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Abstract. We describe proof planning: a technique for both describing the hierarchical
structure of proofs and then using this structure to guide proof attempts. When such a
proof attempt fails, these failures can be analyzed and a patch formulated and applied. We
also describe rippling: a powerful proof method used in proof planning. We pose and answer
a number of common questions about proof planning and rippling.

1 Introduction

The Program Committee Chair of A1SC-04 suggested that the published version of my talk might
be:

“ ... a short paper telling our audience what are the highlights of the publication landscape
for the subject of your presentation, what they should read if they want to become better
informed by systematic reading, and why they should read the cited material (i.e. why
it represents the highlights), could have both immediate use and longer-term educational
use for people who don’t attend the conference but buy or read the proceedings later.”

Below I have attempted to fulfill this brief. I have organized the paper as a ‘Frequently Asked
Questions’ about proof planning, in general, and rippling, in particular.

2 Proof Planning

2.1 Introduction

What is proof planning? Proof planning is a technique for guiding the search for a proof in
automated theorem proving. A proof plan is an outline or plan of a proof. To prove a conjecture,
proof planning constructs a proof plan for a proof and uses it to guide the construction of the
proof itself. Proof planning reduces the amount of search and curbs the combinatorial explosion.
It also helps pinpoint the cause of any proof attempt failure, suggesting a patch to facilitate a
renewed attempt.

Common patterns in proofs are identified and represented in computational form as general-
purpose tactics, i.e. programs for directing the proof search process. These tactics are then formally
specified with methods using a meta-language. Standard patterns of proof failure and appropriate
patches to the failed proofs attempts are represented as critics. To form a proof plan for a conjecture
the proof planner reasons with these methods and critics. The proof plan consists of a customized
tactic for the conjecture, whose primitive actions are the general-purpose tactics. This customized
tactic directs the search of a tactic-based theorem prover.

For a general, informal introduction to proof planning see [Bundy, 1991]. Proof planning was
first introduced in [Bundy, 1988]. An earlier piece of work that led to the development of proof
planning was the use of meta-level inference to guide equation solving, implemented in the Press
system (see [Sterling et al, 1989]).

* The research reported in this paper was supported by EPSRC grant GR/S01771.
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Has proof planning been implemented? Yes, in the Oyster/Clam system [Bundy et al, 1990]
and AClam system at Edinburgh and the Omega system at Saarbriicken [Benzmiiller et al, 1997].
Clam and X\ Clam are the proof planners. They constructs a customized tactic for a conjecture and
then a proof checker, such as Oyster, executes the tactic.

In principle, Clam could be interfaced to any tactic-based theorem prover. To test this assertion,
we interfaced Clam to the Cambridge HOL theorem prover [Boulton et al, 1998]. We are currently
building a proof planner, called IsaPlanner, in Isabelle [Dixon & Fleuriot, 2003].

How has proof planning been evaluated? One of the main domains of application has been
in inductive reasoning [Bundy, 2001], with applications to software and hardware verification,
synthesis and transformation, but it has also been applied to co-induction [Dennis et al, 2000], limit
theorems, diagonalization arguments, transfinite ordinals, summing series, equational reasoning,
meta-logical reasoning, algebra, etc. A survey of such applications can be found in chapter 5 of
[Bundy et al, 2005].

Can proof planning be applied to non-mathematical domains? Yes. We have had some
success applying proof planning to game playing (Bridge [Frank et al, 1992,Frank & Basin, 1998]
and Go [Willmott et al, 2001]) and to configuration problems [Lowe et al, 1998]. It is potentially
applicable wherever there are common patterns of reasoning. Proof planning can be used to match
the problem to the reasoning method in a process of meta-level reasoning. Proof planning gives
a clean separation between the factual and search control information, which facilitates their
independent modification.

What is the relation between proof planning and rippling? Rippling is a key method in
our proof plans for induction. It is also useful in non-inductive domains. However, you can certainly
envisage a proof planning system which did not contain a rippling method (the Saarbriicken Omega
system, for instance) and you can envisage using rippling, e.g. as a tactic, in a non-proof planning
system. So there is no necessary connection. For more on rippling see §3.

What are the scope and limitations of proof planning? A critical evaluation of proof
planning can be found in [Bundy, 2002].

