based on corresponding address bits
(Figure 5b), and it serializes outgoing data
into packets and forwards them to the
processor.

Because scale-out workloads exhibit varia-
ble read-write ratios,12 each serial link com-
prises 16 request lanes and 16 response lanes.
Thus, a serial link requires approximately 70
pins (control and double-ended signaling for
data lanes) as opposed to a DDR channel,
which requires approximately 150 pins. The
lower number of per-serial-link pins allows
for integrating a high number of processor-
side SerDes channels without increasing the
number of the processor’s pins compared to a
processor with DDR channels, thereby keep-
ing the cost associated with the processor’s
packaging constant.

soCache–Main Memory Interface
The off-package high-bandwidth memory
modules provide the communication bridge
between processor and main memory. Mem-
ory requests that miss in soCache are for-
warded directly to local memory modules.
To do so, the soCache slice integrates DDR
controllers to control the local DDR chan-
nels, requiring the implementation of the
DDR PHY and protocol in the logic die of
the soCache modules.

DDR channels. Thanks to the high degree of
bandwidth screening provided by soCache,
the DDR channels operate at low frequency
to reduce idle power. Compared to conven-
tional HMCs hosting four SerDes interfaces,
each of our specialized HMCs hosts only one
SerDes interface (of approximately 9 mm2 of
area and 1.5 W of power), freeing up area
and power resources for the required low-fre-
quency DDR interfaces (approximately 10
mm2 each). Our estimates show that the
power consumption of an soCache slice lies
within the power budget of conventional
HMCs. The total number of pins required

..

MEMORY SYSTEMS

..

96 IEEE MICRO

by each soCache slice matches that of on-
board chips in buffer-on-board systems.

DDR controllers. These employ first-ready,
first-come first-serve (FR-FCFS) open-row
policy with page-level address interleaving.
We map an entire soCache’s page-sized cache
line to one DRAM row by using the address-
ing scheme Row:ColumnHigh:Rank:
Bank:LocalChannel:soCacheSlice:
ColumnLow:WordOffset, in which
ColumnHigh is 2 bits and ColumnLow is 8
bits. To guarantee that requests missing in
an soCache slice are served by local DRAM,
the mapping scheme interleaves addresses
across local channels using the least-significant
vault bit.

System-Level Considerations
We qualitatively examine the system-level
implications of the cache substrate and dis-
cuss the scalability and cost of the proposed
memory system.

Cache substrate. Although we choose off-
package stacked DRAM as our cache sub-
strate, our insights on high-capacity cache
design also apply to on-package stacked
DRAM. Such a design can lower cache access
latency by avoiding chip-to-chip links, but at
the cost of lower cache hit rates in big-mem-
ory systems and additional buffer-on-board
chips, which would be required to afford
high memory capacity with DIMMs given
the pin-count limitations of a single package.

Scalability. MeSSOS delivers high memory
capacity in a scalable manner while relying on
cost-effective DIMMs. MeSSOS distributes
the required number of DDR channels and
their pins across multiple soCache modules as
opposed to a single processor chip. This
approach resembles that of buffer-on-board
systems, which employ on-board chips to cost
effectively boost memory capacity. In contrast
to these systems, MeSSOS does not require
additional on-board buffer chips, because the
functionality of those chips is implemented in
the logic die of the soCache modules.

TCO. MeSSOS achieves substantial system
cost savings due to lower acquisition and
operating costs. By providing the required

bandwidth and capacity for a server, MeS-
SOS maximizes server throughput, thus
reducing the number of servers required for
the same throughput. MeSSOS also lowers
memory energy by minimizing the static
power footprint of its underlying memory
interfaces. As MeSSOS employs off-package
stacked DRAM as a cache, it bridges the
processor-bandwidth gap with the bare mini-
mum number of power-hungry serial links,
efficiently uses serial link bandwidth and
amortizes their high idle power consumption,
and filters a high degree of memory accesses,
and thus infrequent main memory accesses
can be served by underclocked DIMMs.

Experimental Methodology
We evaluate MeSSOS performance and
energy efficiency using a combination of
cycle-accurate full-system simulations, ana-
lytic models, and technology studies.

Scale-Out Server Organization
We model chips with an area of 250 to 280
mm2 and a power budget of 95 to 115 W.
We use the scale-out processor methodology
to derive the optimal ratio between core count
and cache size in each technology.3 The con-
figuration resembles that of specialized many-
core CMPs, such as Cavium ThunderX.

