
1

Ocin tsim - DVFS Aware Simulator for NoCs
Subodh Prabhu∗, Boris Grot†, Paul V. Gratz∗ and Jiang Hu∗

camsin group@listserv.tamu.edu
http://www.ece.tamu.edu/∼ocintsim/

∗ Department of Electrical and Computer Engineering, Texas A&M University
† Department of Computer Sciences, The University of Texas atAustin

Abstract—Networks-on-Chip (NoCs) are a general purpose,
scalable replacements for shared medium wired interconnects
offering many practical applications in industry. Dynamic Voltage
Frequency Scaling (DVFS) is a technique whereby a chip’s
voltage-frequency levels are varied at run time, often usedto
conserve dynamic power. Various DVFS-based optimization tech-
niques have been proposed; however, few have been implemented,
in part due to the resources required to validate architectural
decisions through prototyping. As a result, designers are faced
with a lack of insight into potential power savings or performance
gains at early architecture stages. This paper proposes a DVFS
aware NoC simulator with support for per node power-frequency
modeling to allow the fine-tuning of such optimization techniques
early on in the design cycle. The proposed simulator also provides
a framework for benchmarking various candidate strategiesto
allow selective prototyping.

Index Terms—NoC (Network on Chip), network simulator,
DVFS (Dynamic Voltage Frequency Scaling), power modeling

I. I NTRODUCTION

Today’s dominant approach to scaling compute perfor-
mance while mitigating wire delays and power consumption is
through the use of single chip multi-processors (CMPs). Sim-
ilarly, system-on-chip (SoC) designs have recently emerged in
the embedded market as a means to reduce power consumption
and costs by integrating a diverse set of many IP blocks onto a
single chip. In both cases, with rising core and IP block counts,
communication between cores has become a major challenge
as bus-based and ad-hoc interconnects have been observed
to not scale [1, 2]. In response, researchers have proposed
packet-based networks-on-chip (NoCs) as a structured and
scalable alternative [2, 3]. For instance, Intel achieved tera-
flop performance at 5 GHz using an 80-core substrate with
a mesh interconnect [4, 5]. As NoCs are still an emerging
field, it has enjoyed a considerable amount of recent research
activity.

One active area of work has focused on dynamically varying
operating voltage and frequency levels to achieve a balancebe-
tween power and performance [6]. This technique, referred to
as DVFS, is used in some recent SoC designs [7]. Alternative
techniques using voltage/frequency islands for IP blocks,sleep
transistors and clock gating have also been proposed [8, 9, 10].
W. Kim, et. al. have proposed per-core DVFS techniques for
use in fine-grain power management [11].

This document introduces “Ocintsim” (On Chip Intercon-
nection Network Timing Simulator), a cycle-accurate microar-
chitectural Network-On-Chip (NoC) simulator. Ocintsim sup-

Fig. 1. Cost of redesign/implementation and viable number of potential
design candidates starting from algorithm stage to siliconimplementation
stage. Architectural simulators work much higher up the chain and can
potentially weed out several inefficient design ideas.

ports per-node DVFS modeling for early identification of op-
timum power-performance savings possible given a proposed
DVFS policy. In traditional NoC-based designs, power savings
estimation and verification is delayed until design prototyping
via FPGA or silicon implementation [12]. As indicated in
Figure 1, a large number of design candidates may exist in the
planning stages. Once established, power, performance, and
area objectives will subsequently reduce the possible design
space. At this point, evaluation via simulation can provide
a rapid, quantitative basis for refining a limited number of
design candidates into a few good prototype choices. It also
enables exploring a wider design space in cases where system
objectives have not been defined or are relatively flexible.

Existing NoC simulators either do not model DVFS or
assume global DVFS [13, 14, 15, 16, 17]. As a result,
many architectural optimizations can be validated only for
performance benefits. To the best of our knowledge, this
simulator is the first to accurately model the power and
performance of an NoC utilizing per-core DVFS.

Our work on the Ocintsim simulator makes the following
contributions:

2

1) A novel DVFS-aware NoC simulation environment with
power-performance calculations for each node, neces-
sary for modeling multiple voltage-frequency regions
dynamically managed at run-time.

2) Support for modular integration of power models allow-
ing users to plug-in their own power models for new
process technologies and custom circuit designs.