2.2 Discovery and Learning

Is it possible to automate the learning of proof plans? Proof plans can be learnt from
example proofs. In the case of equation solving methods, this was demonstrated in [Silver, 1985];
in the case of inductive proof methods it was demonstrated in [Desimone, 1989]. Both projects
used forms of explanation-based generalization. We also have a current project on the use of data-
mining techniques (both probabilistic reasoning and genetic programming) to construct tactics
from large corpuses of proofs, [Duncan et al, 2004].

The hardest aspect of learning proof plans is coming up with the key meta-level concepts to
describe the method preconditions. An example of such a meta-level concept is that of ‘wave-front’
from rippling. We have not made much progress on automating the learning of these.

How can humans discover proof plans? This is an art similar to the skill used by a good
mathematics teacher when analyzing a student’s proof or explaining a new method of proof to
a class. The key is identifying the appropriate meta-level concepts to generalize from particular
examples. Armed with the right concepts, standard inductive learning techniques can form the
right generalization (see §2.2).
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2.3 Drawbacks and Limitations

What happens if the attempt to find a proof plan fails? In certain circumstances proof
critics can suggest an appropriate patch to a partial proof plan. Suppose the preconditions of a
method succeed, but this method is unpacked into a series of sub-methods one of which fails,
i.e. the preconditions of the sub-method fail. Critics are associated with some of these patterns
of failure. For instance, one critic may fire if the first two preconditions of a method succeed, but
the last one fails. It will then suggest an appropriate patch for this kind of failure, e.g. suggest the
form of a missing lemma, suggest generalizing the conjecture. The patch is instituted and proof
planning continues.

The original critics paper is [Ireland, 1992]. A more recent paper is [Ireland & Bundy, 1996].
Two important application of critics are: discovering loop invariants in the verification of impera-
tive programs [Stark & Ireland, 1998]; and the correction of false conjectures [Monroy et al, 1994].

In other circumstances, a subgoal may be reached to which no method or critic is applicable.
It may be possible to back-up to a choice point in the search, i.e. a place where two or more
methods or critics were applicable. However, the search space defined by the methods and critics
is typically much smaller than the search space defined by the object-level rules and axioms; that
is both the strength and the weakness of proof planning. The total search space is cropped to the
portion where the proof is most likely to occur — reducing the combinatorial explosion, but losing
completeness. It is always possible to regain completeness by supplementing the methods with a
default, general-purpose exhaustive search method, but some would regard this as a violation of
the spirit of proof planning. For more discussion of these points see [Bundy, 2002].

Is it possible to discover new kinds of proof in a proof planning system? Since general-
purpose proof plans represent common patterns in proofs then, by definition, they cannot discover
new kinds of proof. This limitation could be overcome in several ways. One would be to include
a default method which invoked some general search technique. This might find a new kind of
proof by accident. Another might be to have meta-methods which constructed new methods. For
instance, a method for one domain might be applied to another by generalizing its precondi-
tions!. Or a method might be learnt from an example proof (see §2.2). Proof plans might, for
instance, be learnt from proofs constructed by general search. For more discussion of these points
see [Bundy, 2002].

Isn’t totally automated theorem proving infeasible? For the foreseeable future theorem
provers will require human interaction to guide the search for non-trivial proofs. Fortunately,
proof planning is also useful in interactive theorem provers. Proof plans facilitate the hierarchical
organization of a partial proof, assisting the user to navigate around it and understand its structure.
They also provide a language for chunking the proof and for describing the interrelation between
the chunks. Interaction with a semi-automated theorem prover can be based on this language.
For instance, the user can: ask why a proof method failed to apply; demand that a heuristic
precondition is overridden; use the analysis from proof critics to patch a proof; etc.
The XBarnacle system is an semi-automated theorem prover based on proof planning [Lowe & Duncan, 1997].

There is also a version of XBarnacle with interaction critics, where the user assists the prover to
find lemmas and generalizations [Jackson & Lowe, 2000].

Doesn’t proof planning promote cheating by permitting ad hoc adjustments to enable
a prover to ‘discover’ particular proofs? Not if the recommended methodology is adopted.
[Bundy, 1991] specifies a set of criteria for assessing proof plans. These include generality and
parsimony, which discourage the creation of ad hoc methods designed to guide particular theorems.
Rather, they encourage the design of a few, general-purpose methods which guide a wide range

L Often new departures come in mathematics when mathematicians switch from one area to another
bringing their proof methods with them.
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of theorems. The expectancy criterion promotes the association of a method with an explanation
of why it works. This discourages the design of methods which often succeed empirically, but for
poorly understood reasons. Of course, these criteria are a matter of degree, so poor judgment may
produce methods which other researchers regard as ad hoc. The criteria of proof planning then
provide a basis for other researchers to criticize such poor judgment.

