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ABSTRACT
Scale-out workloads are characterized by in-memory
datasets, and consequently massive memory footprints. Due
to the abundance of request-level parallelism found in these
workloads, recent research advocates for manycore architec-
tures to maximize throughput while maintaining quality of
service. On-die stacked DRAM caches have been proposed
to provide the required bandwidth for manycore servers
through caching of secondary data working sets. How-
ever, the disparity between provided capacity and hot dataset
working set sizes — resulting from power-law dataset ac-
cess distributions — precludes their effective deployment in
servers, calling for high-capacity cache architectures.

In this work, we find that while emerging high-bandwidth
memory technology falls short of providing enough capacity
to serve as system memory, it is a great substrate for high-
capacity caches. We also find the long cache residency peri-
ods enabled by high-capacity caches uncover significant spa-
tial locality across objects. Based on our findings, we intro-
duce Scale-Out Cache (soCache), a distributed cache com-
posed of multiple high-bandwidth memory modules. Each
soCache module uses a page-based organization that opti-
mizes for spatial locality while minimizing tag storage re-
quirements. By storing the tags in the logic die (in SRAM)
of the high-bandwidth memory modules, soCache avoids the
prohibitive complexity of in-DRAM metadata in state-of-
the-art DRAM caches. In 14nm technology, soCache re-
duces system energy by 1.4-4.4x and improves throughput
by 28-44% over state-of-the-art memory systems.

1. INTRODUCTION
Scale-out datacenters host a variety of data-intensive ser-

vices, such as search and social connectivity. To concur-
rently support billions of users, latency-sensitive online ser-
vices rely on large amounts of memory to avoid disk ac-
cesses [11, 73]. Likewise, analytic engines creating user-
specific content, such as advertisements and recommenda-
tions, rely on massive memory capacity [18] as they need
to plow through enormous amounts of data within 100s
of milliseconds. While today’s datacenters rely solely on
DRAM, the emergence of fast NVRAM will further broaden
in-memory computing. The ever-growing popularity of the
in-memory computing paradigm leads to datacenter deploy-
ments in which memory accounts for a big share of the dat-
acenter’s total cost of ownership (TCO) [8, 52, 65].

Optimizing for datacenter’s TCO calls for architectures

that maximize compute density. In response, processor ven-
dors have turned to customized architectures for datacenters.
Following a considerable amount of research, identifying
the requirements of scale-out workloads and indicating that
these workloads benefit from thread-level parallelism and
high core counts [27, 48, 61], industry has started employ-
ing specialized manycore processors (e.g., Cavium Thun-
derX [32] and EZchip Tile-MX [33]) due to the substantial
performance and TCO advantages offered by specialization.

Memory systems in scale-out servers are of paramount
importance as they have to sustain the vast bandwidth de-
mands of manycore CMPs [45, 61]. Recent advances in
on-die stacked DRAM technology [10, 59] can eliminate the
bandwidth bottleneck that plagues conventional DRAM. As
this technology is capacity-limited due to thermal constraints
[22], prior research advocates for using it as a cache [44, 45,
46, 60, 81] to provide access to secondary data working sets.

Our analysis shows that on-die stacked DRAM caches are
unattractive for scale-out servers. We find that memory ac-
cesses follow power-law distributions — similarly to enter-
prise server workloads [62] — with a hot portion of memory
(~10%) accounting for the bulk of accesses (65-95%). Thus,
while the vast working sets of scale-out workloads are cache-
able, high-capacity caches (10s of GB) are required given
main memory sizes trending toward 100s of GB. The re-
quired cache capacities greatly exceed those of low-capacity
caches, including on-die stacked DRAM caches.

This work seeks to develop a scalable, high-capacity,
and high-bandwidth memory system for scale-out servers
by leveraging emerging high-bandwidth memory modules as
a high-capacity cache. High-bandwidth interconnect tech-
nologies allow for connecting the processor to multiple high-
bandwidth memory modules via a silicon interposer [50]
forming an on-package high-capacity cache, or high-speed
serial links [75] forming an off-package high-capacity cache.

We draw insights on design of high-capacity caches by
characterizing their access patterns, finding that they exhibit
predominantly coarse access granularity, with 93% of all ac-
cesses going to memory regions with high access density.1
In contrast, only 68% of accesses in low-capacity caches are
coarse-grained. The reason why high-capacity caches ex-
hibit higher access density is due to the longer residency
times of data in the cache, which increases the likelihood

1 A high access density region is one in which most (over 75%) of
cache blocks comprising the region are accessed within the cache
lifetime of the first block to be accessed within the region [93].



for unrelated spatially-proximate objects (e.g., adjacent hash
bucket headers) to be accessed before an eviction.

Based on the insights of the characterization, we intro-
duce MeSSOS, a Memory System architecture for Scale-
Out Servers. MeSSOS employs a set of off-package high-
bandwidth memory modules as a high-capacity hardware-
managed scale-out cache (soCache). Each soCache module
is backed by a number of conventional DIMMs. Together,
an soCache module and its associated DIMMs represent a
MeSSOS building block. Growing (cache and memory) ca-
pacity and bandwidth to accommodate more cores and larger
datasets is simply a matter of adding more building blocks.

The architecture of an soCache module is informed by the
memory access behavior of scale-out workloads. Due to the
prevalence of coarse-grained accesses and long cache resi-
dency times stemming from skewed access distributions, so-
Cache employs a page-based organization. Tags are stored
in the logic die of each soCache module, taking advantage
of the under-utilized die space and the low storage require-
ments of page-grain tags (5 MB for tags in a 4 GB soCache
module). The page-based design with in-SRAM tags offers
fundamental storage and design complexity advantages over
state-of-the-art DRAM cache proposals that suffer from high
tag and metadata overheads that mandate in-DRAM storage.

Summarizing, our contributions are as follows:

• Scale-out workloads exhibit skewed memory access
distributions, but high-capacity caches are needed to
capture the hot working sets. Due to disparity be-
tween cache capacity and hot working set sizes, on-die
stacked DRAM caches exhibit low temporal reuse —
e.g., a cache of 1 GB filters 45% of accesses in systems
with 100s of GB. The combination of poor cache per-
formance and technological complexity makes on-die
stacked DRAM caches unattractive for servers.

• High-capacity caches — enabled by the emergence
of high-bandwidth memory modules — are funda-
mentally different than on-die stacked DRAM caches.
High-capacity caches access memory at coarse granu-
larity, making the case for simple page-based organi-
zations. Such organizations avoid the high metadata
storage requirements and excessive design complexity
of state-of-the-art DRAM caches [44, 45, 46, 60, 81].

• soCache – a practical, scalable, and effective cache ar-
chitecture for scale-out servers. soCache uses a page-
based organization with in-SRAM tags across multiple
high-bandwidth memory modules to achieve high ca-
pacity in a practical and scalable manner. In doing so,
soCache filters the bulk of accesses (84% on average),
thus minimizing bandwidth pressure to main memory.

Our system-level evaluation shows that MeSSOS matches
the memory requirements of scale-out servers, and improves
system energy efficiency by 1.7-4.4x and throughput by 1.3-
2.6x compared to traditional and emerging memory systems.

