
A Very Mathematical Dilemma 

Alan Bundy 

University of Edinburgh 

A.Bundy@ed.ac.uk 
 

Abstract 
 
Mathematics is facing a dilemma at its heart: the nature of mathematical proof. We 
have known since Church and Turing independently showed that mathematical 
provability was undecidable, that there are theorems whose shortest proofs are 
enormous. Within the last half century we have discovered practical examples of such 
theorems: the classification of all finite simple groups, the Four Colour Theorem and 
Kepler's Conjecture. These theorems were only proved with the aid of a computer. 
But computer proof is very controversial, with many mathematicians refusing to 
accept a proof that has not been thoroughly checked and understood by a human. The 
choice seems to be between either abandoning the investigation of theorems whose 
only proofs are enormous or changing traditional mathematical practice to include 
computer-aided proofs. Or is there a way to make large computer proofs more 
accessible to human mathematicians? 
 

Introduction 
 
Mathematicians strive to achieve proofs which are short, simple and elegant.  
Unfortunately, these ideals are not always attainable. There are theorems whose 
shortest proof is enormous. Mathematics faces a dilemma: either these theorems must 
be ignored or computers must be used to assist with their proof. 
 
Short, simple and elegant proofs are desirable because mathematics is a social 
process.  Mathematicians need to understand proofs not only to ensure that they are 
correct but also to internalise the key ideas contained within them. Enormous proofs 
make such understanding difficult or impossible.  
 
Since the late 1950s, there has been a steady stream of work on the automation of 
mathematical reasoning.  Mathematical theories and conjectures are formalised using 
logic and represented in a computer. An automated theorem prover combines the rules 
and axioms of the theories in order to prove the conjectures.  The abilities of these 
automated theorem provers has steadily improved with improvements in both the 
underlying theory and the speed of the hardware on which they are implemented.  
They are now capable of tackling open conjectures, even in totally automated mode, 
and, with the aid of human interaction, of solving large and complex problems.  
However, most mathematicians have shown little or no interest in automated proof. 
 



The proofs produced by automated theorem provers consist of a series of low-level 
logical steps.  They tend to be very long and complicated, which obscures the 
underlying ideas and makes them difficult to understand.  Human mathematical 
proofs, on the other hand, use formalisation sparingly, so are much shorter and easier 
to understand. Such human proofs are sometimes described as rigorous, to contrast 
them with logical proofs. On the whole, mathematicians are uninterested in the formal 
foundations of their subject or of logical proof. By construction, automated proofs are 
free of error (modulo the soundness of the logical calculus and the faithfulness of the 
implementation to this calculus).  Human proofs often contain errors, and 
mathematicians are surprisingly tolerant of these, provided they are not fatal to the 
key ideas of the proof. These differences must be reconciled if mathematicians are to 
use automated provers to tackle enormous proofs, as advocated in this paper. 
 
In recognition of these issues, the Royal Society held a meeting in London in October 
2004 entitled "The Nature of Mathematical Proof" [Bundy et al 2005]. I was involved 
as both a speaker and an organiser.  Many of the ideas presented below arose from the 
presentations at this meeting and the subsequent discussions.  

The Inevitability of Enormous Proofs 
 
The inevitability of theorems whose shortest proof is enormous arises from a result in 
mathematical logic.  In 1936, Alonzo Church and Alan Turing independently proved 
that predicate calculus provability is undecidable, i.e. that there was no algorithm that 
would determine whether or not a conjecture in predicate calculus was provable 
[Church 1936a, Church 1936b, Turing 1936]. This undecidablity of provability 
extends to nearly all nontrivial areas of mathematics.  
 
The inevitability of enormous proofs is a simple corollary of the Church/Turing result.  
Suppose, instead, that there was a limit to the size of proofs.  To be concrete, suppose 
that there was an arithmetic function that set an upper limit on the size of a theorem’s 
proof given the size of the theorem, e.g. measured by the number of symbols in its 
statement. We could now design an algorithm for the provability of a conjecture, 
contrary to Church/Turing. Using ideas from mathematical logic, it is easy to define a 
grammar from which all the proofs in a theory can be generated. If we take some care 
with the grammar and what it means for two proofs to be equivalent, then there will 
only be finitely many proofs of any given size. Given a conjecture, we first determine 
its size and hence the maximum size of any proof of that conjecture.  We now 
generate all proofs in the theory up to that maximum size.  This requires an 
astronomical, but finite, amount of work.  When the process terminates, if no proof 
has been found then the conjecture is unprovable. So, since assuming an upper limit to 
proof size contradicts Church/Turing’s proof there can be no such upper limit.  There 
must be theorems whose shortest proof is enormous.  
 
