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Abstract

The overlapping fields of ‘Adaptive Behaviour’ and ‘Artiéic Life’ are often described as novel
approaches to biology. They focus attention on bottonenplanations, and how lifelike
phenomena can result from relatively simple systenteraoting dynamically with their
environments. They are also characterised by theotusgnthetic methodologies, that is, building
artificial systems as a means of exploring these id&ago differing approaches can be
distinguished: building models of specific animal systemd assessing them within complete
behaviour-environments loops; and exploring the behaviduinvented artificial animals, often
called ‘animats’, under similar conditions. An obvious sjisen about the latter approach is: how
can we learn about real biology from simulation of-eaistent animals? In this paper | will argue,
first, that animat research, to the extent that relevant to biology, should also be considered as
model building. Animat simulations do, implicitly, represdiypotheses about, and should be
evaluated by comparison to, animals. Casting this relsea terms of ‘invented agents’ serves only
to limit the ability to draw useful conclusions from iy deflecting or deferring any serious
comparisons of the model mechanisms and results vallbi@ogical systems. Claims that animat
models are meant to be ‘existence proofs’, ‘ideabsat] or represent ‘general’ problems in
biology do not make these models qualitatively differemtnf more conventional models of specific
animals, nor undermine the ultimate requirement to yudfifis work by making concrete
comparisons with empirical data. It is thus suggestedvibatill learn more by choosing real, and
not made-up, targets for our models.
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1. Introduction

The issue of how animals achieve adaptive behaviourbeas part of the study of biology
throughout its history. The relatively recent fields ‘Aflaptive Behaviour’ (AB) and ‘Artificial
Life’ (ALife) are distinguished from standard biologicatieces by the use of synthetic
methodologies to investigate this problem, that isbuoiding systems that exhibit the behaviour of
interest. In particular, synthesis is often used whid @&im of demonstrating how some high level
phenomena of life, adaptive behaviour or inteligence emerge from low level interactions of
relatively simple components. As described by Langi®89), ALife:

“complements the traditional biological sciences concerned with analysiging organisms by
attempting to synthesize life-like behaviors within computers and attifgsial media... The field
as a whole represents an attempt to vastly increase the role of @gnthéhe study of biological

phenomena”.
Guillot and Meyer (1997) write of the AB approach that:

“the synthesis of animats can be expected to help in understanding how realsamanage to

survive in real worlds”.

Understanding biology is not necessarily the only airwark in these fields, but significant claims
of biological relevance are often made. The main quedtiwish to explore here is whether and
how “the role of synthesis” differs from the role mbdelling in biology. Have we really developed

a new methodology for understanding real life?

To focus this discussion, | will draw examples mosthnfrone strand of this research, where the
guestions addressed are how particular sensorimotor cagmlmf organisms or agents support
interesting, potentially intelligent behaviour. Bralteng’s 1984 book ‘Vehicles’ is one of the key
inspirations. He describes a series of thought expetsmenwhich increasingly intelligent (and

life-like) vehicles are constructed, evolve and leath. each stage, it is argued, surprisingly
complex external behaviour will result from apparentlgnpde internal structures. Another

important stimulus in the field was the robots builttle 1980s by Brooks and his colleagues
(reviewed in Brooks, 1990). They demonstrated, in real deviather than mere thought
experiments, how having the right physical interfaced eelatively simple control mechanisms
(eschewing the internal world modelling approaches dittomal Al robotics) could produce

successful behaviours in real environmental contéits.Grey Walter's robots (1950,1951) are
rightly seen as early forerunners of this work. Thapproaches meshed naturally with existing
ideas from ecological psychology (Gibson, 1979) that weremerging in Al and cognitive science



(e.g. Clancy, 1997) as an interest in active, situateceammbdied aspects of cognition (e.g. Clark,
1997; Pfeifer & Scheier, 2000). However, the new AB and élnfluence could be seen in the
suggestion that investigation of these issues should witht relatively simple, yet complete,

systems (such as insect-like reactive behaviours) pptbach more complex capabilities (such as

human intelligence) only incrementatly.

One obvious way to proceed towards these goals is to skalyinsects (or other ‘simple’
biological systems) and to try to model them in a W@y encompasses sensing and action, bottom-
up control, embodiment, environmental interaction, sman. An early example, which anticipated
many of the above principles, is Arbib’s work on madgliprey capture in toads (Arbib, 1982).
My own work on robotic implementations of cricket phtaas (e.g. Webb, 1995) is another
example, which | will describe more thoroughly belowhdve reviewed similar work by other
researchers in Webb (2000) and have argued that thisssntiedly, a methodology of model
building; and can thus usefully be compared to other kindso@dgical modelling on a number of
dimensions (Webb, 2001).