2. BACKGROUND & MOTIVATION
In this section, we examine the memory requirements of

emerging scale-out servers and also review the features of
emerging DRAM technologies.

Table 1: Requirements of one scale-out server.

Year Processor Memory System
Cores Bandwidth Bandwidth Capacity

2015 96 115 GB/s 288 GB/s 384 GB

2018 180 216 GB/s 540 GB/s 720 GB

2021 320 384 GB/s 960 GB/s 1280 GB

2.1 Scale-Out Server Requirements
Large-scale online services distribute and replicate their

datasets across many servers to ensure in-memory process-
ing and meet tight tail latency requirements. In response,
processor and system vendors resort to manycore processors
[32, 89, 92, 95] and buffer-on-board chips [17, 40, 92] to
boost per-server throughput and memory capacity. Increas-
ing computing density and per-server memory capacity al-
lows datacenter operators to deploy fewer servers for the
same throughput and dataset, thus lowering cost [17, 31].

We quantify the memory bandwidth and capacity require-
ments of a scale-out server for various manufacturing tech-
nologies (denoted by their year) in Table 1. The modeled
organization is similar to emerging manycore servers, such
as Cavium’s 48-core processor fabricated in the 28nm tech-
nology [32]. Our configuration maximizes throughput by
integrating maximum number of cores for a given die area
and power budget of 250-280 mm2 and 95-115 Watt. Our
models for future technologies are derived from ITRS [41].

We estimate required memory capacity by examining var-
ious datacenter deployments. System vendors anticipate the
need for cost-effective high server memory capacity, and
sell extended memory technology, which relies on multiple
buffer-on-board chips. Data analytic engines are provisioned
with 2-8 GB per core [18], web search engines deploy 64
GB for 16 cores [80] while web and streaming servers re-
quire 1-2 GB per core [20, 27]. Thus, we assume that 4 GB
of per-core memory can be deployed cost-effectively.

We measure processor’s off-chip bandwidth demands by
scaling the per-core bandwidth consumption with the num-
ber of cores available on the chip. We measure per-core
bandwidth by simulating a 16-core server (Section 5.2 de-
tails the configuration). Our study shows that their per-core
bandwidth ranges from 0.4 GB/s to 1.2 GB/s corroborating
prior work [45]. Peak bandwidth demands are 115 GB/s in
2015, 216 GB/s in 2018, and 384 GB/s in 2021.

High bandwidth utilization levels can adversely impact
end-to-end memory latency due to heavy contention on
memory resources. As performance of scale-out applica-
tions is characterized by tail latencies, memory latency and
queuing delays must be minimized. Thus, system designers
over-provision memory bandwidth to ensure a low utiliza-
tion (< 40%) to avoid queuing [27]. As such, memory sys-
tems need to supply 288 GB/s in 2015, 540 GB/s in 2018,
and 960 GB/s in 2021. Such requirements exceed the capa-
bilities of conventional DRAM systems by 5.5-7.5x.

To summarize, our analysis shows that by 2021 scale-out
servers will need a memory system that provides 1 TB/s of
memory bandwidth and over 1 TB of capacity while respect-
ing tight blade-level power budgets.
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2.2 Emerging DRAM Technologies
Stacked DRAM [10, 59] can provide an order of mag-

nitude higher memory core bandwidth than conventional
DRAM due to dense through-silicon vias. It also offers low
latency and low DRAM energy per access due to reduced
wire spans and smaller page sizes. However, existing de-
ployment options for stacked DRAM fail to satisfy the joint
capacity, bandwidth, and power requirements mandated by
scale-out servers. Next, we review the deployment options
for stacked DRAM and their respective limitations.

On-Die and On-Package Stacked DRAM. Through-
silicon vias provide high-bandwidth connectivity between
the processor and on-die stacked DRAM. Thermal con-
straints, however, limit the number of DRAM stacks that can
be integrated on top of the processor [10, 22], confining On-
Die Stacked DRAM to several 100s of MB — i.e., two-to-
three orders of magnitude smaller than the memory capacity
demands of servers. Similarly, the high cost of big pack-
ages and area-intensive silicon interposers limit the number
of stacked DRAM modules in On-Package Stacked DRAM
systems. When combined with the thermally-constrained ca-
pacity of 1-2 GB per stacked memory module [50], an On-
Package DRAM solution fails to provide the requisite mem-
ory capacity for scale-out servers.

Off-Package Stacked DRAM. High-speed serial inter-
faces have the potential to break the bandwidth wall by
connecting the processor to multiple Off-Package Stacked
DRAM modules. Serial interfaces employ point-to-point
differential links with excellent signal integrity as opposed to
conventional DDR interfaces, which employ parallel buses
and single-ended signaling. The high signal integrity com-
bined with clock recovery of embedded clocking allows for
achieving an order of magnitude higher data rates than DDR.
For instance, the recently announced HMC utilizes two se-
rial links clocked at 10 Gbps to provide up to 80 GB/s [75]
with the same number of pins as a DDR3 channel, which can
deliver only 12.8-17 GB/s.

Off-package systems deliver much greater capacity than
the systems described above as the number of stacked
DRAM modules is no longer limited by any area constraints.
However, there are two main factors that prevent such sys-
tems from replacing conventional DRAM. First, serial chan-
nels impose high idle power as keep-alive packets must be
sent at frequent intervals to maintain lane alignment across
the channel’s lanes [1]. Even at periods of low utilization,
high sleep and wake-up times prevent these channels from
going to power-efficient sleep states [1, 3, 39, 79]. Sec-
ond, thermal constraints limit the number of stacked layers
per module and necessitate an entire blade-level network of
these modules for a big-memory server. Such a network
comes at the cost of high idle power consumption due to
the use of many serial interfaces (~10x higher than conven-
tional DRAM), and high end-to-end memory latency result-
ing from a multi-hop chip-to-chip interconnect (Section 6.1).

2.3 State-of-the-art DRAM Caches
Given the disparity between memory capacity require-

ments and the capacity provided by emerging DRAM
technologies, most proposals advocate employing stacked
DRAM as a cache to filter accesses to main memory.

State-of-the-art cache proposals leveraging mainly On-Die
Stacked DRAM have to contend with relatively high miss
rates due to its limited capacity. As a result, they are pri-
marily optimized for low cache-memory bandwidth utiliza-
tion through block-based organizations [60, 81], or sector-
based organizations with footprint-aware mechanisms that
predict the blocks that will be accessed within a page [45],
or address-correlated filter-based caching mechanisms [46].

Unfortunately, block-based and sector-based organiza-
tions come with high tag overhead and high design complex-
ity, making such cache designs impractical. For instance,
state-of-the-art block-based [81] and sector-based footprint-
aware [45] caches require 4 GB and 200 MB of tags, respec-
tively, for a capacity of 32 GB. Due to the prohibitive tag
array overhead, recent proposals advocate employing the tag
array in DRAM [44, 60, 81]. In-DRAM tag arrays, however,
require substantial engineering effort, making state-of-the-
art caches less attractive. In addition, footprint-aware caches
[44, 45] rely on instruction-based correlation requiring the
core-to-cache transfer of the program counter for all memory
references, which further increases the design complexity.