This argument might be dismissed as an interesting theoretical result with no practical 
consequences.  Maybe all the theorems with enormous proofs are of no mathematical 
or practical interest. However, there have been several examples in the last half-
century of mathematically interesting and simply-stated theorems with very large 
proofs.  In order to prove these theorems it has been necessary to enlist the aid of 
computers.  This use of computers has proven highly controversial.  The controversy 
has focussed both on the correctness of the computer-generated proofs and on their 



understandability.  I will discuss three examples: the classification of finite simple 
groups, the Four-Colour Theorem, and Kepler’s Conjecture. I have classified these 
proofs as merely “very large” as opposed to “enormous” because, despite their size, 
they are only in the foothills of the unbounded proof sizes predicted by 
Church/Turing. 
 

 

Three Examples of Simple Theorems with Very Large Proofs 
 
Groups are a simple algebraic structure with a very wide range of applications. The 
classification of finite, simple groups has been an enterprise by a large number of 
group theorists to identify the kinds of groups that can exist. Michael Aschbacher, one 
of the principal researchers involved, has estimated this enterprise as consisting of 
“perhaps 10,000 pages in hundreds of papers” [Aschbacher 2005, p2401]. 
Understanding the full detail of all this proof is beyond the capacity of a single human 
mathematician.  As yet, no single-volume summary of the proof exists.  Moreover, 
Aschbacher estimates that “the probability of an error in the proof is one” 
[Aschbacher 2005, p2402], i.e. that the proof is certainly erroneous.  Nevertheless, the 
classification has proven enormously useful and has been widely used to support 
further mathematical proofs. 
 
Computer algebra systems were used to prove the existence and/or the uniqueness of 
sporadic groups i.e. some of the very large groups which did not fit neatly into the 
mainstream classification. Currently, this use of computers has been largely 
eliminated.  We may ask why such elimination was considered a good thing. 
 
Imagine a map displaying different countries.  Suppose you wanted to colour this map 
so that no two adjacent countries had the same colour (see Figure 1).  The Four-
Colour theorem asks whether four colours are always sufficient to do this. This 
theorem has a long history covering several centuries.  It has long been believed to be 
true but, despite its simplicity, for most of its history it resisted proof.  There were 
many erroneous proof attempts, some of which survived for many years before their 
errors were discovered.  In 1976, Appel and Haken finally proved the theorem with 
the aid of a computer [Appel & Haken 1977].  They broke down the problem into 
1,936 cases, the computer being used to analyse each case in turn. Many 
mathematicians rejected this proof on the grounds that they could not understand it 
and, therefore, could not check its correctness.  They argued that computer programs 
were notoriously buggy so that one could not be sure that each of the cases was 
correctly analysed. Note that Appel and Haken’s program was not an automated 
theorem prover but an ad hoc program that they had written just for this problem. 



 

Figure 1: The Four Colour Theorem. This map is 
coloured with just four colours, so that no two adjacent 
countries share a colour. Will four colours always 
suffice? 

Greengrocers pack oranges, and other spherical fruits and vegetables, in a neat 
pyramid, in which each orange is balanced on three others (see figure 2).  In 1611, 
Kepler conjectured that this was the densest way to pack spheres.  This conjecture 
also resisted proof until late last century.  In 1998, Thomas Hales found a computer-
assisted proof of this four-century-old conjecture, again using an ad hoc program to 
test a large number of cases.  Hales submitted his proof to the Annals of Mathematics, 
which set up a 12-person referee team to try to verify the correctness of the computer-
generated part.  After months of effort the team had to admit defeat.  The proof was 
eventually published in the Annals of Mathematics but with a disclaimer about the 
correctness of the computer part. 
 

 

Figure 2: Kepler’s Conjecture. These 
spheres are packed closely together. Could 
they be packed more tightly? 

 
Hales’ reaction to this experience is a key piece of evidence for this paper.  He has set 
up a project, called Flyspeck, to replace his ad hoc use of computers with a more 
principled use of automated theorem provers [Hales 2005]. Since automated theorem 
provers carry a much higher assurance of correctness, he argues that this should 
counter the objections, raised by the Annals of Mathematics referee team, to the 
correctness of his computer-generated proof. 
 