However another approach, common in AB and ALife nesgafollows instead the suggestion
made by Dennett (1978):

“‘one does not want to get bogged down with technical problems in modeling the v@ogniti
eccentricities of turtles if the point of the exercise isutwover very general, very abstract
principles... So why not then make up a whole cognitive creature, a Martiae-ineeled
iguana, say, and an environmental niche for it to cope with?” (p.104).

| will refer to this as the ‘animat’ approach — thgention and study of an artificial creature that
does not correspond to any specific real animal, bihasertheless) intended to provide some
insight into real issues in biological or cognitiveescie. The term ‘animat’ was first coined by
Wilson (1985) who used an agent moving on a 18x58 hexagonabgledto distinguish three cell
states (labelled ‘food’,'tree’ and ‘empty’), to explonew classifier systems might be used to learn
strategies for efficient gathering of ‘food’ and avoidaraf ‘trees’. In Wilson (1991) he further
describes this approach tthé scientific understanding of intelligence, or how mind arises from
brain” as“simulating and understanding complete animal-like systems at a simplé (gv15). A
more recent example is the work of Beer (e.g. Beer, 1886&volving and analysing “minimally
cognitive creatures”, which | will describe in more alebelow. There is again much similar work;

L In building artificial creatures we might well make progress by stgrivith low expectations and gradually building upon our
experience...One approach then, is to aim initially for the intelliglna# of lower animals (e.g. insects) and respect the
constraints that biology seems to have worked uhd@rooks, 1989)Brooks in fact did not follow his own advice in this regard,
jumping in one step from insect-like robots to a humanoid nofject (Brooks and Stein, 1994).



many relevant examples can be found in the proceedings ité and Simulation of Adaptive
Behaviourconferences, and in the journAlificial Life andAdaptive Behaviout

In what follows | will argue that this approach, insoés it is intended to be relevant to biology,
should also be viewed as modelling; but that the focugheninvention of ‘made-up’ target

creatures is largely counter-productive because it makhffigult to verify or evaluate the results.

The presentation of such work in terms of ‘existen@®{#®, ‘alternative forms of life’, ‘conceptual

clarification’, ‘idealisations’ and so on does not maffto side-step this fundamental limitation. To
make the comparison concrete | will first describeniore detail two specific examples of ‘animal
modelling’ and ‘animat modelling’, already mentioned abowet is Webb'’s ‘cricket robot’ and

Beer’s ‘minimally cognitive agent’.

2. Two research approaches

2.1 Modelling adaptive behaviour in animals

In research over more than ten years (e.g. Webb 1998,dtwal. 1997, 1998, Webb & Scutt 2000,
Reeve and Webb 2003, Reestal. 2005) we have been modelling the phonotaxis behaviour of
crickets. Female crickets can recognise and locatealiag songs of male crickets. This target
system was chosen for study due to the extensive loemalviand physiological data (an early
review is Huber & Thorson 1985; more recent researglev@wed in Henniget al. 2004) that
could be fed into a model, and used to evaluate it. Italg@splausible to investigate this behaviour
as a complete loop from sensing to action, addressetleatevel of single neurons and their
connectivity. The behaviour depends on a well-tuned pdiyasiaditory apparatus. The two ears, on
the cricket’'s forelegs, are linked by a tracheal tubes tacting as pressure difference receivers to
detect the direction of sounds of a specific frequencyclipdsenet al, 1994). There are also
interesting emergent properties such as apparent ‘chbe&®een songs that may be a simple
consequence of interaction of the localisation mashaand the complex sound field produced by
multiple males singing. Phonotaxis behaviour interattmteresting ways with other sensorimotor
loops, such as the optomotor reflex (Boktnal, 1991), allowing the model to be gradually
extended (Webb & Harrison, 2000) towards more complex daijesbi

The more recent models we have built simulate spikingomeactivity using a leaky-integrate-and-
fire representation (based on the approach describeadly, K999). Synaptic input is modelled as
a change in conductance with a specific time coursesyhaptic ‘weight’ is a function of the

battery potential (positive for excitation, negatiee fhibition), the size of conductance change

2‘Animat’ research can sometimes overlap with the fielthgént’ research but | am referring here only to ‘agemyusations that
claim to be addressing problems relevant to biology, inquéati, about the mechanisms of adaptive behaviour in real animal



occuring for each spike, and the time constant of condoetdecay. This is a more realistic model
than the more common treatment in integrate-andr@eral modelling of synaptic input as an
instaneous injection of current. The synapses alse lmme temporal dynamic properties,
depression (decreased conductance with repeated spikes)cditatida (increased conductance
with repeated spikes), each with their own time coutgavever there is no permanent adaptation
of weights (no learning). The networks consist of 4-2@syu@nd are generally hand-designed and
hand-tuned, although we have explored the use of genetiitlaig® to tune some parameters. Parts
of the network are based on identified neurons in tieket; for example the thoracic auditory
interneurons known as AN1 and ON1 (Wohlers and Huber, 198B¢r @arts are more speculative,
either proposing specific connectivity between neuronat thave been identified but not
anatomically linked, e.g. the brain neurons BNC1 and BR&edildberger 1984), or proposing new
neural elements e.g. a ‘fast’ neuron that — based antresricket behavioural data (Hedwig &
Poulet, 2004; Poulet & Hedwig, 2005) — may be involved in a ragfieixrresponse to sound pulses
that is modulated by a slower recognition process.