Table 2 summarizes the details of the eval-
uated designs across technology nodes. For a
given technology node, the processor config-
uration and memory capacity are fixed. We
evaluate the following memory systems:

� DDR-only memory.
� Buffer-on-Board (BOB),9 which

relies on on-board chips to boost
bandwidth and capacity through
additional DDR channels, but at the
cost of higher end-to-end memory
latency and energy consumption due
to (processor-BOB) serial links and
intermediate buffers.

� High-Bandwidth Memory Modules
(HBMM), which replaces DDR-
based memory with off-package stacked
DRAM—that is, stacked DRAM is
deployed as main memory. HBMM
employs a tree network topology to
reduce the number of network hops;
the average and maximum number of

...

MARCH/APRIL 2017 97

network hops are three and four,
respectively.

� A Die-Stacked cache with a block-
based organization8 that maximizes
effective capacity and minimizes off-
chip bandwidth waste. The cache is
backed by DDR-based memory.

� MeSSOS, which deploys off-package
stacked DRAM modules as a cache in
front of DDR-based memory.

HBMM, BOB, and MeSSOS provide the
required memory bandwidth for a scale-out
server, summarized in Table 1. DDR is band-
width-constrained for all workloads, and
Die-Stacked’s provided effective bandwidth
is limited due to poor cache hit ratios. Fol-
lowing the memory capacity requirements
discussed in Table 1, all systems provide 4
Gbytes per core. For the DDR baseline and

Die-Stacked, we consider DIMMs with a
higher number of memory ranks than those
deployed in the rest of the systems.

Performance and Energy Models
Due to space constraints, we present only a
summary of our framework. The details of the
framework, including system performance,
energy modeling, and projection to future
technologies can be found elsewhere.13,14

Performance. We measure performance using
analytic models, which are validated against
cycle-accurate full-system simulations of a
16-core CMP with high accuracy (5 percent
average error). Our model extends the classi-
cal average memory access time analysis to
predict per-core performance for a given
memory system. The model is parameterized

Table 2. System configuration.

System 2015 (22 nm) 2018 (14 nm) 2021 (10 nm)

Chip multiprocessor

(CMP)

96 cores, 3-way out-of-order

(OoO), 2.5 GHz

180 cores, 3-way OoO,

2.5 GHz

320 cores, 3-way OoO,

2.5 GHz

Last-level cache 24 Mbytes 45 Mbytes 80 Mbytes

Memory 384 Gbytes 720 Gbytes 1,280 Gbytes

Double data rate (DDR)* 4 DDR-1600 5 DDR-2133 6 DDR-2667

High-Bandwidth Memory

Modules (HBMM)†
8 32-lane at 10 Gbps 10 32-lane at 15 Gbps 12 32-lane at 20 Gbps

Buffer-on-Board (BOB)‡ 8 32-lane at 10 Gbps

16 DDR-1600

10 32-lane at 15 Gbps

20 DDR-2133

12 32-lane at 20 Gbps

24 DDR-2667

Die-Stacked§ Cache: 1 Gbyte

Off-chip: 4 DDR-1600

Cache: 2 Gbytes

Off-chip: 5 DDR-2133

Cache: 4 Gbytes

Off-chip: 6 DDR-2667

MeSSOSk CMP-Cache:

8 32-lane at 10 Gbps

Cache: 8� 4 Gbytes

Cache-Memory:

16 DDR-1066

CMP-Cache:

10 32-lane at 15 Gbps

Cache: 10� 8 Gbytes

Cache-Memory:

20 DDR-1066

CMP-Cache:

12 32-lane at 20 Gbps

Cache: 12� 16 Gbytes

Cache-Memory:

24 DDR-1066

..

*DDR memory latency: 55 ns including off-chip link (15 ns) and DRAM core (40 ns).
†HBMM memory latency: hop-count 3 35 ns (SerDes and pass-through logic)þ 20 ns (stacked DRAM access).
‡BOB memory latency: 95 ns including SerDes and buffer (40 ns), buffer-DDR link (15 ns), and DRAM core (40 ns).
§Die-Stacked hit latency: approximately 20 ns, including predictor lookup and stacked DRAM access (20 ns). Die-Stacked
miss latency: approximately 55 ns, including predictor lookup and off-chip DRAM access (55 ns).
kMeSSOS tag lookup latency: 35 ns, including SerDes (30 ns) and distributed tag array lookup (5 ns). MeSSOS hit latency:
55 ns, including tag lookup (35 ns) and stacked DRAM access (20 ns). MeSSOS miss latency: 95 ns, including tag lookup
(35 ns) and off-chip DRAM access (60 ns).