The ostensible objection to these computer-generated proofs has been the possibility 
of incorrectness caused by bugs in the programs.  However, a potentially more 
significant, but implicit, objection is the difficulty of understanding computer-
generated proofs.  For instance, both the Four Colour Theorem and Kepler’s 
Conjecture generate thousands of cases that are then checked by ad hoc computer 
programs.  There is too much detail for a human to get a complete understanding of 
what is going on in each of these cases.  As Aschbacher says "thus proofs are... a 
vehicle for arriving at a deeper understanding of mathematical reality" [Aschbacher 
2005, p2403].  Hence the social process, by which mathematicians internalise then 
build on previous results, is denied, potentially blocking further progress in this 
direction. 
 
To see how we might combine computer-generated proofs with correctness 
guarantees and understandability we must look more closely at the more principled 
use of computers: computer algebra systems and automated theorem provers. 
 



Computer Algebra Systems 
 
Computer algebra systems began in the 1960s with systems for symbolic integration. 
These systems were extended to include algorithms for manipulating algebra, 
matrices, groups etc, and were made widely available in systems such as Macsyma 
and Reduce. They found keen users in the scientific and engineering communities, 
which needed to manipulate large mathematical expressions and which welcomed the 
removal of both tedium and error.  Today's popular systems include Maple, 
Mathematica and GAP.  
 
Computer algebra systems have also been taken up by the mathematics community.  
They are taught to students and used in research.  For instance, as we have seen, 
computer algebra systems were used in the classification of finite simple groups.  Not 
only are they used for routine manipulation of large expressions, but they can also be 
used for experimentation and visualisation, which is helpful for conjecture formation.  
 
Unfortunately, computer algebra systems are notoriously unsound.  For instance, they 
frequently fail to take into account singularities and other irregularities, especially at 
boundaries of domains. Uninformed use can lead to the ‘derivation’ of non-theorems. 
Such unsoundness does not seem to have led to the same criticisms of potential 
unsoundness that were levelled at Appel, Haken and Hales.  Perhaps this is because 
their incorrectness is more predictable and, with care, can be circumvented. 
 

 

Automated Theorem Provers 
 
Automated theorem proving also began in the late 1950s and early 1960s, it built on 
work in mathematical logic dating back to the late 19th-century and early 20th-
century.  Both axioms and conjectures can be represented as logical formulae.  Rules 
of inference can be represented as programs for manipulating these formulae.  The 
provers build a sequence of formulae, each of which is either an axiom or follows 
from earlier formulae by a rule of inference.  When the last formula of the sequence is 
the conjecture, then the sequence represents its proof.  Unfortunately, many different 
sequences must be explored in the search for that proof. This search can either be 
conducted automatically, interactively or by a mixture of both.  
 
A theorem prover’s inner core of axioms and rules of inference can be simply 
represented and readily inspected. Since the logical manipulations are done by this 
inner core, which can be given a sound logical interpretation, then the correctness of 
the prover comes with a high level of assurance.  The outer layers of search control, 
human-computer interface, etc, may be complex, impenetrable and buggy, but they 
can only request those inner logical manipulations and cannot influence their 
correctness. 
 
After half a century, automated theorem provers are in a fairly mature state.  A 
number of totally automated systems, such as Vampire, Spass, Otter and E, and a 
number of interactive systems, such as Isabelle, HOL, Coq, PVS, ACL2 and Nuprl, 
have a wide user base and a good track record in solving difficult problems.  



However, the use of the systems, even the totally automated ones, remains a highly 
skilled and time-consuming task.  These act as a barrier to their wider adoption.  In 
particular, and unlike computer algebra systems, automated theorem provers have 
never been popular amongst mathematicians. 
 

The Application of Automated Theorem Proving to Mathematics 
 
To show how automated theorem provers might be of assistance to mathematicians, 
consider the following five case studies.  
 
In 1996, Bill McCune, from the Argonne National Laboratory, used the EQP 
automatic prover to confirm the long-standing Robbins Conjecture, that every 
Robbins Algebra is boolean [McCune 1997]. In 1933, Robbins had provided a set of 
axioms that he conjectured were an alternative axiomatization of Boolean Algebra. 
Despite being tackled by a series of leading mathematicians, including Tarski, this 
conjecture resisted solution until the EQP proof. The Argonne group had been 
interested in this conjecture for several years. They used a succession of totally 
automatic (i.e. non-interactive) provers to break the problem into sub-problems and to 
solve them in succession. The EQP proof completed this process. As the first 
important open conjecture to be solved automatically, this result was reported 
worldwide. 
 