2.4 Summary
Memory systems for scale-out servers need to provide

high capacity to guarantee fast access to vast datasets, de-
liver high bandwidth to satisfy the excessive demands of
manycore CMPs, and minimize their power footprint. Un-
fortunately, existing proposals leveraging emerging DRAM
technologies are ineffective for big-memory servers.

3. MEMORY ACCESS CHARACTERIZA-
TION OF SCALE-OUT SERVERS

High-bandwidth memory — both on-package and off-
package stacked DRAM — modules are an ideal building
block for a high-capacity high-bandwidth cache. However,
state-of-the-art DRAM caches are hindered by the need to
keep metadata in DRAM. In this section, we study the ap-
plication characteristics that enable designing an effective,
practical, and scalable cache architecture.

3.1 Temporal Characterization
We examine the memory access distribution of scale-out

applications (i.e., fraction of accesses that go to a mem-
ory object) by looking at the characteristics of the dominant
types of memory accesses.
Dataset accesses. A high fraction of memory accesses go
to memory-resident datasets. We examine the popularity
and dataset access distribution of search query terms (AOL
[74]), tweets (Twitter), videos (Youtube), and web pages
(Wikipedia) based on publicly available data. Figure 1 plots
the probability for a dataset object to be referenced as a func-
tion of popularity. As shown in the figure, the dataset access
distribution of various web services is highly skewed with a
small set of dataset objects (10-20%) contributing to most of
the dataset accesses (65-80%). Other examples include:

• Analytics. Dataset accesses in analytics are highly
skewed as recent data are more frequently accessed
than archived data while analysts often utilize a small
dataset, which results in a refined dataset [19, 76].
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Figure 1: Dataset accesses in web services exhibit power-
law distribution. Please note that power-law relationships
show linear trends when plotted in log-log scale.
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Figure 2: Miss ratio for various Cache-to-Memory Capacity
Ratios. Lines denote x-shifted power-law fitting curves.

• File servers. Services hosting a large pool of static
pages, such as Wikipedia, follow Zipfian distribution
as a set of articles are more popular than the rest
[96]. Similar distribution is found in streaming ser-
vices (e.g., Youtube) [15].

• Search engines. Popularity of search query terms fol-
lows a Zipfian-like distribution in search engines and
private search engines, where a set of events (e.g.,
celebrity scandals) or items are frequently searched by
online users [99].

• Social networks. Popular users along with their ac-
tivity absorb the bulk of user requests. For instance,
a small fraction of users and their pictures account for
most of the user traffic in picture sharing services, such
as Flickr [14]. The Zipfian distribution is found in the
broader space of social networks, including Facebook
and Twitter [4, 58].

Due to the power-law popularity distribution, dataset ac-
cesses in analytic engines [19], data stores [24], object
caching systems [58], streaming servers [15], web search
engines [99], and web servers [23] exhibit power-law dis-
tributions.
Accesses to dynamically allocated memory. Server ap-
plications frequently access dynamically allocated memory
with high temporal reuse. Examples include:

• Software caches. Server applications utilize software
structures to cache a set of hot objects (e.g., rows and
pages in data stores and compiled script code in web
servers) or to speed up object lookups by caching their

exact position in memory-resident datasets (e.g., key
caches in data stores). As these data structures host
data/metadata relevant to the dataset, the distribution of
memory accesses going to them will follow the power-
law distribution of dataset accesses.

• Client connections. Server applications and operating
systems (OS) employ various data structures per client
connection. While each connection allocates only a
few 100s of KB, the large number of concurrent con-
nections results in a footprint of a few GB that dwarfs
the capacity of on-chip caches. Examples include: (a)
buffers in streaming servers keeping media packets, (b)
statistics for tracking quality of service of streaming
connections, and (c) OS data structures for keeping the
state of active TCP connections [9]. The reuse of these
structures is high as they are accessed multiple times
over the duration of connections.

• Other. Partitioning and dynamically built hash tables
can improve the temporal locality of dataset accesses
upon iterative computations in graph analysis [86] and
join operations in relational database systems.

The skew in object popularity and temporal reuse of dy-
namically allocated memory is expected to be mirrored in
the memory access distribution. To confirm this, we exam-
ine the memory access distribution of a 16-core scale-out
server. To estimate the hot memory footprint of scale-out
applications, we employ a state-of-the-art high-bandwidth
cache [81] and measure its miss ratio for various capacities.

Figure 2 plots the cache miss ratio for various Cache-to-
Memory Capacity Ratios.2 The markers denote measure-
ments while contiguous lines show x-shifted power-law fit-
ted curves. The figure shows that memory accesses in scale-
out servers are skewed so that 6.25-12.5% of the memory
accounts for 65-95% of accesses. Our results corroborate
prior work showing power-law relationships between cache
capacity and miss ratio in multi-MB caches for enterprise
server workloads [36, 62].

The figure confirms that existing low-capacity caches
(left part of the graph), such as on-board [92], on-package
eDRAM [54], and on-die stacked DRAM caches cannot ex-
ploit temporal locality in scale-out servers.3 In extreme
cases, such as Data Serving and Online Analytics, on-die
stacked DRAM caches are bandwidth-constrained (Section
6) with less than 40% of memory accesses filtered. We thus
conclude that the combination of poor cache performance
and technological complexity of die stacking [97] limits the
usefulness of on-die stacked DRAM caches in servers.

3.2 Spatial Characterization
Scale-out applications frequently operate on large objects

(e.g., database rows or memory-mapped files), and hence ex-
hibit a high incidence of coarse-grained accesses [93]. To
2 The Cache-to-Memory Capacity Ratio is a representative metric
of the effective cache capacity (i.e., cache capacity with respect to
a given memory capacity) as scaling datasets and memory capacity
reduces the effectiveness of caches proportionally [35].
3 In 2015, on-die stacked cache capacity ranges from 0.5 GB to 1
GB whereas main memory varies from 64 GB to 256 GB, resulting
in Cache-to-Memory Capacity Ratio of 1:512 to 1:64.
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Figure 3: Granularity at which page-sized blocks are fetched
(F) from and written back (WB) to DRAM for Die-Stacked
(DS) and high-capacity cache (HC) of 1:128 and 1:8 Cache-
to-Memory Capacity Ratio, respectively.

allow for retrieving an object in sub-linear time, dataset ob-
jects are pinpointed through pointer-intensive indexing data
structures, such as hash tables and trees. For instance,
NoSQL data stores and object caching systems use a hash ta-
ble to retrieve data objects. While data objects are accessed
at coarse granularity, finding them requires performing a se-
quence of fine-grained pointer-intensive operations. Thus, a
non-negligible fraction of accesses are fine-grained [93].

We examine the granularity at which high-capacity (HC)
caches access memory by measuring the access density at
which page-sized lines are fetched from and written back
to memory in Figure 3. We define page access density
as the fraction of cache blocks within a page accessed be-
tween the page’s first access and the page’s eviction from
the cache [93]. We use a page of 2 KB as it reduces the
tag array size significantly with limited tolerance for over-
fetch (Section 6.3). The three segments correspond to fine
(≤ 25%), coarse (≥ 75%), and other (25–75%) granularity.
For comparison, we include a low-capacity cache, labeled as
Die-Stacked (DS).