These neural simulations have in most cases beeardtesthe context of a robot implementation.
The robots (several different platforms have been ubede an analogue electronic auditory
system to represent the physical auditory receptor machaof the cricket. The auditory input is
translated into spike trains for the neural simulatod #e output of the simulator is used to drive
the wheels (or in one case, ‘whegs’ — a hybrid whegglrhechanism (Horchlet al.,2004)) of the
robot. Thus the system can be tested in real expdasmesing the same stimulus that is used for
real crickets, to evaluate whether comparable behavaube produced.

It is worth noting at this juncture that this work mad simply been a case of using the robot model
to verify or falsify existing hypotheses in the bmical literature. It has involved substantial
integration of disparate information about auditory maidmas, neural data, and behavioural
observations. It has led to the proposal of severetlnoypotheses about the function, some of
which have been supported, and some contradicted, in subsa@uestigations. It has also made
much more apparent the areas in which biological dataost critically lacking. One example is
that the detailed dynamics of the cricket's responsev (baickly it turns, the time constant of
integration of signals into the response) has onlgntdye been studied (Hedwig & Poulet, 2005)
and there is still almost no information about thecigee leg movements during phonotactic
tracking that would be needed for a walking robot implentemta

There is much similar work that | would classify as pHrthe ‘animal modelling’ approach, some

of which | have described in previous reviews (Webb 2000, 20@lyive a few recent examples:



* Human walking behaviour is a subject that has been wiedgtigated using simulated and
real robots (though many ‘humanoid’ robots do not hawsdn-like walking). One
interesting strand of this research is the investigatif passive walking machines. In
these, the mechanics of human walking are representghysical devices that mimic
the hip and knee joints, the kneecap as an endstop,dheafal sometimes the counter
swing of the arms e.g. the work of Collies al, 2005 who say “We study human
locomotion by designing and testing walking machines Weatcompare to humans in
terms of morphology, gait appearance, energy use, andotofftrl082). It has been
demonstrated that convincingly human-like walking gaitsrgenérom the dynamics of
these simple physical systems.

* The larvae collecting behaviour of the dmtptothorax albipennivias been modelled using
simulated and robot agents, to see which minimal setabibn rules both most
efficiently and most accurately reproduce the resultss Tan be used to infer what
variables the ants themselves may be using to petf@nask (Scholest al.,2004).

» The ‘Psikharpax’ project described in Meyaral., (2005) includes simulations of rat brain
mechanisms for navigation (based on hippocampal platedatd), integrated with
action selection (based on basal ganglia-thalamusxctotgs) and learning (based on
dopamine reinforcement mechanisms) and aims to imptethese on a robot with
appropriate sensorimotor capabilities with the aim better understand the control
mechanisms of rats” (p.221).. However it should be ndiatiMeyeret al use the term
‘animat’ in a way that would include this kind of model “animats, i.e., simulated
animals or real robots whose sensors, actuators @mtdot architectures are as closely
inspired from those of animals as possible” (p.211) — vaseteam here limiting its
application to invented creatures as described next.

2.2 Investigating adaptive behaviour in animats

Over a similar time period as the cricket robot redeaescribed above, Beer and colleagues have
been carrying out an investigation into “minimally ciige agents” using simulated animats (Beer,
1996, 1997, Slocunet al, 2000, Beer 2003a, Goldenbeegy al, 2004). The methodology is
discussed in detail in Beer (2003a, 2003b) with a particular foousow the agent behaviour can
be analysed using methods from dynamical systems théldrg. main task explored is the ability of
an agent to actively categorise different stimuli, byvimg to intercept items of one shape and to
avoid items of another shape. Beer provides an expli¢itough perhaps not exclusively)
biological motivation for this work as a “scientifapproach to the neural basis of behaviour”
(p.239). He is interested in discovering how small newralits can produce adaptive sensorimotor
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functioning, in the context of complete sensorimotmpls through the environment, and how this
can be explained using a dynamical framework ratherat@mputational one.

The agents in these simulations have small continumesrecurrent neural networks (CTRNNS).

The neural units are modelled as continuously varying safirterpretable as equivalent to the
firing rates of real neurons) that decay with a seetconstant. Synaptic input is the sum of the
weighted activity, after passing through a logistic fungtiof all connected neurons, plus any
external input. For the system described in Beer (2003a)ngtwork has a fixed architecture

consisting of 7 input neurons projecting to 5 fully interested interneurons, which project to two

motor neurons. The weights of all the connectionsdatermined using an evolutionary algorithm,

evaluating each agent over a set of trials by itstyalbd minimise its final distance to one shape,
and maximise the distance to the other.