For his Cambridge PhD, Jacques Fleuriot formalised part of Newton’s Principia in 
the Isabelle theorem prover [Fleuriot 2001].  In particular, he analysed Newton's 
derivation of Kepler’s Laws of planetary motion. Since Newton reasoned 
diagrammatically and with infinitesimal quantities, it was necessary to formalise these 
within Isabelle. This formalisation uncovered a previously undiscovered error in 
Newton’s proof.  The error, the cancellation of an infinitesimal quantity on either side 
of an equation, was one that Newton himself had elsewhere highlighted but had 
unwittingly made himself on this occasion.  Fleuriot was able to correct the error and 
complete the automation of the proof.  It is remarkable that three centuries of analysis 
of this keynote Principia proof failed to uncover this error, but that it was readily 
discovered on the first attempt to automate the proof.  This case study illustrates the 
potential of automated theorem provers to detect errors and to help correct them. 
 
For her Edinburgh undergraduate project, supervised by Jacques Fleuriot, Laura 
Meikle automated Hilbert’s Grundlagen der Geometrie [Meikle & Fleuriot 2003]. 
Hilbert's purpose in this work was to show how geometric reasoning could be fully 
formalised without the appeal to geometric intuition.  However, Meikle’s work 
revealed that Hilbert had appealed to geometric intuition, but that this lapse had 
remained undetected for most of the 20th-century.  Again, Meikle was able to correct 
the error and to produce a fully formal proof.  In the case of Newton, one could argue 
that his error was minor and easily corrected, so of no real interest to mathematicians.  
But, in the case of Hilbert, the appeal to geometric intuition undermined the main 
purpose of his work, so must be regarded as a much more serious error. 
 
In reaction to the controversy over the correctness of Appel and Haken’s proof of 
the Four Colour theorem, Benjamin Werner and Georges Gonthier have 
formalised and automated this proof in the Coq theorem prover [Gonthier 2005]. This 



work provides a computer proof with a very high assurance of correctness.  However, 
the proof still consists of a very large number of complex cases; it is still very hard to 
understand. 
 
Finally, as already mentioned, Thomas Hales’ Flyspeck project is an attempt to 
formalise and automate the proof of Kepler's Conjecture [Hales 2005].  Hales has 
estimated that this will require 20 person-years of work.  There has been widespread 
and enthusiastic engagement from the automated theorem proving community, with 
many researchers contributing to the Flyspeck enterprise.  As a result, different parts 
of the proof have been automated in different theorem provers, including HOL-Light, 
Coq and Isabelle. This diversity is unfortunate, as it serves to undermine the assurance 
of correctness and to make the proof more difficult to understand.  The project is still 
its early stages but has recorded an initial success with the automation of the Jordan 
Curve Theorem. 
 

Can Automated Theorem Proving Address the Enormous Proof 
Problem? 
 
Now we have looked at the field of automated theorem proving, it is time to return to 
the problem of enormous mathematical proofs.  Can automated theorem proving help 
address this problem? 
 
Firstly, we might ask whether computers are necessary at all.  We have already seen 
an example, the classification finite simple groups, in which a very large proof has 
been largely human executed.  Even this proof’s few uses of computer algebra 
systems have now been largely eliminated.  It seems that very large proofs can be 
tackled with solely human effort.  However, note that the major problems of very 
large proofs still occur.  Not only is there no guarantee of correctness, but 
Aschbacher, one of the major authorities on this proof, estimates the probability of 
error as one.  Moreover, the complexity of the proof denies full human understanding.  
So, although computers play only a minor role in the construction of the proof they 
might still have a role in ensuring its correctness.  Could they also help with 
understandability? 
 
As we have seen, the correctness-sensitive parts of an automated theorem prover can 
be restricted to a small and inspectable core.  By this means, automated theorem 
provers can provide a high level of assurance of the correctness of any proofs 
constructed with their aid.  Unfortunately, computer proofs are typically inaccessible, 
due to the low level of detail in their logical representation.  We have seen that 
understandability is extremely important to mathematicians -- arguably much more 
important than correctness.  Mathematicians are extraordinary tolerant of errors in 
proof, provided that they are minor and readily corrected.  This tolerance was a 
constant theme in the Royal Society meeting on “The Nature of Mathematical Proof”, 
as witnessed, for instance, by the remark of Aschbacher quoted above. 
 
The question we have to address is whether computer-generated proofs can be made 
accessible to mathematicians.  Further, we may ask whether computer visualisation 
and abstraction techniques can aid the understandability of very large, or even 
enormous, proofs. 