3) Support for modeling and benchmarking of arbitrary
interconnect topologies and router microarchitectures.

4) Support for visualizing network state to enhance un-
derstanding of time-varying behavior. Both conventional
(text-based) and visual output modes are available and
can be easily customized to a variety of needs.

The rest of the paper is organized as follows. Section II
discusses prior work, Section III covers the implementation of
Ocin tsim and various decisions made in the design process.
In Section IV we present the internals of simulator, while
Section V covers potential use cases of our simulator for
some standard designs. Sections VI and VII present sum-
mary and future work. Finally we present acknowledgments
in Section VIII and some detailed simulator information in
Appendices A- C.

II. RELATED WORK

Existing literature landscape in NoC architectural simulators
at architectural stage can be classified into the following broad
classes:

Class A: Micro-architectural simulators
These simulators compute actual physical quantities
of an NoC such as network latencies [13, 14, 15],
power consumption [14, 15, 16], and noise immunity
[18]. While being exhaustive, they are computa-
tionally intense and limited in precision by models
employed.

Class B: Abstract simulators
Class B simulators model only a specific sec-
tion/layer of network such as task scheduling, packet
arbitration, packet management and/or packet routing
and generalize the results for complete interconnect
network. [17]. Abstract simulators provide high sim-
ulation performance and can be effective at proving
the underlying optimization without the complexities
of an actual NoC implementation. These simulators
rely upon generalized assumptions about the charac-
teristics of network traffic and often prove inaccurate
at estimating the performance of realistic workloads.

The previous division is by no means exhaustive. Our
simulator lies squarely in Class A and hence is different
from all Class B simulators in that it directly models network
latencies and dynamically estimates the power consumption
for a given NoC configuration. Our simulator is different from
other simulators in Class A in three respects: 1) it allows each
node to operate in independent voltage and frequency domains
as in a per-core DVFS setup, 2) it uses Orion system of power
modeling [19] to compute both static and dynamic power
consumption and 3) it provides a graphic representation of
dynamic network traffic to allow an intuitive visualization.

III. S IMULATOR IMPLEMENTATION

In this section, we discuss the implementation details of
Ocin tsim. This section presents an eagle’s eye view of the
simulator, reserving more detailed discussion for subsequent
sections.

A. Preliminaries

Ocin tsim was born out of the need for a tool that could
quickly and efficiently validate or reject NoC architectural
propositions employing DVFS. Existing simulators, as listed
in Section II, were found lacking for such a purpose. As
previously discussed, NoC power consumption and packet
latency are highly dependent upon upon routing function,
DVFS policy and network traffic. Therefore, detailed microar-
chitectural simulation of the proposed NoC under a given
workload is required to provide an accurate measurement of
the system’s performance and power characteristics.

The goals of OcinSim’s design are as follows:

Flexible design
The simulator was designed for use in early stage,
NoC architectural research where numerous designs
must be evaluated. By supporting run-time configura-
bility, Ocin tsim enables rapid evaluation of diverse
workloads and network parameters. Such efficiency
is not possible with compile-time configurable sim-
ulators.

Extensibility
The simulator has a modular architecture that fa-
cilitates extensibility via user-defined pluggable ex-
tensions. Sample components for visualization and
power modeling are included in the standard distri-
bution of the simulator and may easily be replaced
with custom models.

Fast performance
As with all architectural simulators, an important
challenge lies in simulating more cycles in less wall-
clock time. One of the benefits of having a modular
simulator architecture is that it enables suppression
of unused components to improve simulator perfor-
mance. For example, in timing-only mode, Ocintsim
achieves faster simulation speeds by disabling power
modeling and visualization modules.

B. Organization

Modular structure: To support our aims, we chose a mod-
ular, object-oriented design style to implement the simulator.
Each logical component was implemented as a separate C++
class. Such a structure not only supports our extensibility
goal by being amenable to modular modifications, but also
supports our flexibility goal by allowing use of inheritance
and polymorphism to implement runtime configuration.

As an example of how this modular structure can be ex-
ploited, consider how per-node frequency support was addedto
the simulator. Initially Ocintsim supported a single, universal
clock frequency across all the nodes. Simulation context was
provided to each node by a simulator object every simulation

3

step thereby evaluating and thus proceeding the simulation.
Therefore to implement dynamic, per-node frequency assign-
ment, we simply had to constrain the number of simulation
steps when a given simulator object would be evaluated.
By including this count of cycles as a runtime configurable
parameter, we were able to configure each node to be evaluated
at different intervals thereby implementing multiple clock
frequencies.