This neural system is embedded in a simulated agent, \whElseven sensors, evenly distributed
across an/6 ‘field of view'. If an object intersects the axif a sensor, the sensory neuron is
activated by an amount inversely proportional to theadee of the intersection from the agent. The
sum of the activity of the two motor neurons detersitiee horizontal velocity of the agent.
Objects fall from above, with a fixed velocity, andrandom horizontal offset from the agent’s
starting position. A trial ends when the object hitpasses the agent. Agents that have successfully
evolved to perform the task can be tested in experimengs with stimuli varied systematically
from that used in the evolutionary process) to evalagéetly how the agent is able to produce the
observed behaviour. An important conclusion drawn isned to understand this behaviour as
emerging from the continuous interaction of neural, lpoaild environmental factors, rather than
treating it as a computational transformation of sgnsoput to motor output. To this end,
dynamical analyses are applied at several levels: ¢ootrerall behaviour, to specific stimuli
interactions, and to the functional role of speciécions (Beer, 2003a).

It should be evident that this integrates a numbersakss in sensing, neural circuits, adaptation and
motor control. It proposes a rather novel hypothdsisiathe nature of cognitive capabilities, i.e.,
that they involve such a tight interlinking of neuron#@n, neuron-body, and body-environment
dynamics that the standard kinds of computational deconmpwsitised in investigating cognitive
systems may be simply false. It also points out whiérere are substantial gaps in the
methodological tools available for analysing such sgsteand attempts to fil some of these gaps.
Given that in what follows | take a rather critiva@w of this work, | should stress that this example
was chosen due to the fact that within the field aihah modelling, it represents some of the most
thorough, clearly motivated, and well-executed researdims been quite influential in the field;



and it is convenient for developing my argument thatuhéerlying methodological assumptions
have been so lucidly expounded by Beer.

Some other examples that illustrate the scope ofrtinead approach include:

* Investigation of the behavioural consequences of eglaiverphologies, e.g. to determine if
there is an adaptive advantage to body symmetry fomoton (Bongard and Paul,
2000). In this case the agents are simulated using a plesgse and consist of
identical spherical units that can be connected to edlblr by hinge joints in six
cardinal directions. The behaviour is controlled byeaurrent network of sigmoidal
neurons that is evolved in concert with the morpholodhe higher efficiency of the
symmetric systems is taken to support the possibilay #fficiency was a factor in the
evolution of bilateral symmetry in biological systems

» Study of the origins and evolution of communication amguage (e.g. MacLennan 1992,
MacLennan and Burghardt 1993). This involves a populatiomafiated agents able to
have simple linguistic interactions, genetic interawjoand sensorimotor interactions
with an environment which contains various entitteat they come to label in a
common manner. These systems are then studied fotseffiech as population size and
distribution on the development of vocabulary and synkdé&cLennan and Burghardt
(1993) describe this work as “synthetic ethology” in whithe goal is to use the
synthetic approach to understand the natural phenomed&3{p.

* The ‘synthetic epistemology’ approach explored in theérDisted Adaptive Control (DAC)
architecture by Verschure and colleagues (e.g. Verschura, €003). This falls
somewhat closer to the 'animal modelling' end of thaticuum than the previous
examples, in that it utilises models of learning basemtendirectly on biological
examples (e.g. classical conditioning using a Hebb rded some analogies to
vertebrate brain structures are described. But the rfisdebt inspired by the anatomy,
physiology or neuropsychology of hippocampus and cortex, but addresses the general
problem of communication between different neural structures in the tootex
behaviorally realistic tasks and well-evaluated models of learni{gbegtlin and
Verschure, 1999 (reprint 34/55). The architecture is testah ianimat, which is not
designed to represent any specific animal, which perfdfonaging tasks’ to locate
targets and avoid obstacles. The behaviour is assestatns of efficiency and stability
of learning, as aspects of the architecture are varsgter than compared directly to
learning or foraging data from biology.



2.3 Similarities

It should be evident from the above descriptions thatetlare many ways in which the two main
examples | have described — my ‘cricket robot’ and Be&nigimally cognitive agent’ — are
similar. The behavioural competence studied is closaigparable: both Webb’s robot, and Beer’s
agent have to discriminate the correct stimulus (criskeigs with the right temporal pattern, items
of a particular shape) from the wrong stimulus (other dsu@an alternative shape) and move
towards the former. Both attempt to account for behavat the same level of description, that is,
examining the functional roles of individual neurons rnals circuits for an agent in a particular
action-environment context.

Although the models have been embodied in different medjtmh®t vs. computer simulation), in
the current context | daot regard this as a significant difference. It is notialiff to envisage a
robotic implementation of Beer’s agent. Indeed, in waddsely related to that of Beer, Husbands et
al (1995) used a gantry robot to evolve a small neuralar&gtwo control an agent that would
approach triangles and not squares, and carried out a dghamalysis of the behaviour. The
animat work by Verschurest al. (2003), mentioned above, has been implemented both in
simulations and real robots. In a complementary fashiotual environments are often used for
simulation of real animals, e.g. the work by NeumanrBglthoff (2002) on visual control of
motion in the fly. In Neumanet al (2001) they argue that the experiments possible in siowlat
are in fact more realistic for representing the ahithan any plausible robotic implementation
could be with current technology.