 
A standard abstraction technique in mathematics is to break a large theorem into 
lemmas. This provides structure. Each lemma can be made small enough to be 
intelligible. The combined proof will still be at least as large as the original, unless 
some lemmas are recycled in different parts of the proof. In the next section we 
further extend this kind of abstraction by chunking some proof steps together. This 
chunking process can be applied recursively. The top-level chunks will provide an 
outline or plan of the whole proof.  
 

 

Proof Planning 
 
For a decade and a half, my research group has been developing the technique of 
proof planning [Bundy 1991].  We attempt to formalise common patterns in 
mathematical proofs.  The search for a proof then takes place at the level of these 
common patterns, which reduces the amount of search and improves the productivity 
of automated theorem proving systems.  Common patterns of proof are automated as 
tactics: computer programs which direct the application of rules of inference to 
formulae.  Both the preconditions under which tactics should be applied and the 
effects of their application are formalised.  The proof planner then builds a 
customised, hierarchical plan for the current conjecture.  The proof planner also has 
access to critics, which detect, analyse and correct failures of proof attempts. 
 
In order to visualise our hierarchical proof plans, we have developed a technique that 
we call hiproofs [Tourlas et al 2005].  Each of the tactics in a proof plan is represented 
by a box; boxes being nested to represent the hierarchical structure of the proof plans.  
Arrows between the boxes represent the flow of subgoals between the tactics.  Figure 
3 shows a hiproof for the induction strategy proof plan.  

Figure 3: A hiproof for the induction strategy. The whole 
induction strategy is represented by the outer box. It consists 
of three tactics: an application of an induction rule, followed 
by a base case and a step case. The base case consists of 
symbolic evaluation and a step case consists of ripple 
followed by fertilization. Ripple consists of repeated 
applications of the wave tactic. 



Figure 4: An exploded view of one of the tactics. The proof of 
the commutativity of addition consists of three applications of the 
induction strategy.  One of these applications has been exploded 
to show its inner structure, which consists of an induction tactic 
followed by a base and step case. 

   
 
 
Hiproofs enable proofs to be viewed at different levels of abstraction. We can zoom 
out and view only the top-level tactics or we can choose one of the tactics and zoom 
into its box, looking at the detail within it.  Figure 4 illustrates the ability to zoom in 
by showing a blown-up view of one of the tactics.  Figure 5 shows how a complex 
proof can be viewed at a high level in terms of the top-level tactics that form its 
overall proof plan. 
  

Figure 5: The overall view of a proof. The depicted proof plan is from 
the verification of an electronic circuit for multiplication. The hiproof 
shows the top-level tactics involved in the proof. It consists of seven 
applications of the induction strategy interleaved with two applications 
of symbolic evaluation.   

 
Hiproofs are one candidate for assisting mathematicians to understand very large 
proofs.  They support browsing of the structure of the proof, delving down into detail 
where required.  They might also support the human construction of proofs, enabling 
the high-level structure to be mapped out, with detail being provided as it becomes 



available.  Of course, hiproofs do not provide a complete solution to the 
understanding of very large proofs. For instance, a proof with a very large number of 
cases, such as Appel & Haken’s, remains inherently difficult to understand and, short 
of a completely different proof, it is not clear what can be done to solve this problem.  
However, if computers are to aid mathematicians in their understanding of larger and 
larger proofs it will be necessary to use a variety of proof visualisation techniques, 
hiproofs providing one candidate.  
 

Conclusion 
Computers have yet to play their full potential in mathematical research.  The major 
success story to date has been computer algebra systems.  They are widely taught to 
students, perform routine calculations in proofs and are used for exploratory 
experiments.  The use of ad hoc programs to analyse large numbers of cases in very 
large proofs has proved highly controversial.  Doubts about correctness are the 
ostensible objection, but the difficulty of understanding the resulting proofs may be a 
more fundamental objection.  Automated theorem provers have been largely ignored.  
However, recent research by Gonthier on the Four Colour Theorem and by Hales on 
Kepler’s Conjecture are a promising new departure.  Their use of automated provers 
suggest both that state of the art provers are capable of tackling very large proofs and 
also that their ability to provide a high level of correctness assurance has been 
recognised as a key selling point.  However, automated theorem provers will not be 
widely adopted unless they can also aid the understanding of proofs, especially of 
very large proofs. 
 
