Apung uely

e

Introduction to
Recursion and Induction

Alan Bundy

School of

informatics
University of Edinburgh

Apung uely

_

Mathematical Induction Experimentl

e Purpose: relation between formal and informal

understanding.
e Short introduction to induction and recursion.

e Group exercise about inductive conjectures.

Apung uely

e

The Need for Mathematical Induction'

Proot by mathematical induction required for

reasoning about repetition, e.g. in:

e recursive datatypes,

numbers, lists, sets, trees, etc;
e iterative or recursive computer programs:;
e clectronic circuits with loops or parameterisation;

e theorems in number theory, e.g. Fermat’s Last

Theorem.

Apung uely

Structure of an Induction Rule'

P(0), Vn:nat. (P(n) — P(n—+1))
Vn:nat. P(n)

Base Case: P(0)

Step Case: Vn:nat. (P(n) — P(n+1))
Induction Variable: n

Induction Term: n + 1

Induction Hypothesis: P(n)
Induction Conclusion: P(n + 1)

Sequent Form: P(n) - P(n+ 1)

_

Apung uely

_

Recursive Datatypes'

Examples: natural numbers, lists, sets, trees.
Made From: base and step constructor functions.

Naturals: 0:nat and s : nat — nat.

nat = {0, s(0), s(s(0)), s(s(s(0))), ...}

Lists: | |:list(T) and

list(T) = {| |, 1], |

where o : 7.

] T X lust(T) v list(T).

Apung uely

Recursive Deﬁnition'

Example: addition on naturals.

0+Y =Y
S(X)+Y =s(X+Y)

Base Case: 0 +Y =Y
Step Case: s(X)+Y =s(X +Y)

Recursion Variable: X

_

Apung uely

More Examples of Recursion'

Two Step: even on naturals.

even(0) <« true
even(s(0)) < false

)
even(s(s(n))) <« even(n)

Lists: append of two lists.

|<>L=1L
([H|T]) <> L =[H|(T <> L)]

Apung uely

e

Rewriting I

Rewrite Rule of Inference:

Cond — lhs = rhs, Plrhs¢|, Cond¢
P|sub]

where [hs¢ = sub,

often C'ond 1s absent.

Example Rewriting:

2x X =X+ X, even(n+n)
even(2 X n)

_

Apung uely

4 Example Rewrite Rules'

From Recursive Definitions: e.g. of addition.

0+Y =Y
s(X)+Y =s(X+Y)

Conditional Rewrite Rule:
Y#0— X = quot(X,Y) xY +rem(X,Y)
Lemma as Rewrite Rule:
X+sY)=s(X+Y)
Non-Termination Problem: e.g. commutativity law.

X+Y=Y+ X

_

Apung uely

e

Example Inductive Proof I

Conjecture: the associativity of append.
Vo list(T)Vy:list(T)Vz: list(T).
r<>(y<>z)=(r<>y) <>z

Rewrite Rules: from definition of append.

|<>L=1
([H|T]) <> L= [H|(T <> L)

Induction Rule: one-step on lists.

P([]) Vh:7.Vt:list(T). P(t) — P(|hlt])

Vi list(r). P(I)
_

Apung uely

e

Base Case Proof I

Base Case: induction on z.
<> (y<>2)=(]<>y) <>z
Rewriting Steps:

y<>z=(]] <>y)<>=2
y<>z=y <>z

Rewrite Rule:

|<>L=1

_

g Step Case Proof I

Step Case: induction on x.

t<>Y <>2Z)=(t<>Y)<>7
- ([Rt]) <> (y <> 2z) = (([h]t]) <> y) <>z
Rewriting Steps:
Lt <> (y<>2))] = (Rt <>y))] <>=2
h|(t <> (y <> 2))] = [h[((t <>y) <> 2)]
h=hAt<>(y<>z)=(t<>y)<>=z
Rewrite Rules:

([H|T)) <> L = [H(T <> L)]

([Hl‘Tl] — [HQ‘TQ]) = (H1 = Ho N1} = TQ)

o

/

Apung uely

e

I N
pxperiment I

e Organise yourselves into groups of three (or four).

e Discuss the exercises in the handout with the rest of
yOur group.

e Collectively solve these exercises.
e If you need help, raise your hand.

e Please record your intermediate working.

Note down any thoughts, including any false starts.

e Choose a group spokesperson to explain your ideas to

the rest of the class.

N /