Our analysis shows that Die-Stacked exhibits bimodal
memory access behavior [45, 93] — fine-grained and coarse-
grained accesses account for 21% and 68% of accesses,
respectively. While coarse-grained accesses (which have
high spatial locality) are prevalent, the frequent incidence
of fine-grained accesses (corresponding to pointer derefer-
ences to non-contiguous memory) must also be accommo-
dated effectively. Due to the limited capacity of on-die
stacked DRAM caches, pointer-containing pages show low
temporal reuse and are frequently evicted. To avoid massive
bandwidth waste in accesses to such pages, state-of-the-art
DRAM caches rely on block-based [60, 81] or sector-based
footprint-aware [44, 45] organizations that are bandwidth-
frugal but carry a high metadata storage cost.

In contrast, high-capacity caches exhibit coarse-grained
memory access behavior — 93% of memory accesses on av-
erage. This phenomenon is attributed to two reasons. First,
the lifetime of pages in the cache is on the order of 10s
to 100s of milliseconds. As a result, pages containing a
collection of fine-grained objects (e.g., hash bucket head-
ers) can enjoy spatial locality uncovered through long cache
residency times, which stem from skewed access distribu-
tions. Second, low-access-density pages containing pointer-
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Figure 4: MeSSOS overview.

intensive indexing structures with good temporal reuse (e.g.,
intermediate tree nodes) are preserved across accesses.

3.3 Summary
Our study shows that high-capacity caches are needed to

capture the skewed memory access distributions of scale-out
servers. We also find that the improved spatio-temporal be-
havior of high-capacity caches offers an opportunity to use
a simple page-based cache organization, thus avoiding the
storage and complexity overheads associated with state-of-
the-art block-based and sector-based designs.

4. MEMORY SYSTEMS FOR SCALE-OUT
SERVERS

We present MeSSOS, a Memory System architecture for
Scale-Out Servers, which leverages multiple off-package
stacked DRAM modules as a Scale-Out Cache (soCache)
in front of conventional DIMMs. Figure 4 shows the design
overview. In MeSSOS, an on-board building block consists
of a soCache slice fronting a set of conventional DIMMs.
This design allows capacity and bandwidth to be seamlessly
scaled with the number of building blocks. Next, we exam-
ine the soCache architecture and its integration with the rest
of the system.

4.1 soCache Architecture
MeSSOS utilizes multiple off-package stacked DRAM

modules as a high-capacity scale-out cache, which exploits
the skewed memory access distributions of scale-out work-
loads. To avoid communication between soCache slices and
to minimize the number of serial links, memory addresses
are statically interleaved across the soCache slices. Figure 5a
shows the organization of a soCache slice. As shown in the
figure, stacked DRAM modules are internally organized as
a set of vaults (e.g., 16 vaults of 256 MB each), which are
connected to the serial link controller via a fast crossbar [75].

Cache organization. soCache uses a page-based organi-
zation leveraging the observation that high-capacity caches
uncover spatial locality that is beyond the temporal reach
of lower-capacity caches. The page-based design not only
naturally captures spatial locality, but also minimizes meta-
data storage requirements over block-based and footprint-
predicting designs. The page-based design also reduces dy-
namic DRAM energy by minimizing the number of DRAM
row activates, which are the most energy-consuming opera-
tion in a conventional DRAM architecture [45, 93].
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Figure 5: The organization of a soCache slice.

Based on page-size sensitivity analysis in Section 6.3, we
find that a page size of 2 KB offers a good trade-off between
tag array size and bandwidth overhead stemming from over-
fetch. We also observe that low associativity (4-way in the
preferred design) is sufficient for minimizing the incidence
of conflicts while also reducing tag and LRU metadata costs.

Tag array. The page-level organization reduces the tag
array overhead to a few MB per slice. For instance, a so-
Cache of 32 GB, consisting of eight 4GB slices, requires 5
MB of tags per slice, or 20mm2 in 40nm technology.4 The
small tag array size allows us to embed it in the logic die of
the off-package memory modules comprising the soCache.
These logic dies are under-utilized, typically housing per-
vault memory controllers, a switch fabric, and off-chip I/O
interfaces and controllers. Together, these components oc-
cupy ~70mm2 in 40nm technology5 leaving sufficient room
for the tags on a typical ~100−120mm2 logic die [79]. Com-
pared to conventional HMCs hosting four SerDes interfaces,
our customized HMC hosts only one SerDes interface (of
area ~9mm2 [47]), freeing up area resources for the DDR
interfaces (of area ~10mm2 each [53]) and the tag array.

To enable low tag lookup latency, we distribute the tag
array across the high-bandwidth memory module, placing
each tag array slice beneath a vault. Each tag slice requires
only 320 KB and 3-4 cycles of access latency. Low associa-
tivity and small in-SRAM tags allow for searching the ways
in parallel at small latency and energy overhead.

An important advantage provided by in-SRAM tags as
compared to in-DRAM tag designs is in the cache miss de-
tection time. With a 20ns DRAM core access latency (~50
cycles), in-SRAM tags offer a 10x reduction in miss detec-
tion time over in-DRAM tags.

4.2 soCache-Main Memory Interface
The off-package high-bandwidth memory modules pro-

vide not only the functionality of a cache, but also the com-
munication bridge between processor and main memory.
Memory requests that miss in the soCache are forwarded di-
rectly to local memory modules. To do so, the soCache slice
integrates DDR controllers to control the local DDR chan-
nels, requiring the implementation of both the DDR protocol
and PHY in the soCache’s logic die (Figure 5a).

4 Tag array entries are 20-bit;15 bits for the tag, 2 page-level valid
and dirty bits, and 3 bits for maintaining the pseudo-LRU tree.
5 Estimated by scaling die micrographs [47, 53, 88, 89].

The DDR controllers employ FR-FCFS open-row policy
[84] with page-level address interleaving. We map an entire
soCache’s page-sized cache line to one DRAM row by using
the following addressing scheme Row:ColumnHigh:Rank:
Bank:LocalChannel:soCacheSlice:ColumnLow:WordOffset,
where ColumnHigh is 2 bits and ColumnLow is 8 bits. To
guarantee that requests missing in a soCache slice are served
by local DRAM, the mapping scheme interleaves addresses
across local channels using the least significant vault bit.

4.3 Processor-soCache Interface
The processor is connected to the soCache via point-to-

point serial links. Both processor and soCache slices imple-
ment simple controllers to orchestrate corresponding com-
munication (Figure 4). The controllers consist of a pair
of queues to buffer incoming and outgoing packets, and a
SerDes interface. Processor-side controllers serialize out-
going requests into packets, before routing them to the so-
Cache slice based on corresponding address bits (Figure 5a),
and deserialize incoming data and forwards them to the last-
level cache. A soCache-side controller deserializes incom-
ing memory requests and forwards them to the vault’s so-
Cache controller based on corresponding address bits (Fig-
ure 5a), and serializes outgoing data into packets and for-
wards them to the processor.