The presentation of proof plans with the aid of hiproofs suggests one way in which 
automated theorem provers might aid proof understanding.  In particular, if proofs 
could be built top-down by using hiproofs to sketch out their high-level structure and 
gradually filling in more and more detail, with automation taking care of the very 
lowest level steps, then this might encourage the uptake of automated theorem provers 
by working mathematicians.  
 

Acknowledgements 
I am grateful to the organisers of, speakers at and participants in the Royal Society 
discussion meeting on the Nature of Mathematical Proof, for the stimulating 
interactions that led to this paper. I’m also grateful for feedback from the audience at 
my seminar on “Computational Thinking”, where I presented these ideas before they 
were written up. I’d like especially to thank Stuart Anderson, Michael Aschbacher, 
Henk Barendreght, Lucas Dixon, Jeremy Gow, Alex Heneveld, Mateja Jamnik, 
Predrag Janicic, Andrew Ireland, Donald MacKenzie, Raul Monroy and Rodney 
Toper. This work was supported by EPSRC grant GR/S01771. It was dictated using 
the speech recognition software Dragon Naturally Speaking.  

References 
 
[Appel & Haken 1977] Appel, K.; Haken, W.; and Koch, J. "Every Planar Map is 
Four Colorable. I: Discharging." Illinois J. Math. 21, 429-490, 1977. 
 



[Aschbacher 2005] Aschbacher, M., Highly complex proofs and the implications of 
such proofs. In [Bundy et al 2005], pp 2401-2406, 2005. 
 
[Bundy 1991] Bundy, A., “A science of reasoning”, in Computational Logic: essays 
in honor of Alan Robinson, ed Lassez, J-L. & Plotkin, G., MIT Press, pp 178-198.  
 
[Bundy et al 2005] The nature of mathematical proof. Phil Trans of the Royal Society 
A. Eds Bundy, A., Atiyah, M., Macintyre, A. and MacKenzie, D., Vol. 363, No. 1835, 
pp 2329-2461, 2005. 
 
[Church 1936a] Church, A. An unsolvable problem of elementary number theory, 
American Journal of Mathematics, 58 (1936), pp 345-363. 
 
[Church  1936b] Church, A. A note on the Entscheidungsproblem, Journal of 
Symbolic Logic, 1 (1936), pp 40-41. 
 
[Fleuriot 2001] Fleuriot, J., A combination of geometry theorem proving and non-
standard analysis with applications to Newton’s Principia. Distinguished 
dissertations. Berlin Springer, 2001. 
 
[Gonthier 2005] Gonthier, G., A computer-checked proof of the Four Colour 
Theorem. http://research.microsoft.com/~gonthier/4colproof.pdf. 
 
[Hales 2005] Hales, T., The Flyspeck Project Fact Sheet. 
http://www.math.pitt.edu/~thales/flyspeck/. 
 
[McCune 1997] McCune, W. “Solution of the Robbins Problem” Journal of 
Automated Reasoning 19(3), pp 263-276, 1997. 
 
[Meikle & Fleuriot 2003] Meikle, L. and Fleuriot, J., “Formalising Hilbert’s 
Grundlage in the Isabelle/Isar”. In Theorem Proving in Higher Order Logics: 16th 
International Conference, TPHOLs 2003, Springer Lecture Notes in Computer 
Science, vol. 2758, pp 319-334. Berlin: Springer. 
 
[Tourlas et al  2005] Tourlas, K., Power, J. and Denney, E., “Hiproofs: A hierarchical 
notion of proof tree”, in Procs of 21st Conference on Mathematical Foundations of 
Programming Semantics, Birmingham, UK, to appear in Electronic Notes in 
Theoretical Computer Science, Elsevier, 2005. 
 
[Turing 1936] Turing, A. M. On computable numbers, with an application to the 
Entscheidungsproblem. Proceedings of the London Mathematical Society, Series 2, 
41:230-267, 1936. 
 
 

http://research.microsoft.com/%7Egonthier/4colproof.pdf
http://www.math.pitt.edu/~thales/flyspeck/

	A Very Mathematical Dilemma
	Alan Bundy
	University of Edinburgh
	A.Bundy@ed.ac.uk
	Abstract
	Introduction
	The Inevitability of Enormous Proofs
	Three Examples of Simple Theorems with Very Large Proofs
	Computer Algebra Systems
	Automated Theorem Provers
	The Application of Automated Theorem Proving to Mathematics
	Can Automated Theorem Proving Address the Enormous Proof Pro
	Proof Planning
	Conclusion
	Acknowledgements
	References