2.4 Is all this of relevance to me?

Would a proof planning approach be appropriate for my application? The properties of
a problem that indicate that proof planning might be a good solution are: 1. A search space which
causes a combinatorial explosion when searched without heuristic guidance; 2. The existence of
heuristic tactics which enable expert problem solvers to search a much smaller search space defined
by these tactics; 3. The existence of specifications for each tactic to determine when it is appropriate
to apply it and what effect it will have if it succeeds.

How would I go about developing proof plans for my domain? The key problem is
to identify the tactics and their specifications. This is usually done by studying successful human
problem solving and extracting the tactics. Sometimes there are texts describing the tactics, e.g. in
bridge and similar games. Sometimes knowledge acquisition techniques, like those used in expert
systems, are needed, e.g. analysis of problem solving protocols, exploratory interviews with human
experts.

3 Rippling

3.1 Introduction

What is rippling? A technique for controlling term rewriting using annotations to restrict
application and to ensure termination. A goal expression is rippled with respect to one or more
given expressions. Each given expression embeds in the goal expression. Annotations in the goal
mark those subexpressions which correspond to bits of the given (the skeleton) and those which do
not (the wave-fronts). The goal is rewritten so that the embeddings are preserved, i.e. rewriting can
only move the wave-fronts around within the skeleton - wave-fronts can change but the skeleton
cannot. Furthermore, wave-fronts are given a direction (outwards or inwards) and movement can
only be in that direction. Outwards wave-fronts can mutate to inwards, but not vice versa. This
ensures termination. Rippling can be implemented by putting wave annotation into the rewrite
rules to turn them into wave-rules. The successful application of wave-rule requires that any wave-
front in the wave-rule must match a wave-front in the goal. Rippling was originally developed for
guiding the step cases of inductive proofs, in which the givens are the induction hypotheses and
the goal is the induction conclusion.

For an informal introduction to rippling with lots of examples see [Bundy et al, 1993]. For a
more formal account see: [Basin & Walsh, 1996]. A thorough account will shortly be available in
[Bundy et al, 2005].

Why is it called rippling? Raymond Aubin coined the term ‘rippling-out’, in his 1976 Edin-
burgh PhD thesis, to describe the pattern of movement of what we now call wave-fronts, during
conventional rewriting with constructor-style recursive definitions. In [Bundy, 1988]. we turned
this on its head by taking such a movement of wave-fronts as the definition of rippling rather than
the effect of rewriting. This enabled the idea to be considerably generalized. Later we invented
‘rippling-sideways’, ‘rippling-in’, etc and so generalized the combined technique to ‘rippling’.
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3.2 Relation to Standard Rewriting Techniques

Are wave-rules just the step cases of recursive definitions? No. Many lemmas and other
axioms can also be annotated as wave-rules. Examples include: associative laws; distributive laws;
replacement axioms for equality; many logical axioms; etc. Equations which cannot be expressed
as wave-rules include commutative laws and (usually) the step cases from mutually recursive
definitions. The latter can be expressed as wave-rules in an abstraction in which the mutually
defined functions are regarded as indistinguishable. Lots of example wave-rules can be found in
[Bundy et al, 2005].

How does rippling differ from the standard application of rewrite rules? Rippling differs
from standard rewriting in two ways. Firstly, the wave annotation may prevent the application
of a wave-rule which, viewed only as a rewrite rule, would otherwise apply. This will happen if
the left-hand side of the wave-rule contains a wave-front which does not match a wave-front in
the expression being rewritten. Secondly, equations can usually be oriented as wave-rules in both
directions, but without loss of termination. The wave annotations prevent looping. An empirical
comparison of rippling and rewriting can be found in [Bundy & Green, 1996].

Since rippling is terminating is it restricted to terminating sets of rewrite rules?
No. If all the rewrite rules in a non-terminating set can be annotated as wave-rules then the
additional conditions of wave annotation matching, imposed by rippling, will ensure that rippling
still terminates. Examples are provided by the many rewrite rules which can be annotated as
wave-rules in both directions, and may even both be used in the same proof, without loss of
termination.

Couldn’t we simply perform rippling using a suitable (rpo?) order without the need
for annotations? No, each skeleton gives (in essence) a different termination ordering which
guides the proof towards fertilization with that skeleton. Different annotations on the same term
can result in completely different rewritings.