Serial link. As scale-out workloads exhibit variable read-
write ratios [93], each serial link consists of 16 request lanes
and 16 response lanes. Thus, a serial link requires ~70 pins
(control and double-ended signaling for request/response
lanes) as opposed to a DDR channel, which requires ~150
pins (control and address, command, and wide data buses).
The lower number of per-serial-link pins allows for integrat-
ing a high number of processor-side SerDes channels with-
out increasing the number of the processor’s pins compared
to a processor with DDR channels, thereby keeping the cost
associated with the processor’s packaging constant.

4.4 System-Level Considerations
Feasibility. MeSSOS implements all necessary function-

ality in the logic layer of the off-package memory modules
without any modifications to the rest of the system. The re-
duced number of employed SerDes interfaces frees up power
resources for the required tag array and low-frequency and
low-utilized DDR interfaces. Our estimates show that the
power consumption of each soCache slice is lower than 8
Watt and lies within the power range of conventional off-
package modules [43, 79].

Scalability. MeSSOS delivers high memory capacity in a
scalable manner while relying on cost-effective conventional
DIMMs. MeSSOS distributes the required number of DDR
channels and their pins across multiple soCache modules as
opposed to a single processor chip. This approach resembles
that of conventional buffer-on-board systems [17, 40, 92],
which employ on-board chips to boost memory capacity in
a cost-effective way. In contrast to these systems, MeSSOS
does not require additional on-board chips as the function-
ality of buffer chips is implemented in the logic layer of the
soCache modules.

Cost. MeSSOS achieves substantial system cost savings
due to lower acquisition and operating costs. By providing
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Table 2: Systems configuration.

System 2015 (22nm) 2018 (18nm) 2021 (14nm) 

CMP 96 cores, 3-way OoO, 2.5GHz 180 cores, 3-way OoO, 2.5GHz 320 cores, 3-way OoO, 2.5GHz 

LLC 24 MB 45 MB 80 MB 

Memory 384 GB 720 GB 1280 GB 

DDR 
4 DDR-1600 5 DDR-2133 6 DDR-2667 

Memory latency: 55ns including off-chip link (15ns) and DRAM core (40ns)  

HBMM 
8 32-lane @ 10Gbps 10 32-lane @ 15Gbps 12 32-lane @ 20Gbps 

Memory latency: hop-count*35ns (SerDes & pass-through logic) + 20ns (stacked DRAM access) 

BOB 

8 32-lane @ 10Gbps 

16 DDR-1600 

10 32-lane @ 15Gbps 

20 DDR-2133 

12 32-lane @ 20Gbps 

24 DDR-2667 

Memory latency: 95ns including SerDes & buffer (40ns), buffer-DDR link (15ns) and DRAM core (40ns)  

Die-

Stacked 

Cache: 1GB Cache: 2GB Cache: 4GB 

Hit latency: ~20ns including predictor lookup and stacked DRAM access (20ns) 

Miss latency: ~55ns including predictor lookup and off-chip DRAM access (55ns) 

Off-chip: 4 DDR-1600 Off-chip: 5 DDR-2133 Off-chip: 6 DDR-2667 

MeSSOS 

CMP-Cache: 8 32-lane @ 10Gbps CMP-Cache: 10 32-lane @ 15Gbps CMP-Cache: 12 20-lane @ 20Gbps 

Cache: 8x4GB Cache: 10x8GB Cache: 12x8GB 

Tag lookup latency: 35ns including SerDes (30ns) and distributed tag array lookup (5ns) 

Hit latency: 55ns including tag lookup (35ns) and stacked DRAM access (20ns) 

Miss latency: 95ns including tag lookup (35ns) and off-chip DRAM access (60ns) 

Cache-Memory: 16 DDR-1066 Cache-Memory: 20 DDR-1066 Cache-Memory: 24 DDR-1066 

 

the required bandwidth and capacity for a scale-out server,
MeSSOS maximizes server throughput, and hence reduces
the number of servers required for the same throughput re-
quirements and dataset size. MeSSOS also lowers memory
energy consumption by minimizing the static power foot-
print of its underlying memory interfaces. As MeSSOS em-
ploys stacked DRAM modules as a cache, it (a) bridges the
processor-bandwidth gap with a minimal number of power-
hungry high-speed serial interfaces, (b) efficiently utilizes
available serial links and amortizes their high idle power
consumption, and c) filters a high degree of memory ac-
cesses, and thus infrequent main memory accesses can be
served by under-clocked conventional DIMMs.

5. EXPERIMENTAL METHODOLOGY
We evaluate the system performance and energy effi-

ciency of MeSSOS and various memory systems using a
combination of cycle-accurate full-system simulations, an-
alytic models, and technology studies.

5.1 Scale-Out Server Organization
We model chips with an area of 250-280 mm2, and a

power budget of 95-115 Watt. We use the scale-out proces-
sor methodology to derive the optimal ratio between core
count and cache size in each technology [61]. Cores are
modeled after Cortex-A15, a 3-way OoO core, resembling
those used in specialized manycore CMPs [28, 32, 33, 61].

Table 2 summarizes the details of evaluated designs across
technology nodes. For a given technology node, the pro-
cessor configuration and memory capacity are fixed. We
evaluate the following memory subsystems: (i) DDR-only
memory; (ii) buffer-on-board (BOB) system [17, 21, 40, 92],
which relies on on-board chips to boost bandwidth and ca-
pacity through additional DDR channels, but at the cost of
an increase in end-to-end memory latency and energy con-
sumption due to serial links (between processor and BOB)
and intermediate buffers; (iii) high-bandwidth memory mod-

ules (HBMM), which employs off-package memory mod-
ules connected with high-speed serial links. HBMM em-
ploys a tree network topology to reduce the number of hops
in the point-to-point memory network (average and max-
imum number of network hops is three and four, respec-
tively); (iv) Die-stacked cache with a block-based organiza-
tion [81] that maximizes effective capacity and minimizes
off-chip bandwidth. The cache is backed by DDR-based
main memory; and (v) MeSSOS that combines HBMM
modules as a scalable soCache with DDR-based memory.
Because of the high degree of bandwidth screening provided
by soCache, the DDR channels are clocked at half of their
peak frequency to reduce static power.

Each serial link in BOB, HBMM, and MeSSOS consists
of 16 response and 16 request lanes as scale-out workloads
exhibit variable read-write ratios [93].

5.2 Performance and Energy Evaluation
System performance. For performance evaluation, we per-
form full-system simulation using Flexus [94]. Flexus mod-
els the SPARC v9 ISA and runs unmodified operating sys-
tems and applications. Flexus extends the Simics func-
tional simulator with timing models of out-of-order cores,
caches, on-chip protocol controllers and interconnect, and
DRAM. We model stacked DRAM and off-chip DRAM
performance, by integrating two separate DRAMSim2 in-
stances [85] into Flexus. We parameterize off-chip DRAM
based on commercial device specifications [69]. Latency of
stacked DRAM is halved compared to off-chip DRAM [60].

Our analysis is based on a wide range of scale-out work-
loads. The examined workloads, taken from CloudSuite
2.0 [20, 27], include Data Analytics, Data Serving, Media
Streaming, Web Search, and Web Serving. We evaluate on-
line analytics running a mix of TPC-H queries on a modern
column-store database engine, MonetDB [49].