So what are the key distinguishing factors between ppeoaches? The most obvious difference is
that Beer's agent is described as an idealised model gdgnaric cognitive agent; whereas the
cricket robot attempts to be a realistic model of eciipeanimal. But what do ‘idealised’ and

‘realistic’ actually mean in this context? How muchedoan idealised model differ in detail or
accuracy from a realistic one? What, if anythingn@re ‘general’ about Beer’s agent categorising
shapes than the cricket robot recognising songs? Ardisatemns models at all? | will try to

explore these and related questions in what follows,iratkde process it is hoped also illuminate

some issues relating to the nature of scientific mndah general.
3. Are animats models?

| have argued previously (Webb 2001, 2006) that the cricket K(@loot ‘biorobots’ in general) are
best viewed and evaluated as models. In this sectidlh drgue that Beer’s agent (and animats in
general) should also be viewed and evaluated as modelfrdBuas the term ‘model’ can be used
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in a number of different ways, my intended meaning shdadclarified by reference to the

following scheme of scientific reasoning (c.f. figureé Webb 2001).

A target phenomenon in the world is identified — where a spetdfiget might be considered a
‘model system’ for a wider class of phenomena. Fomgka, the cricket is considered a ‘model
animal for investigating auditory behaviour. A hypotkesr causal account is then offered as an
explanation of the phenomenon — this may be calledhenretical model’ - which represents the
target in the same way that any language descriptionsepisea state of affairs (see also Callendar
and Cohen, 2005) although the ‘language’ used may be moreeptbais natural language. For
example, we hypothesise that a particular neural cicsitfficient to produce both recognition and
orientation in the cricket. The hypothesis may dravanranalogy to some other, presumably better
understood, system — often called a ‘source’ model. Ouoggex neural circuit was partly inspired
by the known temporal filtering properties of short-tesynaptic dynamics in other sensory
systems. The extent to which the hypothesis accdantsxisting data and predicts new data from
observations on the target phenomenon is taken to sujpipcstatus as an explanatiohese
observations may include both the overt behaviouh@fsyystem and any structural components and
relations that are revealed by ‘dissection’ of thstey. For example, our proposed neural circuit
predicts that certain song preferences should be showinebgricket, and that a particular neural

connectivity should be found.

For a moderately complex hypothesis, demonstrating déua it can account for and will predict
may require implementation in a mathematical, computatior even physical model — atius is

the specific meaning of ‘model’ that applies to theksicrobot. Such a model represents (usually
in some different medium) the mechanisms and causesilg®sen the hypothesis, and can be
solved, run or tested to see what their consequencesTares the cricket robot is a mixed physical
and computational implementation of a particular hyposhabout an observed phenomenon of
sensorimotor behaviour in a certain animal. It i®evant to biology to the extent that its
components and behaviour can be directly compared t@tiatl. Note, however, this is referring
to the range opossiblecomparisons, not necessarily theccessfuimatching of parts or results, as
will be further discussed below. The robot does notecdasbe a model if it only partially or
approximately explains, or even if it largely failsdmplain, cricket phonotaxis, though it might for
these reasons be considered a poor model. It is a inpdehson of its intended use.

3 Other factors, such as simplicity, or coherence witter theories, may also enter into determininggtitus, in
particular if there exist alternative hypotheses alde to account for the data.

* It is worth noting that the two stages, proposing a thgsis, and implementing that hypothesis as a modelaeety
so distinct in practice as this description implies.
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Do animats, such as Beer's minimally cognitive agéntinto this schema, and if so, how? A
number of different views on this issue can be distitnguais

4.1 Bio-inspired engineering

Some research involving reference to animals anddhstruction of artificial systems that appears
similar (e.g. my cricket robot and the sound localisiojot described in Anderssat al. 2004)
differs significantly in intent (to explain a biologicsystem vs. solving a technical problem using
some ideas from biology). ‘Biological inspiration’ diffe from biological modelling because the
animal is not thearget of the model building but rather tiseurcemodel or analogy. The target is
instead some technical problem, and the hypothesispio@osed solution to that problem that
draws on what is known about the biological systers; ghiution is often tested by implementation
in a mathematical, computational or physical model. tAao example would be the use of ‘ant
colony’ algorithms as a bio-inspired solution for commaton routing problems (Dorigo and
Stitzle, 2004) compared to biological modelling of ant colbeypaviour e.g. Calenbuhr and
Deneubourg (1990). If the intent is to engineer a succeadifitial system, then the relevance of
the results to biology is not a criteria for judging ses¢ceaand failure to compare the components
and behaviour of the model to some real animal taggabt a valid criticism. However, although
some research in ALife and Adaptive Behaviour has aneering purpose (e.g. examples are
reviewed in Kim and Cho, 2006), the basic aims as dedchipéd angton, Meyer and Wilson, Beer
and others are not technological but scientific. Rergurposes of this paper, it will be assumed that
animat research is intended to be relevant to biolagy,is not just bio-inspired engineering.