Top-level structure: Figure 2 shows a structural organiza-
tion as well as syntactical description of nodes in a simple
2x2 mesh-based NoC. As the diagram shows, each node of
an NoC is modeled in Ocintsim as an object containing four
different module instances. We briefly discuss the role of each
of these nodes below:

• Router model: The router module models the flow of
packets through the given router’s user-defined microar-
chitecture. This module contains a simulator timing ob-
ject which synchronizes the packet traversal at an interval
set by its clock frequency.

• Power model: Each node also carries an Orion [19]
instance that computes the per-node power consumption
based on actual run-time activity. The original Orion
release was modified to allow per-node voltage-frequency
selection. These values may be changed at runtime for
fully dynamic voltage and frequency modeling. Other
power models can also be easily adapted for use with
our simulator.

• Monitor and visualization: Ocin tsim contains moni-
toring modules for data collection and subsequent post
processing using built-in statistics and/or visualization
blocks. Monitor modules can be used to report statistics
on various network elements such as packet routing,
arbitration logic, link bandwidth, FIFO usage and other
router statistics. The visualization module uses the “GD”
standard graphics library to capture the selected monitor
statistic into a series of images [20]. In complex, time-
varying environments such as those found in NoCs,
graphical representations can often present a more ef-
ficient way to gain an intuitive grasp of network perfor-
mance bottlenecks.

• I/O model: Ocin tsim contains injector and ejector mod-
ules which mimic traffic generation and reception by the
local processor or IP block attached to each router. While
injector and ejector modules mimic various possible
ways in which traffic may be induced across the NoC,
an instance of I/O module in each node controls their
behavior on a per-node basis.

Figure 2 shows a sample node declaration in the network
configuration file. Runtime configuration via simple text files
allows the description of complex NoC topologies via simple
declarative statements. The configuration files are discussed in
detail in Appendix B.

Traffic generation and routing: Ocin tsim supports
several traffic generation, routing, and port selection func-
tions. As with other simulator fields, all of these are runtime
configurable. Packets can be generated either in random or
bimodal mode (alternate between two different packet sizes).

The simulator supports a variety of synthetic traffic patterns
including bit complement, transpose, bit reverse and hotspot.
In addition, Ocin tsim has a trace-driven packet generation
mode to support network-level replay of simulated applica-
tions. Similarly, routing functions, port selection functions, and
resource allocation functions can be chosen at run-time. For
a comprehensive list of run-time configuration options, please
refer to Appendix B.

C. Novel features

Ocin tsim contains a number of novel features, several of
which are highlighted below.

• Per-node dynamic frequency modeling: Ocin tsim
models per-node frequency in a manner analogous to sim
clock in Verilog. Each clock period used in simulator
is specified as a multiple of root clock time period
where root clock is the time step at which simulation is
advanced. Thus, a node with a clock period multiplier of
two will be evaluated every two simulation steps. Signals
crossing clock domains pay a synchronization latency of
2x the destination clock period.
It is important to note here that root frequency sets the
relative updating interval of software execution cycle and
hence determines the simulation time. As a result, for
optimum simulation time, root clock should normally be
set to Highest Common Factor (HCF) of all the clock
periods in the network.
In addition to its applications in DVFS, dynamic fre-
quency scaling (DFS) has been applied to globally asyn-
chronous, locally synchronous (GALS) designs contain-
ing mesochronous clock boundaries. Our simulator does
not impose any restrictions on the use of dynamic fre-
quency tuning and can be used for DVFS as well as DFS
designs.

• Power modeling: Another novel features of our simula-
tor is support for power modeling at architectural level in
a DVFS setup. Each node in Ocintsim can compute per-
node power consumption based on actual, traffic-induced
activity. Our simulator can be used with any off-the-shelf
or custom power model to generate power estimates with
desired accuracy.

• Visualization: Another novel feature of Ocintsim is
visualization support. By processing the data gathered
by various monitor modules, the simulator is able to
generate graphic representations of network buffer oc-
cupancy, link utilization, and other network statistics
at the end of the simulation or during the course of
one, producing a time-varying series of images. When
combined with a network power model, this tool can
elucidate interesting trends into per-node differences in
power consumption, thermals, and traffic congestion. For
a complete list of supported visualization modes, please
refer to Appendix B.

