

A Science of Reasoning

Alan Bundy School of Artificial Intelligence

University of Edinburgh

Overview of Talk

Understanding mathematical proofs

the role of logic.

the need for higher level explanations.

Proof plans

common structure in proofs.

tactics and methods.

A science of reasoning

the nature of the science. criteria for assessing proof plans.

Relation to computation

the role of the computer. automatic theorem proving.

Understanding Mathematical Proofs

• Alan Robinson:

Proof = Guarantee + Explanation

- Logic provides 'guarantee' and low-level explanation.
- Need high-level explanation too.
- Provided by proof plans.

Evidence for Higher-Level Explanations

- Understanding whole proof vs understanding details.
- Common structure in proofs.
- Old proofs guide search for new ones.
- Interesting vs routine proof steps
- Intuition of theoremhood.
- Varying learning abilities.

a

Common Structure in Proofs 2: Rippling

Additivity of Even Numbers

Induction Hypothesis:

$$even(x) \wedge even(y) \rightarrow even(x+y)$$

Induction Conclusion:

$$even(((x+1)+1)^{\uparrow}) \wedge even(y) \rightarrow even(((x+1)+1^{\uparrow})+y)$$

$$even(x) \wedge even(y) \rightarrow even((((x+1^{\uparrow})+y)+1^{\uparrow})$$

$$even(x) \wedge even(y) \rightarrow even((((x+y)+1)+1^{\uparrow}))$$

$$even(x) \wedge even(y) \rightarrow even(x+y)$$

Wave Rules:

$$(\begin{matrix} U + 1 \\ + 1 \end{matrix}) + V \Rightarrow (U + V) + 1$$

 $U + 1 \\ \uparrow = V + 1 \\ \uparrow \Rightarrow U = V$
 $even((U + 1) + 1 \\ \uparrow) \Rightarrow even(U)$

Science of Reasoning

Common Structure in Proofs 3:

Equation Solving

4.
$$\log_x 2 + \log_2 x = 5$$

homogenization
 $\frac{4}{\log_2 x} + \log_2 x = 5$
change of unknown
 $y = \log_2 x$ $\frac{4}{y} + y = 5$
isolation poly norm form
 $x = 2^y$ $y^2 - 5.y + 4 = 0$
 $y = 1 \lor y = 4$
 $y = 1 \lor y = 4$
 $\cos x + \sin^2 x = -1$
homogenization
 $\cos x + \sin^2 x = -1$
 $y = \cos^2 x = -1$
 $y = \cos^2 x + 1 - y^2 = -1$
 $y = \cos^2 x + 1 - y^2 = -1$
 $y = \cos^2 x + 1 - y^2 = -1$
 $y = \cos^2 x + 1 - y^2 = -1$
 $y = \cos^2 x + 1 - y^2 = -1$
 $y = -1 \lor y = 2$

Proof Plans: What Are They?

- Attempt to capture common structure of family of proofs.
- Used to guide search for new proofs from same family.
- Three parts: tactic, method and critics.
 Tactic is computer program for applying rules of inference.

Method is meta-logical specification of tactic. Critic analyses failure and suggests patch.

- Use AI plan formation to construct special-purpose proof plan for conjecture using general-purpose sub-proof plans.
- Allows flexible application of heuristics.
- Understanding gained suggests extensions of heuristics.

Declarative: Rippling must be possible in step cases.Procedural: Look-ahead to choose induction rule that will permit rippling.

Special-Purpose Proof Plans $ind_strat(\mathbf{x}+1^{\uparrow},x)$ $ind_strat(\mathbf{x}+1^{\uparrow}, x)$ then $\begin{bmatrix} ind_strat(|\boldsymbol{y}+1|^{\uparrow}, y) \end{bmatrix}$ $ind_strat(|\boldsymbol{y}+1|^{\uparrow}, y)$ Associativity of + Commutativity of + x + (y + z) = (x + y) + z x + y = y + x

Is this a Science?

- Study of the structure of proofs. by describing them with proof plans.
- Billions of proof plans problem. depends on state of mind.
- Problem common to all human sciences, *e.g.* Linguistics, Logic.
 adopt their solution.
 - *i.e.* construct a few consensual grammars, logics, *etc.*
- Construct consensual proof plans: empirical, reflective, normative.
- Need criteria for assessing proof plans.

Criteria for Assessing Proof Plans

Correctness: Associated tactic will construct proof step.

Intuitiveness: Plan feels right.

Psychological Validity: Plan agrees with experiments on humans.

Expectancy: The more accurately success can be predicted the better.

Generality: The more proofs are accounted for by the plan the better.

Prescriptiveness: The less search the tactic generates the better.

Simplicity: The simpler the tactic the better.

Efficiency: The cheaper the tactic the better.

Parsimony: The fewer proof plans the better.

The Role of the Computer

- Automate testing of criteria.
- Automate statistics gathering.
- Ensure accuracy of proof plan.
- Disinterested checker of theory. source of inspiration.
- Application to automatic theorem proving.

Relation to Automatic Theorem Proving

- Conventional ATP methodology: heuristics suggested by shallow analysis, *e.g.* complexity measures. empirical success criterion.
- Proof plans alternative: proof plans suggested by deep analysis. proof plans must meet criteria.
- Slower initial progress, but no ultimate deadlock.
- Conventional ATP heuristics are valuable starting point.

Explanatory Role of Proof Plans

- Understanding whole proof vs understanding details. proof plan vs logical proof.
- Common structure in proofs. common proof plans.
- Old proofs guide search for new ones. use proof plan as guide.
- Interesting *vs* routine proof steps outside proof plan *vs* inside.
- Intuition of theoremhood. have proof plan but no logical proof.
- Varying learning abilities. have concepts to build proof plan.

Conclusion

• Science of reasoning:

attachment of proof plans to proofs. provides multi-level understanding of proofs.

normative, empirical and reflective.

• Proof plans consist of tactics, methods and critics.

methods are meta-logical specification of tactics.

critics patch failed proof attempts.

- Criteria for assessing proof plans.
- Application to **ATP**. advantages over conventional methodology.