We run cycle-accurate simulations using the SMARTS
sampling methodology [98]. Our samples are drawn over

7



0 

50 

100 

150 

200 

0 10 20 30 40 50 60 70 80 

D
R

A
M

 C
o

re
 L

a
te

n
c

y
 (

n
s

) 

Bandwidth Utilization (%) 

Data Analytics Data Serving 

Media Streaming Online Analytics 

Web Search Web Serving 

Figure 6: DRAM core access latency sensitivity to band-
width utilization.
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Figure 7: Validation of analytic results.

an interval of 10-30 seconds of simulated time. For each
measurement, we launch simulations from checkpoints with
warmed caches and branch predictors, and run 800K cycles
(2M cycles for Data Serving) to achieve a steady state of de-
tailed cycle-accurate simulation prior to collecting measure-
ments for the subsequent 400K cycles. For performance, we
measure User IPC, defined as the ratio of the number of ap-
plication (user) instructions committed to the total number
of cycles (including cycles spent on the operating system);
this metric has been shown to reflect system throughput [94].

As simulating processors with 100s of cores and mem-
ory capacity of 100s of GB would be prohibitively slow,
we augment our simulation-based studies with an analytic
model. Our model extends the classical average memory
access time analysis [35] to predict per-core performance
for a given off-chip memory system; the model is param-
eterized by simulations results, including core performance,
on-chip cache miss rates, and interconnect delay. For off-
chip access latency, we include link latency, memory core
latency, and queuing delays. To model queuing delays, we
run cycle-accurate simulations to measure memory latency
for various bandwidth utilization levels for each workload
separately (Figure 6).

We validate our analytic models against cycle-accurate
full-system simulations of a scaled-down CMP. Because
server workloads are request-parallel, performance and
memory bandwidth scale with the number of cores. This
allows us to validate our model against cycle-accurate sim-
ulations of 16-core systems (Table 3), and scale our perfor-
mance and energy models proportionally. Figure 7 shows
that our analytic models (denoted as circles) achieve high
prediction accuracy (average error of 5%).

Table 3: Configuration for cycle-accurate simulations.

Parameter Value
CMP 16 cores, 2.5GHz, 3-way OoO, 60-entry ROB

L1-I/D 64KB, 2-way, 64B blocks
2-cycle load-to-use, 10 MSHRs

LLC Unified, 4MB, 16-way, 64B blocks
8 banks, 8-cycle hit latency

NOC CMP: 16x8 crossbar, 5 cycles
soCache: 16x3 crossbar, 5 cycles

Memory soCache: 512 MB-16 GB, DRAM:16-128 GB
Off-chip links:15ns/30ns (parallel/serial)

Table 4: System power model in 2015.

Parameter Value
Core Peak power: 770mW

LLC Read/Write energy: .63nJ/.70nJ
Leakage power: 750mW per 4MB

Memory Front-end engine: 0.24mW/Gbps
Controller Transaction engine: 1.37 mW/Gbps

Physical interface: 1.95 mW/Gbps

Idle power: 377mW
DDR-1600 Activation energy: 19nJ

(per 4GB rank Read/Write energy: 5.2nJ/5.4nJ
64-byte access) I/O energy (Read/RRead): 0.6nJ/1.7nJ

I/O energy (Write/RWrite): 2.1nJ/2.1nJ

HBMM (4GB) DRAM array per 64-byte access: 1.9nJ
Logic + SerDes: 2.34 + 4.5mW/Gbps

BOB chip & SerDes, DDR: 4.5, 1.95 mW/Gbps
soCache BOB, soCache: 0.24, 1.61 mW/Gbps

Our models are validated for a particular off-chip-
bandwidth-to-core ratio. However, the ratio varies across
memory systems and technologies. When modeling systems
with lower off-chip-bandwidth-to-core ratio than our val-
idated systems and extremely bandwidth-constrained con-
figurations, we estimate core performance under max-
imum bandwidth utilization (per cycle-accurate simula-
tion results) and scale down system performance by
Pro jectedBandwidthRequirements

MaximumAvailableBandwidth .
For instance, for a 96-core Die-Stacked system with 4

DDR-1600 channels running Data Serving, we estimate sys-
tem performance as follows. Our cycle-accurate simulation
results for a 16-core Die-Stacked system (with one DDR-
1333 channel) running Data Serving demonstrate maximum
memory bus utilization level of 80%. By projecting off-
chip memory bandwidth requirements of the modeled sys-
tem, we find that 96 cores (at the estimated/modeled core
performance) would consume 55 GB/s of off-chip memory
bandwidth. However, the modeled off-chip memory system
can provide only 41 GB/s (80% of 4 DDR-1600 channels),
which is sufficient for only 76 cores. Thus, we scale system
performance by a factor of 41GB/s

52GB/s = 76/96 = 0.79.

Power and energy modeling framework. We use energy
consumed per instruction as our energy-efficiency metric.
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Figure 8: Impact of technology scaling on memory technology and memory interfaces.

We develop a custom energy modeling framework to in-
clude various system components, such as cores, network-
on-chip (NOC), caches, memory controllers, and memory.
Our framework, summarized in Table 4, draws on several
specialized tools to maximize fidelity through detailed pa-
rameter control.

We estimate core power by scaling published measure-
ments of power on a high-IPC workload by the ratio of the
actual workload IPC and the reference IPC, assuming that
half of the power scales with the workload IPC and the rest
is constant (which includes leakage) [2, 56]. We use CACTI
to estimate LLC energy and to account for advanced LLC
leakage reduction techniques [56, 71]. We use custom mod-
els to estimate energy consumed by on-chip network links
and switch fabrics derived by public sources [6, 41]. We
measure memory controller’s power using McPAT [57].

We estimate DDR background power and energy per op-
eration based on Micron models and datasheets [68, 70]. Per
JEDEC’s specifications and Intel’s estimations [5], we antic-
ipate a voltage reduction from 1.5 (DDR3) to 1.2 (DDR4),
and various DDR4 optimizations that halve termination en-
ergy and reduce refresh power by 20%.

We quantify the energy consumption of a stacked DRAM
module using energy measurements reported for the recently
announced Hybrid Memory Cube (HMC) [43], including
SerDes interfaces, the DRAM arrays, and other logic (vault
controllers and crossbar interconnect). Compared to conven-
tional DRAM, HMC reduces energy per access by leverag-
ing through-silicon-via technology [43]. For soCache’s logic
die, we also consider the memory controller’s logic and the
DDR physical interfaces.

We model BOB chips to include the power consumption
of SerDes (mostly static) and DDR interfaces. We account
for buffering incoming requests and outgoing data similar to
an integrated memory controller’s front-end engine.

5.3 Projection to Future Technologies
To understand the effect of technology scaling on the ex-

amined memory systems, we model our systems in 2018 and
in 2021. Per ITRS estimates, processor supply voltages will
scale from 0.85V (2015) to 0.8V (2018) and 0.75V (2021).

We examine the impact of data rate and memory density
on DDR energy. We compute DDR energy per access for
different data rates based on Micron’s datasheets [68] in Fig-
ure 8a. As shown in the figure, energy consumed by RD/WR

and I/O operations is higher in slower DDR interfaces due to
longer burst periods. In contrast, ACT/PRE energy is higher
in faster DDR interfaces due to higher active currents. We
also examine the background power of DDR3 devices for
different data rates and memory densities [67, 68, 69] in Fig-
ure 8b. Static power consumed by DRAM core (leakage)
and DLL (active mode) scales linearly with data rate while
refresh power scales linearly with density.