IV. SIMULATOR INTERNALS

This section presents the internals of our simulator. We
describe its functionality, internal source structure andhow

4

Fig. 2. Structural and syntactical organization of a node withing Ocin tsim simulation environment for a simple 2x2 2D mesh connected NoC.

it maps to he microarchitecture of an NoC router. Various
command line arguments and configuration fields used in our
simulator are presented in Appendix A and Appendix B.

A. Topology and Router Microarchitecture

Figure 3 shows a simple five-node NoC connected in a
star topology as implemented in our simulator. Each router
connects a local resource to the rest of the network via a
node interface. Packets are routed over network links and
stored in Virtual Channel (VC) buffers. Virtual Channels and
switch bandwidth are assigned by allocation modules. Data
injection (from resource into the router) and ejection (from
router into the resource) is handled by gen and ej modules.
Each router instance also has a monitor module for statistics
and visualization.

B. Simulator code descriptions

As shown in Figure 3, code for Ocintsim is completely
modular; each file maps to a component C++ class. Top level
files integrate the microarchitectural components of a router
into a single router object instance. Multiple instances ofthis
router object are replicated and connected together to simulate
the behavior of an NoC. The following list describes the
functionality of the code files insrc/ directory.
− ocin/tsim ocin.cpp: top level file. Performs top level

argument parsing, binds simulation agent to an instance
of ocin top.

− ocin/ocin top.*: top level integration files, perform pa-
rameter instantiation from config files, creates and ini-
tializes tiles and wires structure and invoke all required
modules such as visualisation or ejector (Figure. 3).

− ocin/ocin router.*: router class. Includes routines for
assigning numbered VCs and logical ports to each router,
also include the evaluate subroutine (Figure. 3(a)).

− ocin/ocin channel.*: include routines to transmit flits
and calculate corresponding credit/cost (Figure. 3(b)).

− ocin/ocin cost msg.*: define the costmsg struct to be
used later on.

− ocin/ocin defs.*: top level define files containing various
shared macros and custom data types.

− ocin/ocin helper.*: contains various utility functions
used elsewhere in simulator.

− ocin/ej modules/*: default, non-blocking top-level ejec-
tor module (Figure. 3(d)).

− ocin/gen modules/*: various traffic generation modes
including random, complement, transpose, reverse, self-
similar, file trace and hotspot (Figure. 3(e)).

− ocin/io modules/*: router I/O component modules (Fig-
ure. 3(f)), input units (Figure. 3(m)) and output units
(Figure. 3(n)).

− ocin/monitors/*: monitor modules. Maintain a copies
of various network parameters such as flits traversed
through a node, injection/acceptance ratio, stalls encoun-
tered, request/grants made and etc (Figure. 3(g)).

− ocin/rt modules/*: routing functions such as adaptive,
XY dimension-order and o1turn (Figure. 3(h)).

− ocin/sel modules/*: selection function. Arbitration mod-
ules (Figure. 3(i)).

− ocin/vc modules/*: virtual channel allocation modules
(Figure. 3(j)).

− ocin/xbar modules/*: crossbar allocation including rou-
tines for simple, 2-level and speculative allocation (Fig-
ure. 3(k)).

− ocin/vis modules/*: visualisation modules. Includes rou-
tines for dumping interfacing with png/jpeg/GD libraries
(Figure. 3(l)).

− tsim/*: the simulation engine and modular agent
tsim module. Defines the simulation interface (Fig-
ure. 3(c)).

V. SAMPLE USAGE

This section describes installation procedure and presents
typical use cases for NoC based design. The software is made
available under MIT license as described in Appendix C.

A. Required libraries

The following libraries are required to successfully build
Ocin tsim:
− GD Graphics library, required by visualization module

can be found at http://www.boutell.com/gd/.

5

Fig. 3. Mapping between simulator structure and router microarchitecture.

− PNG Library, required by visualization module
in drawing to png files can be found at
http://www.libpng.org/pub/png/.

− JPEG Library, required by visualization module in draw-
ing to jpeg files can be found at http://www.ijg.org/.