Is rippling restricted to first-order, equational rewriting? No, there are at least two
approaches to higher-order rippling. One is based on viewing wave annotation as representing an
embedding of the given in the goal [Smaill & Green, 1996]. The other is based on a general theory
of colouring Acalculus terms in different ways [Hutter & Kohlhase, 1997].

Rippling can also be extended to support reasoning about logic programs — and other sit-
uations where values are passed between conjoined relations via shared existential variables, as
opposed to being passed between nested functions. Relational rippling adapts rippling to this
environment [Bundy & Lombart, 1995].

3.3 Wave Annotations

Is the concept of wave-rule a formal or informal one? ‘Wave-rule’ can be formally defined.
It is a rewrite rule containing wave annotation in which the skeletons are preserved and the
wave-front measure of the right-hand side is less than that of the left-hand side. Informally, the
skeleton consists of those bits of the expression outside of wave-fronts or inside the wave-holes. The
measure records the position of the wave-fronts in the skeleton. It decreases when outwards directed
wave-fronts move out or downwards wave-fronts move in. A formal definition of skeleton and of the
wave-front measure can be found in [Basin & Walsh, 1996] and in chapter 4 of [Bundy et al, 2005].
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Where do the wave annotations in wave-rules and in induction rules come from? Wave
annotation can be inserted in expressions by a family of difference unification algorithms invented
by Basin and Walsh (see [Basin & Walsh, 1993]). These algorithms are like unification but with the
additional ability to hide non-matching structure in wave-fronts. Ground difference matching can
be used to insert wave annotation into induction rules and ground difference unification for wave-
rules. ‘Ground’ means that no instantiation of variables occurs. ‘Matching’ means that wave-fronts
are inserted only into the induction conclusion and not the induction hypothesis. ‘Unification’
means that wave-fronts are inserted into both sides of wave-rules. Note that the process of inserting
wave annotations can be entirely automated.

3.4 Performance

Has rippling been used to prove any hard theorems? Yes. Rippling has been used success-
fully in the verification of the Gordon microprocessor and the synthesis of a decision procedure
and of the rippling tactic itself. It has also been used outwith inductive proofs for the summing
of series and the Lim+ theorem. A survey of some of these successes can be found in chapter 5 of
[Bundy et al, 2005].

Can rippling fail? Yes, if there is no wave-rule available to move a wave-front. In this case
we apply critics to try to patch the partial proof. For inductive proofs, for instance, these may:
generalize the induction formula; revise the induction rule; introduce a case split; or introduce
and prove an intermediate lemma, according to the precise circumstances of the breakdown. The
fact that a failed ripple provides so much information to focus the attempt to patch the proof is
one of the major advantages of rippling. More details about critics, including some hard examples
which have been proved with their use, can be found in [Ireland & Bundy, 1996] and in chapter 3
of [Bundy et al, 2005].

3.5 Miscellaneous

How is rippling used to choose induction rules? There is a one-level look-ahead into the
rippling process to see what induction rules would permit rippling to take place. In particular,
which wave-fronts placed around which induction variables would match with corresponding wave-
fronts in induction rules. We call this ripple analysis. It is similar to the use of recursive definitions
to suggest induction rules, as pioneered by Boyer and Moore, but differs in that all available wave-
rules are used in ripple analysis, and not just recursive definitions. More detail of ripple analysis
can be found in [Bundy et al, 1989], although that paper is rather old now and is not a completely
accurate description of current rippling implementations. In particular, the term ‘ripple analysis’
was not in use when that paper was written and it is misleadingly called ‘recursion analysis’ there.
A recent alternative approach is to postpone the choice of induction rule by using meta-variables
as place holders for the induction term and then instantiating these meta-variables during rippling:
thus tailoring the choice of induction rule to fit the needs of rippling [Kraan et al, 1996,Gow, 2004].

3.6 And Finally ...

Why do you use orange boxes to represent wave-fronts? The boxes form hollow squares,
which help to display the outwards or inwards movement of wave-fronts. In the days of hand-
written transparencies, orange was used because it is one of the few transparent overhead pen
colours, allowing the expression in the wave-front to show through?.

For more information about the research work outlined above, electronic versions of some of
the papers and information about down loading software, see the web site of my research group
at http://dream.dai.ed.ac.uk/.

2 Famously, Pete Madden coloured his wave-fronts red for a conference talk. The underlying expressions
were made invisible, ruining his presentation.
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