Finally, we study the impact of manufacturing technology
on power consumption of SerDes interfaces. Figure 8c plots
our bandwidth and energy analysis based on published mea-
surements of various SerDes interfaces in different technolo-
gies [7, 12, 13, 29, 30, 37, 38, 42, 47, 51, 72, 78, 83, 87, 88,
91]. Our analysis demonstrates that bandwidth and energy
scale by 20% and 27% per technology node, respectively.

6. EVALUATION
We compare MeSSOS to conventional and emerging

memory systems in terms of system performance and energy
efficiency across technology generations.

6.1 Performance and Energy Efficiency Im-
plications

We begin our study with a 96-core CMP in the 22 nm tech-
nology. Figure 9 (left) plots the fraction of memory requests
that are served by soCache for various Cache-to-Memory
Capacity Ratios. The figure demonstrates the ability of MeS-
SOS to serve the bulk (>95%) of those using its soCache as
it exploits temporal locality arising from skewed access dis-
tributions (gray bar) as well as spatial locality arising from
coarse-grained operations and high cache residency times
stemming from skewed access distributions (white bar).

The figure (right) illustrates the DDR bandwidth con-
sumption compared to the baseline system without a cache.
As expected, DDR bandwidth savings increase with bigger
caches. By capturing the hot working set, soCache is able to
absorb 65-95% of memory traffic for a cache size of 12.5%
of the memory size (1:8), thereby reducing DDR bandwidth
consumption by 3-20x. The light gray bars illustrate the ex-
tra traffic generated due to coarse-grain transfers between
soCache and the DIMMs. The absolute increase in traffic
is small (3% on average) as most accesses are coarse-grain
(Section 3.2). For the rest of the evaluation, we use 1:8
Cache-to-Memory Capacity Ratio, unless stated otherwise.
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Figure 9: MeSSOS effectiveness for various Cache-to-Memory Capacity Ratio: (a) 1:32, (b) 1:16, and (c) 1:8.
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Figure 10: Bandwidth and memory latency in MeSSOS.

Memory performance. In Figure 10, we study the end-
to-end memory latency, and the off-chip bandwidth con-
sumption by measuring the bandwidth between the proces-
sor and soCache. MeSSOS’s off-chip bandwidth consump-
tion ranges from 42 GB/s (Media Streaming) to 114 GB/s
(Data Analytics) for a 96-core CMP, which correspond to
modest off-chip bandwidth utilization levels (only 14-38%).
Due to low link and memory bandwidth utilization levels and
the high hit ratio in soCcahe, MeSSOS achieves low queuing
times, and fully leverages the low core latency of emerging
high-bandwidth memory modules. In doing so, MeSSOS
provides both high bandwidth and low latency.
System performance. Figure 11 compares MeSSOS to the
baseline system (DDR) as well as high-bandwidth mem-
ory modules (HBMM), buffer-on-board (BOB), and Die-
Stacked systems, configured as in Table 2.

Because DDR provides insufficient memory bandwidth,
its system performance is significantly hurt. BOB and
HBMM improve performance over DDR by 49% and 33%,
respectively, as they provide sufficient bandwidth to the pro-
cessor. However, the increase in bandwidth comes at the
cost of higher end-to-end memory latency. The BOB sys-
tem adds an extra 40 ns due to the serial link and the inter-
mediate buffer while the HBMM system requires a point-
to-point memory network, which adds a latency of 35 ns
per network hop (serial link and pass-through logic). Be-
cause HBMM accesses are frequently multi-hop, BOB out-
performs HBMM by 12%. Our analysis also shows that on-
board SRAM caches found in some BOB systems [92] ex-
hibit low temporal locality (a hit ratio of only 25% on aver-
age), and hence provide negligible performance gains.

MeSSOS outperforms all these systems due to its abil-
ity to provide high bandwidth at low latency. Compared to
the DDR system, MeSSOS improves system performance by
2x on average. MeSSOS outperforms BOB and HBMM by
28% and 43%, respectively, due to lower memory latency.
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Figure 11: System performance of various memory systems.
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Figure 12: System energy breakdown.

MeSSOS outperforms Die-Stacked by 23% due to lower
off-chip bandwidth pressure, resulting from its greater cache
capacity which filters a higher fraction of DDR accesses. On
average, MeSSOS filters 84% of DDR accesses as compared
to 45% in Die-Stacked. For Data Serving and Online Ana-
lytics, MeSSOS outperforms Die-Stacked by 81% and 61%,
as Die-Stacked is bandwidth-constrained due to is inabil-
ity to reduce off-chip bandwidth consumption (filters only
38% and 13% of accesses). One exception is Data Analyt-
ics where memory accesses are extremely skewed (Figure
2), and hence Die-Stacked achieves high hit ratio (87%) and
outperforms MeSSOS due to lower cache access latency.
System energy. Figure 12 plots system energy for the ex-
amined systems. As the figure shows, BOB reduces system
energy by 12% compared to DDR, primarily due to perfor-
mance gains. HBMM increases system energy by 2.3x com-
pared to DDR. Although HBMM provides sufficient band-
width to the processor, leading to higher system throughput,
it requires a power-hungry multi-hop chip-to-chip network.

MeSSOS reduces system energy by 1.9x, 1.7x, and 4.3x
compared to DDR, BOB, and HBMM. As bulk of the ac-
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Figure 13: System performance and energy consumption for various technologies normalized to DDR (2015).

cesses are served by soCache, MeSSOS exploits the low-
energy access of stacked DRAM modules, thus reducing
memory energy significantly. Furthermore, MeSSOS en-
forces coarse-grain data movement between soCache and
DRAM, thus amortizing energy-intensive DRAM row acti-
vates. Compared to Die-Stacked, MeSSOS reduces system
energy by 23% due to a lower DDR energy footprint result-
ing from lower off-chip bandwidth consumption.

6.2 Projection to Future Technologies
We study the effect of technology scaling on MeSSOS in

14 nm (2018) and 11 nm (2021) technologies. Figure 13
plots the system performance and system energy consump-
tion per operation averaged across the applications and nor-
malized to DDR in 2015. MeSSOS leverages the abundant
bandwidth provided by the SerDes technology, increasing
system throughput almost linearly with the number of cores.
This near-perfect scalability increases system throughput by
3.7x and 6.6x in 2018 and 2021, respectively, compared to
DDR (2015).

Due to poor scalability of DDR interfaces, the bandwidth
gap between DDR-based systems and the processor is in-
creasing rapidly. As a result, MeSSOS’s performance im-
provement over DDR and Die-Stacked increases across tech-
nologies. In particular, MeSSOS improves system perfor-
mance by 2.3x (2018) and 2.7x (2021) over DDR, and by
30% (2018) and 43% (2021) over Die-Stacked.