− Orion library, if you wish to perform power estimations
in your simulation. We have tested our simulator to work
with Orion version 2.0. Orion 2.0 library can be down-
loaded from http://www.princeton.edu/∼peh/orion.html.
You may also use the version of Orion 2.0 library made
available at http://www.ece.tamu.edu/∼ocintsim/ which
has been modified to support programmatic control of
voltage and frequency.

B. Installation

Ocin tsim may be obtained online at
http://www.ece.tamu.edu/∼ocintsim/ . The following
commands may be used to extract and build the simulator:

tar -zxvf ocin tsim.tar.gz
cd tmax
make ocin

C. Timing simulation

A simple Ocin tsim use case is timing simulation for a small
2x2 NoC design. Ocintsim comes with a preconfigured 2x2
NoC network out-of-the-box. For this particular configuration,
we have chosen a 10% injection bandwidth, 1 hop per cycle,
128 baseline channel width and run all the nodes at same clock
frequency. Each node has 8 virtual channels and 4 element
deep queues. Per-node configuration for this NoC is specified
in the included simpletest net.cfg file.

cd simple test
../bin/tsim ocin -config simpletest.cfg -n 1000

D. Timing simulation with power

To demonstrate the use of Ocintsim for DVFS model-
ing, we will use the same 4-node NoC from the example
above. Node config file should be modified to assign different
startup voltage/frequency, if so desired. By altering the volt-
age/frequency level of a node based upon a required parameter
(say, the incoming traffic), end-user can implement a policy
for DVFS level selection. It is important to note here that
in the absence of a power model, any DVFS level may be
provided and the simulator would still successfully finish the
simulation. However, for the simulation to have any physical
relevance, it is important to stick to the granularity and/or
valid DVFS levels/range to switch between, as defined in your
power model.

Next we provide the simulator a ’hook’ to a power model.
This hook is a simple API call for the power computing
function (in power model) made for each flit activity. For this
exercise we use a modified version of the Orion 2.0 library
made available at http://www.ece.tamu.edu/∼ocintsim/. This
library is derived from Orion 2.0 and modified to support
programmatic control of voltage and frequency. By including
the power calculating APIs in the simulator, any simulation
now will perform both timing measurements as well as power
estimation.

VI. SUMMARY

An accurate estimation of power and timing of intercon-
nection networks in early phases of the design process can
prove to be effective in deeper exploration of NoC design
space. Existing NoC simulators are inadequate for power-
performance simulation of future technologies employing per-
node DVFS with the goal of minimizing power consumption.
In this work, we introduced a simulator that combines power
and performance models, thereby enabling rapid and accurate
evaluation of future NoC architectures. We have also presented

6

an extensible framework for integrating power models from
external sources into our timing simulator.

Extensions to Ocintsim are both underway and planned.
These are covered briefly in the Future Work section. At
present, this tool provides researchers with a fast and efficient
simulation infrastructure for screening architectural proposi-
tions before deploying them for FPGA testing or production.
We hope that you find these tools useful, and encourage
you to contact us with suggestions on improving the release,
documentation and the tool itself.

VII. F UTURE WORK

Work is underway on using our simulator for performing a
limit study on DVFS switching times. We believe that such
a study could provide insights into emphasis required on
approaches utilizing faster DVFS switching for performance
benefits at the cost of reduced regulator efficiency.

An extension planned for future is to provide an API layer
for integration of power models. Such an API layer would
provide a standard interface enabling researchers to import
their custom power models into Ocintsim framework.

Another future extension is using a 3D visualisation engine
to provide real-time 3D rendering of various network param-
eters using time as the third dimension. Such a visualisation
technique could be more intuitive for some users in faster de-
bugging of performance degradation issues rooted in real-time
bottlenecks. Current visualisation strategy is computationally
prohibitive to be performed in real-time.

VIII. A CKNOWLEDGEMENTS

Ocin tsim was written by Subodh Prabhu between Feb 2009
and Nov 2009. He continues to add improvements and updates.
It is derived from a simulator written by Professor Paul V.
Gratz and Boris Grot as research assistants at the University
of Texas at Austin Computer Sciences Department, under the
supervision of Prof. Stephen W. Keckler. Professor Jiang Hu
provided valuable guidance in the inclusion of the power
modeling feature. Professor Li-Shiuan Peh from Princeton
University graciously provided Orion 2.0 power models for
integration and testing. Bin Li from Princeton University
provided support for Orion power model. The first release was
assembled, debugged, and documented by Subodh Prabhu.