..

MEMORY SYSTEMS

..

98 IEEE MICRO

by 16-core full-system simulations results
(using Flexus15), including core performance,
miss rates of on-chip and stacked DRAM
caches, and interconnect delay. For off-chip
memory access latency, we include link
latency, memory core latency, and queuing
delays. We model queuing delays by running
cycle-accurate simulations to measure mem-
ory latency for various bandwidth utilization
levels for each workload separately.

Energy. We develop a custom energy model-
ing framework to include various system com-
ponents, such as cores, on-chip interconnects,
caches, memory controllers, and memory. Our
framework draws on several specialized tools
(such as CACTI and McPAT) to maximize
fidelity through detailed parameter control.

Future technologies. To understand the effect
of technology scaling on the examined mem-
ory systems, we model our systems in 2018
and 2021. Per International Technology Road-
map for Semiconductors (ITRS) estimates, pro-
cessor supply voltages will scale from 0.85 V
(2015) to 0.8 V (2018) and 0.75 V (2021).
We use Micron’s datasheets to examine the
impact of data rate and memory density on
DDR energy. We also study the impact of
manufacturing technology on power con-
sumption and data rate of SerDes interfaces
based on numerous published measurements.

Workloads. Our analysis is based on a wide
range of scale-out workloads taken from

CloudSuite 2.0.2 We also evaluate Online
Analytics running a mix of TPC-H queries
on a modern column-store database engine
called MonetDB.

Evaluation
We compare MeSSOS to various memory
systems in terms of system performance
and energy efficiency across technology
generations.

Performance and Energy-Efficiency Implications
We begin our study with a 96-core CMP in
the 22-nm technology. Figure 6a plots the
fraction of memory requests that are served
by soCache for various cache-to-memory
capacity ratios. The figure demonstrates the
ability of MeSSOS to serve the bulk (more
than 95 percent) of those using its soCache
thanks to temporal locality arising from
skewed access distributions (solid bar) and
spatial locality arising from page-based organ-
izations and high cache residency times stem-
ming from high cache capacity (striped bar).

Figure 6b illustrates the DDR bandwidth
consumption compared to the DDR base-
line. As expected, DDR bandwidth savings
increase with bigger caches. For a 1:8 cache-
to-memory capacity ratio, soCache captures
the hot data working sets, and can therefore
absorb 65 to 95 percent of memory traffic.
The dark bars illustrate the extra traffic gener-
ated due to coarse-grained transfers between
soCache and the DIMMs. The absolute
increase in traffic is small (3 percent on

0

25

50

75

100

i ii iii i ii iii i ii iii i ii iii i ii iii i ii iii

Data
Analytics

Data
Serving

Media
Streaming

Online
Analytics

Web
Search

Web
Serving

Temporal Spatial

M
em

or
y

re
q

ue
st

s
se

rv
ed

 b
y

so
C

ac
he

 (
%

)

(a)

0

25

50

75

100

i ii iii i ii iii i ii iii i ii iii i ii iii i ii iii

Data
Analytics

Data
Serving

Media
Streaming

Online
Analytics

Web
Search

Web
Serving

Requested Over-fetch

D
D

R
 b

an
d

w
id

th
no

rm
al

iz
ed

 to
 D

D
R

 (
%

)

(b)

Figure 6. MeSSOS effectiveness for cache-to-memory capacity ratios of (i) 1:32, (ii) 1:16, and (iii) 1:8. (a) Memory requests

served by soCache and (b) DDR bandwidth consumption compared to the DDR baseline.

...

MARCH/APRIL 2017 99

average). For the rest of the evaluation, we
use the 1:8 cache-to-memory capacity ratio,
unless stated otherwise.

