Adding Multi-threaded Decoding to Moses

Barry Haddow

Fourth MT Marathon, Dublin
27th January 2010



Outline

Why multi-threaded decoding
Design of multi-thread moses
Moses server

Performance experiments

Conclusions and further work



The Rise of Multi-core

@ Multicore processors are ubiquitous

o dual-core laptops and desktops are the norm

e Server grade machines have many more cores available
@ Enables several operations to be run in parallel

@ Applications should be able to take advantage of the extra
cycles
@ Parallelism without the admin overhead of grid engine

o Clusters require more specialist administration, and often don't
have enough RAM



The Need for Multithreaded Decoding

@ Decoding is a signficant bottleneck in MT experiments
e Tuning requires repeated decoding



The Need for Multithreaded Decoding

@ Decoding is a signficant bottleneck in MT experiments
e Tuning requires repeated decoding

Multi-Process
@ e.g. moses-parallel.pl

@ Extra infrastructure, e.g.

SGE
@ Copying of models

@ Fixed sized chunks




The Need for Multithreaded Decoding

@ Decoding is a signficant bottleneck in MT experiments
e Tuning requires repeated decoding

Multi-Process
@ e.g. moses-parallel.pl

@ Extra infrastructure, e.g.

SGE
@ Copying of models

@ Fixed sized chunks

Multi-Thread
@ Take advantage of multi-core
@ Share models, saving RAM

@ Threads can cooperate more
closely than process

@ Online translation server
requires simultaneuous
processing




Multithreaded Programming

@ Threads are separate units of execution within the same
process
e Shared address space
o Separate stacks
@ Mutexes or Locks are used by threads to synchronise access to
shared resources
e Used to protect shared data structures
e Thread must acquire mutex before it can enter indicated
section of code
e Other threads are then blocked from entering this section
@ Threads can maintain there own copies of a data structure
using thread specific storage
o In the boost C++ libraries, this looks like an auto_ptr



Multi-threaded moses: Design

@ Aimed to minimise changes to existing codebase
@ Used threadpool to distribute the work between threads

e Each thread pulls a sentence from the input, and processes it.
@ Main thread-safety issues are:

o Use of global data structures (StaticData), often for
convenience

o Caches - shared read-write data structures - often implemented
within layers of indirection

@ A mature piece of software such as moses requires a variety of
thread-safety solutions



Thread-safety Strategies

@ Remove global data

e Move sentence-specific data from StaticData to

sentence-specific Manager object

o No usage of unsafe C-library (e.g. strtok)
@ Add appropriate locks

o Caches for binarised tables, translation options etc.

e Some amenable to reader-writer locks, but not LRU cache
© Thread specific storage

o Used to create per-thread caches.
@ In cases where adding locks would be too disruptive



Moses Server

@ Server can respond to translation requests over xml-rpc
o Clients have been created in C++, Java, perl and php

@ Uses multi-threaded moses to deal with several requests at
once

@ Server can also return details on alignments

@ Currently used in the statmt demo site demo.statmt.org



Case Study - statmt demo

Server
Casers
Webpage
/> Translator
Client Translation :
Browser Broker Tokenisers
\> Snippet
Translator
Moses
Servers




MT Moses Performance - Decoding

@ Time taken for europarl model to decode 1023 sentences of
news - accounting for startup time.

Decode Time

Sentences per hour
2000 2500 3000
L L L

1500
I

1000
|

@ Scaling is not linear in number of CPUs
o Possible resource contention e.g. ram/disk



MT Moses Performance - Mert

@ Times (in minutes) for mert, averaged over five runs.

\ Plain Moses | MosesMT with 4 threads

Mean iterations 14.6 14.2
Mean total time 1425 689
Mean time per iteration 97.4 46.6
SD time per iterations 16.5 7.1
Mean bleu 33.3 33.4

@ Using four threads provides a two-fold (overall) speedup.



Conclusions

Not hard to extend moses for multi-threaded decoding

Can make better use of multi-processors

°
°

o Easier to use large models

@ Speedup is sublinear in processor count
°

Disdvantage is less scalable then multi-machine, potential for
new types of bugs.



Further Work

@ Multi-threaded moses
Generation steps
randlm /irstim
merge mainlines
performance

o Moses server
e Richer api
e Configuration switching
o Architectures for translation systems



Thank you!
Questions?