REFERENCES

[1] L. Benini and G. D. Micheli, “Networks On Chips: A
New SoC Paradigm,”Computer, vol. 35, no. 1, pp. 70–
78, Jan 2002.

[2] W. J. Dally and B. Towles, “Route Packets, Not Wires:
On-Chip Interconnection Networks,” inInternational
Conference on Design Automation (DAC), 2001, pp. 684–
689.

[3] A. Hemani, A. Jantsch, S. Kumar, A. Postula, J. berg,
M. Millberg, and D. Lindqvist, “Network on chip: An
architecture for billion transistor era,” inIEEE NorChip
Conference, Nov 2000.

[4] S. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson,
J. Tschanz, D. Finan, P. Iyer, A. Singh, T. Jacob, S. Jain,

S. Venkataraman, Y. Hoskote, and N. Borkar, “An 80-
Tile 1.28 TFLOPS Network-on-Chip in 65nm CMOS,”
in IEEE International Solid-State Circuits Conference,
February 2007.

[5] Y. Hoskote, S. Vangal, A. Singh, N. Borkar, and
S. Borkar, “A 5-GHz Mesh Interconnect for a Teraflops
Processor,”IEEE Micro, vol. 27, no. 5, pp. 51–61,
Spetember-October 2007.

[6] P. Macken, M. Degrauwe, M. V. Paemel, and H. Oguey,
“A voltage reduction technique for digital systems,”
in IEEE International Solid-State Circuits Conference,
February 1990, pp. 238–239.

[7] C. Lai, J. H. Lin, and Y. F. Wang, “DVFS SoC Archi-
tecture and Implementation,”SoC Technology Journal,
vol. 3, pp. 84–91, 2006.

[8] D. E. Lackey, P. S. Zuchowski, T. R. Bednar, D. W.
Stout, S. W. Gould, and J. M. Cohn, “Managing power
and performance for System-on-Chip designs using Volt-
age Islands,” inIEEE/ACM international conference on
Computer-aided design, November 2002, pp. 195–202.

[9] J. Tschanz, S. Narendra, Y. Yibin, B. Bloechel, S. Borkar,
and V. De, “Dynamic-sleep transistor and body bias
for active leakage power control of microprocessors,”
in IEEE International Solid-State Circuits Conference,
vol. 1, 2003, pp. 102–481.

[10] Q. Wu, M. Pedram, and X. Wu, “Clock-gating and its
application to low power design of sequential circuits,” in
IEEE Custom Integrated Circuits Conference, May 1997,
pp. 479–482.

[11] W. Kim, M. Gupta, G. Y. Wei, and D. Brooks, “System
level analysis of fast, per-core DVFS using on-chip
switching regulators,” inInternational symposium on
high-performance computer architecture, February 2008,
pp. 123–134.

[12] U. Ogras, J. Hu, and R. Marculescu, “Key research
problems in NoC design: a holistic perspective,” in
3rd IEEE/ACM/IFIP international conference on Hard-
ware/software codesign and system synthesis, February
2005, pp. 69–74.

[13] Y. Sun, S. Kumar, and A. Jantsch, “Simulation and
evaluation of a network on chip architecture using Ns-2,”
in IEEE NorChip Conference, 2002.

[14] D. Whelihan and H. Schmit, “Nocsim: A NoC Simu-
lator,” January 2006, documentation for Nocsim NoC
simulator.

[15] R. Thid, M. Millberg, and A. Jantsch, “Evaluating NoC
communication backbones with simulation,” inIEEE
NorChip Conference, 2003, pp. 27–30.

[16] J. Xi and P. Zhong, “A Transaction-Level NoC Sim-
ulation Platform with Architecture-Level Dynamic and
Leakage Energy Models,” in16th ACM Great Lakes
Symposium on VLSI (GLSVLSI), 2006, pp. 341–344.

[17] D. Siguenza-Tortosa and J. Nurmi, “VHDL-based simu-
lation environment for Proteo NoC,” inSeventh IEEE
International High-Level Design Validation and Test
Workshop, October 2002, pp. 1–6.