Performance. Figure 7 compares MeSSOS to
the DDR baseline as well as HBMM (which
employs high-bandwidth memory modules
as main memory), BOB, and Die-Stacked.
BOB and HBMM improve performance
over DDR by 49 percent and 33 percent,
respectively, as they provide sufficient band-
width to the processor. However, the band-
width increase comes at the cost of higher
memory latency. BOB adds an extra 40 ns
whereas HBMM requires a point-to-point
network, which adds a latency of 35 ns per

network hop. Because HBMM accesses are
frequently multihop, BOB outperforms
HBMM by 12 percent. Our analysis (not
shown) also finds that on-board SRAM
caches found in some BOB chips exhibit low
temporal locality (average hit ratio of 25 per-
cent), and thus provide negligible perform-
ance gains.

MeSSOS outperforms all systems due to
its ability to provide high bandwidth at low
latency. Compared to the DDR baseline,
MeSSOS improves system performance by
approximately 2 times. MeSSOS outper-
forms BOB and HBMM by 28 and 43 per-
cent, respectively, due to lower memory
latency.

MeSSOS outperforms Die-Stacked by 23
percent due to lower off-chip bandwidth pres-
sure, resulting from its greater cache capacity.
On average, MeSSOS filters 84 percent of
DDR accesses as compared to 45 percent in
Die-Stacked. For Data Serving and Online
Analytics, MeSSOS outperforms Die-Stacked
by 81 and 61 percent, as Die-Stacked is band-
width-constrained due to its inability to filter
off-chip bandwidth (only 38 and 13 percent
of accesses). One exception is Data Analytics,
where memory accesses are extremely skewed;
hence, Die-Stacked achieves a high hit ratio,
outperforming MeSSOS due to lower cache
access latency.

Energy. Figure 8 plots system energy for the
examined designs normalized to the DDR
baseline. BOB reduces energy by 12 percent
compared to DDR mainly due to perform-
ance gains. HBMM increases energy by 2.3
times compared to DDR due to its power-
hungry memory network.

MeSSOS reduces system energy by 1.9,
1.7, and 4.3 times compared to DDR, BOB,
and HBMM, respectively. Because soCache
serves the bulk of the accesses, MeSSOS
exploits the low-energy access of stacked
DRAM modules, thus reducing memory
energy consumption significantly. Further-
more, MeSSOS enforces coarse-grained data
movement between soCache and DRAM,
thus amortizing energy-intensive DRAM
row activates.12 Compared to Die-Stacked,
MeSSOS reduces energy by 23 percent due
to lower DDR energy resulting from lower
off-chip bandwidth consumption.

0

50

100

150

200

Data
Analytics

Data
Serving

Media
Streaming

Online
Analytics

Web
Search

Web
Serving

BOB HBMM Die-Stacked MeSSOS

S
ys

te
m

 p
er

fo
rm

an
ce

im
p

ro
ve

m
en

t o
ve

r
D

D
R

 (
%

)

Figure 7. System performance improvement of various memory systems

over DDR. System performance is measured by User IPC, defined as the

ratio of application instructions committed to the total number of cycles,

including cycles spent executing operating system code.

0

50

100

150

i ii iii iv v i ii iii iv v i ii iii iv v i ii iii iv v i ii iii iv v i ii iii iv v

Data
Analytics

Data
Serving

Media
Streaming

Online
Analytics

Web
Search

Web
Serving

CMP Memory DRAM cache

S
ys

te
m

 e
ne

rg
y

no
rm

al
iz

ed
 to

 D
D

R
 (

%
) 208 197 299 218 219 226

Figure 8. System energy breakdown for (i) DDR, (ii) BOB, (iii) HBMM, (iv)

Die-Stacked, and (v) MeSSOS. Energy is broken down into processor

(CMP), memory, and DRAM cache components.

..

MEMORY SYSTEMS

..

100 IEEE MICRO

Projection to Future Technologies
We conclude our evaluation by studying the
effect of technology scaling on MeSSOS’s
performance and energy efficiency in 14 nm
(2018) and 10 nm (2021) technologies (see
Figure 9).

MeSSOS leverages the abundant band-
width provided by SerDes, increasing per-
formance almost linearly with the number of
cores and by 3.7 times (2018) and 6.6 times
(2021) compared to DDR-2015. Due to
poor scalability of DDR interfaces, the band-
width gap between DDR-based systems and
the processor is increasing rapidly. Thus,
MeSSOS’s performance improvement over
DDR and Die-Stacked increases across tech-
nologies. MeSSOS improves performance by
2.3 times (2018) and 2.7 times (2021) over
DDR, and by 30 percent (2018) and 43 per-
cent (2021) over Die-Stacked.