4.2 ‘Pure’ exploration

A slightly different view to the practical engineeringrgpgective is that animats are simply worth
exploring in their own right, as analytical systemgrenor less based on biological principles that
have interesting properties. Much work in evolutionagoathms has this character, exploring the
consequences of systems developing via the evolutionawgigle of replication with variation,
without further concern as to how the results relateatural evolution. Such workayturn out to
be relevant to biology, but interpretation of the eys® as models that represent a particular
biological problem is not considered necessary to yutié ongoing research programme. Taylor
(1989) describes similar models in ecology as “exploratmois” that do not need to be justified by
either fitting to data or plausibility of their assumpgo
“It can be explored systematically as a mathematical system, heyy. does the system’s
behaviour change as its parameters change or become variables, as timeelagklad, and so
on? Such mathematical investigations may help us derive new questions hewaderms to

employ, or different models to construct.” (p.122)
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However, he notes:

“Strictly speaking, without a quantitative analysis of correspondence [toredisens], the
insights from exploration are insights about a mathematical system. rfEle@iance to biology is
yet-to-be-established; truth or falsity is a moot point...Qualitativigims might have misguided
research. The categories of exploratory models, often chosen with ato apathematical
tractability, may have obscured profound issues about biology.”(p.123-124)

Whether such exploration is science is debatable (i pumthematics science?) but it seems
reasonable to say that until or unless these exmosatire used to make empirical claims about
real life they are not biological science. Althougstieng flavour of this ‘pure’ exploratory attitude

is found in much animat research, in most cases thaeleast an ultimate justification in terms of
trying to understand biological systems. It is again asdufar the purposes of this paper that

relevance to biology is intended.
4.3 Synthesis

Some ‘animat’ researchers explicitly claim that th®istems are not simulations or models. For

example MacLennan and Berghardt (1993) state:

“The techniques of synthetic ethology must be carefully distinguisioed $imulation or
mathematical modeling. In a simulation, an attempt is made to imitateamauter or other
modeling system the salient aspects of a complex situation that akletsst potentially, in the
real world...In synthetic ethology, by contrast, we do not attempt to rangelxisting natural
system. Instead we construct ‘synthetic worlds’ which are sitgplecomplete and which

manifest the phenomenon of interest” (p.161-2)

But the ‘phenomenon of interest’ here is something tlwees ‘at least potentially’ exist in the
real world -“the goal is to use the synthetic approach to understand the natural phenomenon”
(op. cit.) — in this case the evolution of co-operatisgenmunication between agents. So how is it
that these synthetic worlds ‘manifest’ the phenomeuwiointerest, if not by ‘imitating the salient
aspects’ of it? For some researchers, the distinebometimes seems to rest on the argument that
(at least some) ALife systems amalisationsof life and therefore not modalsRay (1994) for
example also contrasts “AL simulations” that repressme natural phenomenon with “AL
instantiations” which aréliving forms in their own right, and are not models of any natural
lifeform”. This has generated much philosophical speculation abbather these systems are

really ‘alive’; a debate that many recognise to Ioailar to the debate over ‘strong’ vs. ‘weak’

°Although note that MacLennan (2002) says “we make no dlaénthe agents described in this report are aliemin
literal sense”, so does not seem to be explicitly appg#bd this argument. Unfortunately they do not appegivi®any
alternative argument for making this distinction, otthem that the synthetic worlds are very simplified dodhot
accurately represent real systems, but see sectiorel6\2. b
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Artificial Inteligence. However, irrespective of theality of Artificial Life, it is essential to net
that ‘simulation’ and ‘realisation’ are not in factakusive categories. It is a mistake to argue that
because a system is a simulation, it therefore cabhaoan instantiation (Webb, 1991); and
equally mistaken to argue that because a system istantiaion, it is therefore not a model. A
straightforward example is provided by the cricket robdtdees real phonotaxis, but it is also a
simulation of phonotaxis in crickets.

4.4 Analogy

Langton's (1989) view of ALife as an ‘alternative’ bigjoprovides a further twist. Clearly he
believes the artificial systems to be relevant imolgy, but at the same time he does not regard
them as straightforward simulations of existing biolabgystems, or implementations of specific
biological hypotheses. Rather, he appears to be arguirthdm to be used as source models, i.e.,
analogical systems that will help in constructing ndwgdotheses for biology. This is intended to
proceed through a comparative approach, between theiart#nd natural examples of life, to
discover general principles beyond the contingent detdilexisting biology. Similarly, Steels
(2001) suggests:

“we may want to compare the behaviour and mechanisms of artificial systethat of natural
systems achieving the same functionality. Comparing is not the sammiaking or modelling
the natural system ... it is a way to gain insight by confronting It semething that is different
but still sufficiently similar to make the comparison interestir{g.1078)