[18] R. Marculescu, “Networks-on-chip: the quest for on-
chip fault-tolerant communication,” inIEEE Computer

7

Society Annual Symposium on VLSI, February 2003, pp.
8–12.

[19] A. Kahng, B. Li, L. Peh, and K. Samadi, “ORION 2.0: A
Fast and Accurate NoC Power and Area Model for Early-
Stage Design Space Exploration,” inDesign Automation
and Test in Europe (DATE), April 2009.

[20] T. Boutell, “GD Lib, a graphics library for fast
creation of GIF images,” [Online] Available:
http://www.boutell.com/gd/.

[21] P. Gratz, B. Grot, and S. W. Keckler, “Regional con-
gestion awareness for load balance in networks-on-chip,”
in IEEE 14th International Symposium on High Perfor-
mance Computer Architecture (HPCA), February 2008,
pp. 203–214.

APPENDIX

A. Command line arguments

The following command-line arguments are available in the
simulator.

-h, - -help: displays usage information
-v, - -version: displays version information
-n cycles: maximum number of simulation cycles (default

= 10000000)
-config filename: input configuration file
-out filename: prefix for output file (and path)
-debug, -d: displays verbose debug info in the log
-debugstart cycle: verbose debug info display start at given

cycle
-debugstop cycle: verbose debug info display stops at given

cycle
-parms, -p: creates simulator parameters file
-noparms: does not create simulator parameters file
-stats, -s: creates simulator statistics file
-nostats: does not create simulator statistics file
-logfile: enables simulator logging to file
-nologfile: disables simulator logging to file
-logout: enables simulator logging to stdout
-nologout: disables simulator logging to stdout
-logerr: enables simulator logging to stderr
-nologerr: disables simulator logging to stderr
- -< name >: initializes simulator parameter< name >

with a value of 1
- -< name >=< value >: initializes simulator parameter

< name >=< value >

B. Configuration fields

Configuration parameters are broadly divided into global
and local (node based) categories and are stored in two
separate files. While global settings affect network-wide pa-
rameters, local settings determine per-node configurations.

1) Global configuration:Global configuration file specifies
NoC-wide parameters such as packet generation mode, wire
latency, switch for visualization module, percent injection
bandwidth or number of warmup cycles. Valid values are
presented in parentheses, with default parameters de-italicized.

General: used in controlling generic parameters of NoC
and global parameters of routers.

– inj vc count: injector VC count (1)
– ej vc count: ejector VC count (1)
– percent inj bw: percent injection bandwidth (20)
– hops per cycle: number of hops per cycle (0)
– wire delay: models per-hop link latency (0)
– router pipeline lat: models any additional router

pipeline latency (0)
– random req size: request size in random mode. When

enabled, all packets are sized randomly. (0)
– bimodal req size: request size in bimodal mode.

When enabled, all packets are sized to one of two
different possible lengths. (0)

– bimodal size1: packet size 1 in bimodal mode (64)
– bimodal size2: packet size 2 in bimodal mode (512)
– selfsim inj: self similar injection switch. When en-

abled, random numbers used in packet injection rate
calculations are read from the “selfsimfile” trace file
rather being calculated via the psuedo random number
generator. This allows the off-line generation of self-
similar random numbers to drive the packet injection.

– aggressivevc alloc: switch for aggressive VC allo-
cation (can be used only with deterministic routing
functions) (0)

– adaptive 1avail: switch for ensuring winning out port
has at least one VC available (0)

– baselinechannel width: baseline channel width (128)

Regional Congestion Awareness (RCA): is an efficient
method for port selection based on aggregated congestion
information communicated by neighboring nodes [21].
Following configuration fields control this behavior.

– extra rca delay: models Regional Congestion Aware-
ness (RCA) delay (0)

– low bw rca: switch for modeling serialized updates
over multi-cycles for bandwidth limited RCA (0)

– low bw rca latency: models serialization latency for
low bw rca field (0)

– 0delay cost msg update: switch for updating cost
message with zero delay (0)

– samecycle local cost: switch for computing local
congestion cost in same cycle. If local congestion
is a function of grant signals which come late in
cycle, then congestion cost should be computed in
next cycle. On the other hand, if local congestion
depends upon VC/crossbar requests, then local cost
can be computed in same cycle. (0)

– cost multiplier local: weightage for local cost. Local
costs at each node are scaled by this factor before
computing total cost. (1)

– cost multiplier remote: weightage for remote cost.
Remote costs arrived at by aggregating costs upstream
are scaled by this factor before computing total cost.
(1)

– use max quadrant cost: switch for using maximum
congestion as representative for a quadrant, by default
performs average (0)

– cost precision: cost precision (0)
– dim ave: perform diminishing average with existing

8

value while updating history FIFO (0)

Visualization and Statistics: configures visualization
module and also defines interval as well as verbosity with
which statistics are reported.