Regarding energy efficiency, the DDR
energy footprint increases across technologies.
Because MeSSOS employs underclocked
DIMMs, its energy footprint increases by
only a small factor. Thus, MeSSOS reduces
energy by 1.7 times (2015), 2 times (2018),
and 2.6 times (2021) as compared to DDR
and BOB, and by 23 percent (2015), 40 per-
cent (2018), and 60 percent (2021) as com-
pared to Die-Stacked. Compared to HBMM,
MeSSOS reduces energy by 4 to 4.4 times.

T here is a great need for a high-capacity
high-bandwidth memory system for

scale-out servers. Memory system architects
are increasingly relying on heterogeneity to

provide the required bandwidth and capacity
for a server. In heterogeneous memory sys-
tems, high-bandwidth memory is deployed
as a cache to lower-bandwidth, yet higher-
density, memory.

In this article, we focus on near-term
future memory systems (till 2021) and seek
to identify the right granularity at which
high-capacity caches should be organized.
Our analysis shows that high-capacity caches
for scale-out servers exhibit high spatiotem-
poral locality across data objects owing to
long cache residency stemming from skewed
dataset access distributions. We exploit this
phenomenon to reduce the design complexity
of state-of-the-art hardware-managed high-
capacity caches and propose a practical mem-
ory system architecture that uses emerging
high-bandwidth memory as a high-capacity
cache in front of conventional memory.

We leave the architecture of longer-term
future memory systems (beyond 2021) for
future work. Nevertheless, we summarize
important system-level design considerations,
including cache management and the choice
of substrate for system memory.

First, in terms of cache management,
advancements in cooling of high-bandwidth
memory modules might increase stacked
memory capacities and consequently tag stor-
age requirements of hardware-managed
caches. Although the logic die in today’s
high-bandwidth memory modules is underu-
tilized, the emergence of near-memory accel-
erators might reduce available silicon for a
fixed memory package size. The design
decision of organizing the cache at page

0

1

2

D
D

R

B
O

B

H
B

M
M

D
ie

-S
ta

ck
ed

M
eS

S
O

S

D
D

R

B
O

B

H
B

M
M

D
ie

-S
ta

ck
ed

M
eS

S
O

S

D
D

R

B
O

B

H
B

M
M

D
ie

-S
ta

ck
ed

M
eS

S
O

S

CMP Memory DRAM cache

2.2x

0

2

4

6

8
D

D
R

B
O

B

H
B

M
M

D
ie

-S
ta

ck
ed

M
eS

S
O

S

D
D

R

B
O

B

H
B

M
M

D
ie

-S
ta

ck
ed

M
eS

S
O

S

D
D

R

B
O

B

H
B

M
M

D
ie

-S
ta

ck
ed

M
eS

S
O

S

S
ys

te
m

 p
er

fo
rm

an
ce

no
rm

al
iz

ed
 to

 D
D

R
-2

01
5

S
ys

te
m

 e
ne

rg
y

no
rm

al
iz

ed
 to

 D
D

R
-2

01
5

2015 2018 2021 2015 2018 2021(a) (b)

Figure 9. Technology’s effect on MeSSOS. (a) System performance and (b) system energy consumption for various

technology generations normalized to DDR-2015.

...

MARCH/APRIL 2017 101

granularity raises the question of whether the
operating system should be managing the
cache so as to free logic die resources for
near-memory accelerators.

Finally, with regards to the choice of the
system memory substrate, storage-class mem-
ory emerges as a cost-effective solution to the
capacity scalability limitation that plagues
conventional memory. The high cache hit
ratio—achieved by page-based caches—can
mask the high latency of emerging storage-
class memory, raising the question of whether
the latter could replace conventional memory
in the memory hierarchy. MICR O

Acknowledgments
We thank Cansu Kaynak, Onur Kocberber,
and the anonymous reviewers for their
insightful feedback and comments on ear-
lier versions of this article. This work was
partially supported by the NanoTera project
“YINS.”

..
References
1. L.A. Barroso and U. Holzle, The Datacenter

as a Computer: An Introduction to the

Design of Warehouse-Scale Machine, Mor-

gan & Claypool, 2009.

2. M. Ferdman et al., “Clearing the Clouds: A

Study of Emerging Scale-out Workloads on

Modern Hardware,” Proc. 17th Int’l Conf.

Architectural Support for Programming Lan-

guages and Operating Systems (ASPLOS

12), 2012, pp. 37–48.

