
Adding Multi-threaded Decoding to Moses

Barry Haddow

Fourth MT Marathon, Dublin
27th January 2010



Outline

Why multi-threaded decoding

Design of multi-thread moses

Moses server

Performance experiments

Conclusions and further work



The Rise of Multi-core

Multicore processors are ubiquitous

dual-core laptops and desktops are the norm
Server grade machines have many more cores available

Enables several operations to be run in parallel

Applications should be able to take advantage of the extra
cycles

Parallelism without the admin overhead of grid engine

Clusters require more specialist administration, and often don’t
have enough RAM



The Need for Multithreaded Decoding

Decoding is a signficant bottleneck in MT experiments

Tuning requires repeated decoding

Multi-Process

e.g. moses-parallel.pl

Extra infrastructure, e.g.
SGE

Copying of models

Fixed sized chunks

Multi-Thread

Take advantage of multi-core

Share models, saving RAM

Threads can cooperate more
closely than process

Online translation server
requires simultaneuous
processing



The Need for Multithreaded Decoding

Decoding is a signficant bottleneck in MT experiments

Tuning requires repeated decoding

Multi-Process

e.g. moses-parallel.pl

Extra infrastructure, e.g.
SGE

Copying of models

Fixed sized chunks

Multi-Thread

Take advantage of multi-core

Share models, saving RAM

Threads can cooperate more
closely than process

Online translation server
requires simultaneuous
processing



The Need for Multithreaded Decoding

Decoding is a signficant bottleneck in MT experiments

Tuning requires repeated decoding

Multi-Process

e.g. moses-parallel.pl

Extra infrastructure, e.g.
SGE

Copying of models

Fixed sized chunks

Multi-Thread

Take advantage of multi-core

Share models, saving RAM

Threads can cooperate more
closely than process

Online translation server
requires simultaneuous
processing



Multithreaded Programming

Threads are separate units of execution within the same
process

Shared address space
Separate stacks

Mutexes or Locks are used by threads to synchronise access to
shared resources

Used to protect shared data structures
Thread must acquire mutex before it can enter indicated
section of code
Other threads are then blocked from entering this section

Threads can maintain there own copies of a data structure
using thread specific storage

In the boost C++ libraries, this looks like an auto ptr



Multi-threaded moses: Design

Aimed to minimise changes to existing codebase

Used threadpool to distribute the work between threads

Each thread pulls a sentence from the input, and processes it.

Main thread-safety issues are:

Use of global data structures (StaticData), often for
convenience
Caches - shared read-write data structures - often implemented
within layers of indirection

A mature piece of software such as moses requires a variety of
thread-safety solutions



Thread-safety Strategies

1 Remove global data

Move sentence-specific data from StaticData to
sentence-specific Manager object
No usage of unsafe C-library (e.g. strtok)

2 Add appropriate locks

Caches for binarised tables, translation options etc.
Some amenable to reader-writer locks, but not LRU cache

3 Thread specific storage

Used to create per-thread caches.
In cases where adding locks would be too disruptive



Moses Server

Server can respond to translation requests over xml-rpc

Clients have been created in C++, Java, perl and php

Uses multi-threaded moses to deal with several requests at
once

Server can also return details on alignments

Currently used in the statmt demo site demo.statmt.org



Case Study - statmt demo

Server

Client
Browser

Webpage
Translator

Snippet
Translator

Translation
Broker

Casers

Tokenisers

Moses
Servers



MT Moses Performance - Decoding

Time taken for europarl model to decode 1023 sentences of
news - accounting for startup time.

●

●

●

●

●

●

Decode Time

CPUs

S
en

te
nc

es
 p

er
 h

ou
r

1 2 3 4 5 6

10
00

15
00

20
00

25
00

30
00

Scaling is not linear in number of CPUs
Possible resource contention e.g. ram/disk



MT Moses Performance - Mert

Times (in minutes) for mert, averaged over five runs.

Plain Moses MosesMT with 4 threads

Mean iterations 14.6 14.2
Mean total time 1425 689
Mean time per iteration 97.4 46.6
SD time per iterations 16.5 7.1
Mean bleu 33.3 33.4

Using four threads provides a two-fold (overall) speedup.



Conclusions

Not hard to extend moses for multi-threaded decoding

Can make better use of multi-processors

Easier to use large models

Speedup is sublinear in processor count

Disdvantage is less scalable then multi-machine, potential for
new types of bugs.



Further Work

Multi-threaded moses

Generation steps
randlm/irstlm
merge mainlines
performance

Moses server

Richer api
Configuration switching
Architectures for translation systems



Questions?

Thank you!
Questions?