What normally characterises a ‘source’ model (or toenparative approach to constructing
hypotheses) is that system being compared to the texgs, or was built, independently of the
hypothesis; for example, pumps existed before they wepspoped as a good model for the
functioning of the heart. For some areas of ALifes thiight be the case, e.g., cellular automata
were developed and have been explored independently ofyypidimt have become a popular
analogy for describing how interesting global patternghimarise from local rules in biological
systems, e.g. as discussed at length by Dennett (1998Jarfyinan artificial system built for an
engineering purpose, or as a ‘pure’ mathematical explorataght subsequently be usefully
compared to a biological system that carries out dasifainction. However, in the general area of
animat models, and specifically in work such as thatBeér, the systems are not usually
constructed independently, but are constructed to représanever loosely or abstractly) some
mechanisms taken, by hypothesis, to have causal neleva biology. Consequently it seems more
appropriate to consider them — to the extent that theylaimed to be relevant — as models that
implement a hypothesis rather than as source modelaevén, either way, establishing the
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relevance requires some explicit specification of hbev tivo systems — artificial and biological —

are supposed to correspond.
5.5 Models

Beer (2003a) does call his simulation a model although Isenseewhat equivocal regarding the
intended relevance. For example he sdyse intention here is not to propose a serious model of
categorical perception”(p. 210) and yetThe analysis described in this paper also has important
implications for our understanding of perceptiof.236),i.e., empirical claimsare being made
about the world on the basis of the model resltguing that‘the intent of idealized models is not
empirical prediction, but conceptual clarification(p.240) and thatmany of the details of an
idealized model’s analysis will be tied to the particular decisions nrads formulation, and thus
be of questionable direct relevance to any real cognitive sys(pr@41) it seems he regards the
model more in the mode of ‘pure’ exploration or poterisalrce’ analogies. Yet his system is not
theory-independent, but has been specifically designedigpost the assertion thdtynamical
analyses of cognitive behavior...can...broaden and clarify our understanding of the mashainis
cognition” (p.241). To draw any such conclusi@ties on the fact that the agent and task have been
intentionally built to represent real cognitive ageansl tasks. Beer recognises this in arguing for
the biological and cognitive relevance of his agent'sigteand behaviour, for example when he
defends the choice of CTRNNSs as follows:

“from a scientific (as opposed to an engineering) point of view, we ar&ge®mto choose models
based solely on the convenience of analysis. Rather, we are faced witistamdiag the
particular brain-body-environment systems that Nature has presented t8Q83K{, p.302).

That is, the task, environment and structure of thented creature are taken to be representative of
some class of real biological problem, and thus towatlee exploration of hypotheses relevant to
biology. In other words, it is a biological model ietfame ontological sense as the robot cricket.

4. Evaluating animat research

If it is accepted, following the previous section, tBser's agent — and comparable examples of
animats -are models, then it seems reasonable ask how their loeinagnd the underlying
mechanisms compare to that of the target phenomenaninmals. This is surely the critical step
that allows the model results to inform biology. Butthe ‘target’ is a Martian three-wheeled
iguana, how are we supposed to proceed? It should be evidentie previous discussion that
despite the ‘invented’ nature of animats, researcharallyshave in mind some real phenomenon
that they wish to address. An example used by Beer (2093a)man categorical perception, in
particular, the sharp perceptual boundary between phonéatediffer on a continuous dimension
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(Ehret, 1987). Indeed, he goes to the effort of showinghikaagent produces a sigmoidal curve for
‘labelling’ (defined in terms of mean catch performaasethe shape is varied systematically from a
circle to a square by change in a parametedrom 0-1, fig 6A) and bell shaped curve for
‘discrimination’ (defined as the mean difference incbaperformance for differences @f=0.1, fig
6B), which are characteristic of categorical percepitiopsychophysical studies (Studdert-Kennedy
et al, 1970). This demonstration is rather weakened by thethattBeer's second curve cannot
possibly be anything but the differentiation of thstfiwhereas the critical point made by Studdert-
Kennedyet al. is that ‘categorical perception’ should be distinguishedhfsimple classification of

a continuous percept by tleenpirical discovery that labelling and discrimination curves (sneed
using different behavioural paradigms) turn out to be stael

But is this a fair criticism? Is it taking the modebttseriously’ to expect anomalies such as this to
the natural phenomenon to be discussed? Is there soghatiout animat research that justifies the
widely encountered ambivalence towards making such di@tiparisons? Again, a number of
arguments can be distinguished.

4.1 Animats as existence proofs

Harvey et al. (2005), describing the animat approach in evolutionary tredosay “it is not
necessary ... to aim at modelling specific animal behavieo as to validate the model with
empirical data” (p. 84). This is justified by the suggestioat animat simulations are meant to
provide existence proofs, or proofs of concept, rathen ticcount for data. Harveyal argue that:

“We will have demonstrated cognitive capacity or phenomenon X under clspegified
conditions and constraints, hence showing that these provide sufficient condiitioXs.. the
production of proofs of concept has a different scientific function [fropirexal validation]: that
of catalysing theoretical re-conceptualizations and facilitating the productionnafel
hypotheses” (p. 84).