– vis on: visualisation switch (0)
– vis start: time instant to start visualisation

(MAX VAL)
– vis stop: time instant to stop visualisation

(MAX VAL)
– vis fifo type: buffer parameter selected for visualisa-

tion (free buff | vc alloc)
– vis link type: link parameter selected for visualisation

(xbar gnts | used buff | vc used | xbar reqs |
xbar demand | xb buff | link util | pkt delay)

– stats interval: statistics print interval (1000)
– node stats: switch to display per-node statistics (0)
– node bw stats: display switch for node by node of-

fered bandwidth statistics (0)
– chkpt interval: checkpoint interval (1)
– incr stats: switch for printing incremental statistics

(0)

Simulation and Trace File: contains various configuration
fields for controlling simulator behavior as well as trace
file handling.

– flit max: maximum flit count (1)
– midpoint file: fast forward to the middle of generator

file (0)
– seed: unique seed (random)
– netcfg file: location of node config file (”)
– tracefile name: trace file location (”)
– incr chkpt: switch for check pointing cost variables

(0)
– cost reg history: limit on history depth for maintain-

ing cost (1)
– warmup cycles: number of warm up cycles not in-

cluded in simulation log (0)
– max packets: maximum number of packets allowed

in simulation (0)
– pkt throttle: throttle on packet size to avoid simulator

hangups (5000)
– selfsim trace1: self similar trace file 1 (”)
– selfsim trace2: self similar trace file 2 (”)

2) Local configuration: Local configuration file specifies
node-specific parameters such as source/destination info,mode
of routing, connected ports, traffic pattern generation and
selection as well as startup clock frequency/voltage level.
Node-specific parameters follow a line starting withnode:
declaration and are applicable only for the node number spec-
ified. Following is a list of various local configuration fields
supported. Valid values have been presented in parentheses
with default value de-italicized.

− node: node name declaring a new node with specified
name, remaining lines till next node declaration or EOF
to be treated in this node’s context (”)

− coord: node coordinates (x and y coordinates specified
on two separate lines in that order)

− is source: source switch(true | false)

− is destination: destination switch(true | false)
− src type: source traffic pattern(rand | bitcomp |

transpose | selfsim | bitrev | hotspot | file)
− dst type: destination traffic pattern(noblock)
− router type: type of router(basic)
− xbar type: type of crossbar design(fullcon)
− vc alloc: VC allocator type(2level)
− xb alloc: crossbar allocator type(2level| spec 2level |

bec 2level | bec power 2level | bec spec 2level)
− clock: clock frequency divider, divides the root clock

frequency by specified value to arrive at clock frequency
for each node (1)

− volt: voltage level (default Vdd of power model used)
− rt algo type: routing algorithm(xydor | adaptive xy |

o1turn bec | xydor bec)
− rt sel type: routing selection function for choosing out-

put port (bec | o1turn | last match | first match |
first avail | no turn | random | stat | local)

− rt cost fn: routing cost function in computing link cost
(local | free vc nohist | buff nohist | buff hist)

− rt cost reg: routing cost function in computing cost
of an output port(free vc nohist | buff nohist |
xb demand)

− rt cost mgr: routing cost manager for aggregating and
propagating congestion info(none | local | 1D |
1domni | fanin | quadrant)

− vc count: VC count per port (4)
− vc classes: number of priority classes in a VC (1)
− que depth: FIFO queue depth per VC (2)
− port count: number of ports (2)
− port dest: named destination port (”)

C. License and Copyright Notice

Copyright (c) 2009 Subodh Prabhu, Boris Grot, Paul V.
Gratz and Jiang Hu.

Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated documenta-
tion files (the “Software”), to deal in the Software without
restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or
sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice
shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT
WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT. IN NO EVENT
SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LI-
ABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

