

Introduction to Recursion and Induction

Alan Bundy

University of Edinburgh

Mathematical Induction Experiment

- Purpose: relation between formal and informal understanding.
- Short introduction to induction and recursion.
- Group exercise about inductive conjectures.

The Need for Mathematical Induction

Proof by mathematical induction required for reasoning about repetition, e.g. in:

- recursive datatypes, numbers, lists, sets, trees, etc;
- iterative or recursive computer programs;
- electronic circuits with loops or parameterisation;
- theorems in number theory, e.g. Fermat's Last Theorem.

Structure of an Induction Rule

$$\frac{P(0), \quad \forall n : nat. \ (P(n) \to P(n+1))}{\forall n : nat. \ P(n)}$$

Base Case: P(0)

Step Case: $\forall n : nat. (P(n) \rightarrow P(n+1))$

Induction Variable: n

Induction Term: n+1

Induction Hypothesis: P(n)

Induction Conclusion: P(n+1)

Sequent Form: $P(n) \vdash P(n+1)$

Recursive Datatypes

Examples: natural numbers, lists, sets, trees.

Made From: base and step constructor functions.

Naturals: $0: nat \text{ and } s: nat \mapsto nat.$

$$nat = \{0, s(0), s(s(0)), s(s(s(0))), \ldots\}$$

Lists: []: $list(\tau)$ and [...|...] : $\tau \times list(\tau) \mapsto list(\tau)$.

$$list(\tau) = \{ [], [\alpha_1], [\alpha_2, \alpha_1], \ldots \}$$

where $\alpha_i : \tau$.

Recursive Definition

Example: addition on naturals.

$$0 + Y = Y$$
$$s(X) + Y = s(X + Y)$$

Base Case: 0 + Y = Y

Step Case: s(X) + Y = s(X + Y)

Recursion Variable: X

More Examples of Recursion

Two Step: even on naturals.

$$even(0) \leftrightarrow \mathbf{true}$$
 $even(s(0)) \leftrightarrow \mathbf{false}$
 $even(s(s(n))) \leftrightarrow even(n)$

Lists: append of two lists.

$$[\] <> L = L$$
 $([H|T]) <> L = [H|(T <> L)]$

Rewrite Rule of Inference:

$$\frac{Cond \to lhs \Rightarrow rhs, \ P[rhs\phi], \ Cond\phi}{P[sub]}$$

where $lhs\phi \equiv sub$,

often *Cond* is absent.

Example Rewriting:

$$\frac{2 \times X \Rightarrow X + X, \quad even(n+n)}{even(2 \times n)}$$

9

Example Rewrite Rules

From Recursive Definitions: e.g. of addition.

$$0 + Y \Rightarrow Y$$
$$s(X) + Y \Rightarrow s(X + Y)$$

Conditional Rewrite Rule:

$$Y \neq 0 \rightarrow X \Rightarrow quot(X,Y) \times Y + rem(X,Y)$$

Lemma as Rewrite Rule:

$$X + s(Y) \Rightarrow s(X + Y)$$

Non-Termination Problem: e.g. commutativity law.

$$X + Y \Rightarrow Y + X$$

Example Inductive Proof

Conjecture: the associativity of append.

$$\forall x : list(\tau) \forall y : list(\tau) \forall z : list(\tau).$$

$$x <> (y <> z) = (x <> y) <> z$$

Rewrite Rules: from definition of append.

$$[\;] <> L \Rightarrow L$$

$$([H|T]) <> L \Rightarrow [H|(T <> L)]$$

Induction Rule: one-step on lists.

$$\frac{P([\]) \quad \forall h : \tau. \forall t : list(\tau). \ P(t) \rightarrow P([h|t])}{\forall l : list(\tau). \ P(l)}$$

Base Case Proof

Base Case: induction on x.

$$[] <> (y <> z) = ([] <> y) <> z$$

Rewriting Steps:

$$y <> z = ([] <> y) <> z$$

 $y <> z = y <> z$

Rewrite Rule:

$$[\] <> L \Rightarrow L$$

Step Case Proof

Step Case: induction on x.

$$t <> (Y <> Z) = (t <> Y) <> Z$$

 $\vdash ([h|t]) <> (y <> z) = (([h|t]) <> y) <> z$

Rewriting Steps:

$$[h|(t <> (y <> z))] = ([h|(t <> y))] <> z$$

$$[h|(t <> (y <> z))] = [h|((t <> y) <> z)]$$

$$h = h \land t <> (y <> z) = (t <> y) <> z$$

Rewrite Rules:

$$([H|T]) <> L \Rightarrow [H(T <> L)]$$

 $([H_1|T_1] = [H_2|T_2]) \Rightarrow (H_1 = H_2 \land T_1 = T_2)$

Experiment

- Organise yourselves into groups of three (or four).
- Discuss the exercises in the handout with the rest of your group.
- Collectively solve these exercises.
- If you need help, raise your hand.
- Please record your intermediate working.

 Note down any thoughts, including any false starts.
- Choose a group spokesperson to explain your ideas to the rest of the class.