3. P. Lotfi-Kamran et al., “Scale-Out Process-

ors,” Proc. 39th Ann. Int’l Symp. Computer

Architecture (ISCA 12), 2012, pp. 500–511.

4. D. Jevdjic et al., “Die-Stacked DRAM Caches

for Servers: Hit Ratio, Latency, or Bandwidth?

Have It All with Footprint Cache,” Proc. 40th

Ann. Int’l Symp. Computer Architecture

(ISCA 13), 2013, pp. 404–415.

5. B. Black et al., “Die Stacking (3D) Micro-

architecture,” Proc. 39th Ann. IEEE/ACM

Int’l Symp. Microarchitecture (MICRO 39),

2006, pp. 469–479.

6. D. Jevdjic et al., “Unison Cache: A Scalable

and Effective Die-Stacked DRAM Cache,”

Proc. 47th Ann. IEEE/ACM Int’l Symp. Micro-

architecture (MICRO 47), 2014, pp. 25–37.

7. G.H. Loh and M.D. Hill, “Efficiently Enabling

Conventional Block Sizes for Large Die-

Stacked DRAM Caches,” Proc. 44th Ann.

IEEE/ACM Int’l Symp. Microarchitecture

(MICRO 44), 2011, pp. 454–464.

8. M. Qureshi and L.H. Gabriel, “Fundamental

Latency Trade-off in Architecting DRAM

Caches: Outperforming Impractical SRAM

Tags with Simple and Practical Design,”

Proc. 45th Ann. IEEE/ACM Int’l Symp.

Microarchitecture (MICRO 45), 2012, pp.

235–246.

9. Cisco Unified Computing System Extended

Memory Technology, Cisco, report C45-

555038-03, Feb. 2010.

10. B. Grot et al., “Optimizing Datacenter (TCO)

with Scale-Out Processors,” IEEE Micro,

vol. 32, no. 5, 2012, pp. 52–63.

11. X. Jiang et al., “CHOP: Adaptive Filter-

based DRAM Caching for CMP Server

Platforms,” Proc. IEEE 16th Int’l Symp.

High Performance Computer Architecture,

2010; doi:10.1109/HPCA.2010.5416642.

12. S. Volos et al., “BuMP: Bulk Memory

Access Prediction and Streaming,” Proc.

47th Ann. IEEE/ACM Int’l Symp. Microarchi-

tecture (MICRO 47), 2014; doi:10.1109/

MICRO.2014.44.

13. S. Volos et al., An Effective DRAM Cache

Architecture for Scale-Out Servers, tech.

report MSR-TR-2016-20, Microsoft Research,

2016.

14. S. Volos, “Memory Systems and Intercon-

nects for Scale-Out Servers,” PhD disserta-

tion, EPFL-THESIS-6682, Dept. Computer &

Communication Sciences, EPFL, 2015.

15. T.F. Wenisch et al., “SimFlex: Statistical

Sampling of Computer System Simulation,”

IEEE Micro, vol. 26, no. 4, 2006, pp. 18–31.

Stavros Volos is a researcher at Microsoft
Research. His research interests include
processors, memory systems, and system
architectures for efficient and secure cloud
computing. Volos has a PhD in computer
and communication sciences from EPFL.
Contact him at svolos@microsoft.com.

Djordje Jevdjic is a postdoctoral research
associate at the University of Washington.
His research interests include DRAM caches,

..

MEMORY SYSTEMS

..

102 IEEE MICRO

near-data processing, and approximate com-
puting. Jevdjic has a PhD in computer and
communication sciences from EPFL. Con-
tact him at jevdjic@cs.washington.edu.

Babak Falsafi is a professor in the School of
Computer and Communication Sciences at
EPFL and the founding director of Eco-
Cloud, an interdisciplinary research center
targeting robust, economic, and environ-
mentally friendly cloud technologies. Falsafi
has a PhD in computer science from the
University of Wisconsin–Madison. Contact
him at babak.falsafi@epfl.ch.

Boris Grot is an assistant professor in the
School of Informatics at the University of
Edinburgh. His research interests include
processors, memory systems, and software
stacks for data-intensive computing. Grot
has a PhD in computer science from the
University of Texas at Austin. Contact him
at boris.grot@ed.ac.uk.

Read your subscriptions through
the myCS publications portal at
http://mycs.computer.org.

...

MARCH/APRIL 2017 103

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