In terms of energy efficiency, the energy footprint of a
DDR module increases over technologies due to an increase
in static power of their active interfaces. Because MeSSOS
employs under-clocked DDR modules, its total energy foot-
print increases by only a small factor. As a result, MeSSOS
reduces system energy by 1.7x in 2015, 2x in 2018, and 2.6x
in 2021 compared to DDR and BOB, and by 23% in 2015,
40% in 2018, and 60% in 2021 compared to Die-Stacked.
Compared to HBMM, MeSSOS reduces system energy by
4-4.4x due to fewer serial links.

6.3 Comparison to Footprint Cache
We evaluate Footprint Cache [45], the state-of-the-

art bandwidth-mitigation technique for DRAM caches in
servers. Footprint Cache records the footprint of a page (de-
fined as the set of accessed cache blocks within the page)
and transfers only the recorded footprint in future page al-
locations, thereby lowering cache-memory bandwidth con-
sumption. To do so, Footprint Cache introduces high-storage
overhead due to block-level metadata (e.g., 200MB for a
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Figure 14: soCache compared to Footprint Cache. The fig-
ure also illustrates soCache’s sensitivity to page size.

cache of 32 GB), requiring a complex in-DRAM metadata
implementation [44].

As shown in Figure 14, Footprint Cache achieves lower
DDR traffic than soCache (1.1-1.23x on average) but at ex-
cessive tag storage overhead – e.g., 5x more than an soCache
with a 2 KB page size. Thanks to soCache’s high filtering ra-
tio, the overhead amounts to 2% of total off-chip bandwidth.
Thus, we conclude that high-capacity page-based caches do
not require bandwidth optimizations obviating the need for
in-DRAM metadata.

7. DISCUSSION
QoS. MeSSOS captures the hot dataset in soCache. How-
ever, the extra level in the memory hierarchy might increase
the response latency of infrequent queries that access un-
cached portions of the dataset. In practice, the effect is lim-
ited because accesses to coarse-grain objects dominate traf-
fic (Section 3.2, [93]). By using a page-based organization,
MeSSOS amortizes the extra latency of infrequent misses
(e.g., pointer chasing to retrieve cold objects) over multiple
cache hits upon coarse-grain operations on retrieved objects.
Non-Volatile RAM (NVRAM). NVRAM can enable high
memory capacity at low system cost, acting as a great can-
didate for either replacing or backing conventional DRAM
[34, 82]. While the choice of high-capacity memory tech-
nology is important for system efficiency and cost, it is
largely orthogonal to our work, which focuses on a differ-
ent level of the memory hierarchy and seeks to provide the
memory bandwidth required for manycore CMPs. Never-
theless, MeSSOS’s high-capacity and scalable cache archi-
tecture exploits skewed memory access distributions, thus
hiding NVRAM’s high latency and enabling its integration
with the rest of the system without impact on performance.
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High-Bandwidth Memory Technology. soCache utilizes
multiple off-package stacked DRAM modules. Neverthe-
less, our insights on high-capacity cache design can be ex-
ploited for architecting a practical and simple On-Package
Stacked DRAM cache. Such a design can lower cache ac-
cess latency by avoiding chip-to-chip links, but at signifi-
cant overheads. First, soCache’s capacity will be limited by
the size of the silicon interposer, hurting soCache’s hit rate
in systems with high memory capacity. Second, given the
pin-count limitations of a single package, it would need to
distribute DDR channels across additional buffer-on-board
chips so as to afford high memory capacity with conven-
tional DIMMs. These chips would add latency and power
overheads on soCache misses.
Cache Coherence. Systems rely on cache coherence for fa-
ciliating software development. In doing so, they enforce
coherence at the last level of the on-chip memory hierarchy.
As soCache is placed at a lower level, support for coher-
ence is not required in single-CMP systems. In multi-CMP
systems, however, soCache will need to track coherence in
case soCache slices are organized as per-CMP private caches
(rather than as a shared cache across all CMPs). Coher-
ence can be tracked at a coarse granularity by augmenting
soCache’s page-level entries with coherence bits. Maintain-
ing block-level coherence across CMPs is not necessary for
scale-out workloads due to negligible data sharing [27].
Sensitivity to LLC size. We employed an LLC of 4 MB per
16 cores as this core-to-cache ratio maximizes throughput
for a given die size [61]. Doubling the LLC size reduces
bandwidth requirements by 1.17x, but at the cost of silicon
area (equal to 4 cores) and lower throughput (25%).

8. RELATED WORK
Prior work has identified DRAM as a major power hog

and performance bottleneck, and sought to improve effi-
ciency through interface optimizations and heterogeneity.
Processor-Memory Interface. Leveraging the observation
that memory bandwidth is not utilized in today’s proces-
sors, prior work has either applied frequency scaling to the
memory interface and devices [25, 26], or proposed using
low-power low-speed memory interfaces [63, 100]. How-
ever, emerging manycore servers require large amounts of
memory bandwidth, thus mandating high-speed interfaces to
maximize per-pin bandwidth. In our work, we use a high-
bandwidth cache to filter most of DDR accesses, and utilize
under-clocked DIMMs to reduce idle power. Nevertheless,
frequency scaling could be leveraged to allow for dynami-
cally adjusting DDR bandwidth.

Prior work sought to reduced idle power of high-speed in-
terfaces by employing a dynamic data rate range or exploit-
ing various power-down states [3]. Unfortunately, there are
two main limitations in such approaches. First, interfaces
that support a data rate range increase dynamic power com-
pared to fixed-rate interfaces [77], and data rate adjustment
requires a time-consuming re-locking process [1]. Second,
exploiting power-down states is not practical due to high
sleep/wake-up times (a few microseconds) [1, 3].

Wake-up times of DDR interfaces can be reduced to a few
tens of nanoseconds by re-engineering their delay-locked

loop mechanisms [64]. Such techniques can leverage power-
down states of conventional DIMMs at the cost of small per-
formance loss. As soCache serves most of the accesses,
DDR latency is not on the critical path, and hence power-
down states can be exploited without performance loss.
Heterogeneity. Most systems employ stacked DRAM as a
hardware-managed cache [44, 45, 46, 60, 81] with high de-
sign complexity and storage overheads (Section 2.3). Lee et
al. couple the cache line with OS page and merge address
translation with cache management [55]. While this opti-
mization obviates tag arrays, it employs an indirection table
with overhead similar to page-level tag arrays while compli-
cating the design of systems with multiple OS page sizes.

Recent work advocates for employing stacked DRAM as
part of memory. Software-only epoch-based mechanisms,
however, capture only half of the opportunity of hardware-
managed caches due to long epochs required to amortize
costly software-level page migrations [66]. Many propos-
als provide hardware-level migration, but at the cost of high-
overhead impractical in-DRAM indirection tables [16, 90].

9. CONCLUSION
We presented MeSSOS, a memory system architecture

that provides the required memory bandwidth and capacity
for scale-out servers. Leveraging insights on skewed access
distributions in scale-out workloads, MeSSOS employs mul-
tiple high-bandwidth memory modules as a scale-out cache,
which is effective in capturing the hot data working sets. Un-
like state-of-the-art caches employing impractical in-DRAM
block-level metadata, soCache employs a low-overhead in-
SRAM page-based organization as coarse-grained access
patterns are dominant in high-capacity caches. MeSSOS
boosts system throughput and energy efficiency by exploit-
ing the spatial and temporal memory access behavior of
scale-out servers.
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