A researcher could thus, for example, refute a claimh @hébiological) phenomenon X requires

condition Y by showing that an animat can produce Xauthy'.

However, ‘existence proofs’ clearly do require compaissbetween model results and empirical
data. One cannot evaluate the claim that phenomenagtdres condition Y unless one can show
that phenomenon X actually is produced (with or without AXid the claim or proof will be
stronger or weaker depending on how well the simulated ¥hea the real X; for example,
demonstrating successful behaviour in the same physicatiesn as the animal. Harvey et al
(2005) indeed recognise that for ‘proofs of concept’ to dlevantdoesrequire an attempt at
validation with empirical data — the “novel hypothesesentheed to be appropriately translated to
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domain-specific cases and tested empirically” (p. 84). tietanimat conception of an invented
animal often seems like a convenient way to put odf tissting indefinitely. By contrast, specifying
a specific animal target from the start means the mailealready have one domain specific
translation, and the corresponding data set, immediadehand. Note that this does not mean a
novel hypothesis produced in simulating a particular targmbeh system cannot subsequently be
translated into other domains, and thus also evaluatedsfovider application. The Hodgkin-
Huxley model of neural dynamics, first developed to accéamspecific data from the squid giant
axon, but subsequently shown to describe a very broge @meuron types, is a notable example.

Moreover, for an existence proof to be interestihgreé needs to have been some claim or general
belief that phenomenon X was not possible without d¢mmdiY, for example that cricket song
preference behaviour required separate sound recognitiosoamd localisation circuitry (Huber
and Thorson, 1985) which the cricket robot demonstratedneathe case (Webb, 1995). But we
did not lack for existence proofs that categorisatidmats@ur such as that of Beer’'s agent can be
achieved using a simple neural network in an appropriatejodied agent interacting with the
environment, without explicit representation. Theregevalready a number of examples of simple
robot systems, capable of approaching certain visugket@rwhile avoiding other stimuli, some
based specifically on the ‘existence proofs’ providedirsgcts, e.g. Srinivasan and Venkatesh,
1997. Indeed, the cricket robot itself has been used byadglalosophers to illustrate exactly this
point about the capabilities of such agents (e.g. Clark, 2@0it) those who argue that these kinds
of systemsare in fact using representations (e.g. Bechtel, 1998; Mandik, 2002)ot find Beer’s
agent a convincing counterexample; the disagreement tisomer how the task is actually
accomplished in these simple systems but over the tawfinend application of the term
‘representation’ in describing such mechanisms.

To be fair, rather than claiming his agent isnavel existence proof for cognition without
representation, Beer emphasises rather how his an@yan existence proof of how a dynamical
account of cognition can be made. The development anctal of dynamical tools is indeed an
interesting contribution, but the question of its refee to biology remains dependent on the
existence and extent of the mapping between his agdnteahcognitive systems. Beer argues that
he uses a minimalist invented animat because such adghanalysis is not yet feasible to apply
to any real system, which would be far too comple3Only in idealized model agents can we
presently hope to study the dynamics of a complete agent-environmemt agdtéhus clarify the
fundamental nature of such system@? 240). But why could this not be attempted using a highly
simplified or minimalist model of a real animal, rathlkan an invented one? The assumption seems
to be that choosing a real target immediately implies must build a complex, detailed, accurate,

17



low level model; and show the model can reproduce altdabgnitive eccentricities” of the target;
but this simply does not follow.

4.2 Animats as idealisations

Beer (2003) makes a direct connection between his work idealised models such as the
‘frictionless planes’ introduced by Galileo in developititgeoretical mechanics. The nature of
‘Galilean idealisation’ has been discussed in detaMbullin (1985) and has as its basis the use
of a simpler analogue of the original complex problena agy of facilitating arrival at a solution.
The simplification might involve ‘reasonable’ approxtioas (e.g. that the earth is flat within the
distance that a projectile travels); this can be fiedtiby arguing the results on the model are
negligible. It may involve neglecting factors that &r@wn to have a non-negligible effect on the
real system (e.g. friction); this can be justifieddrguing that we can estimate how this limits the
conclusions of our model, and can (at least in principte) back the necessary corrections when
applying the model to a particular real situation. It maplve considering only one cause at a time
in a complex multi-causal situation (e.g. the interactad gravity and air resistance on falling
bodies) and perhaps doing this in ‘thought experiments’ wdwtnal experimental isolation of
causes is not possible with the available technoldgyGalileo said, we may find that we can
“draw true conclusions even from false assumptionsgdait McMullin, p.255).

‘Galilean idealisation’ is sometimes described as ‘peg@ridealisation, i.e., the simplification has
been introduced only because it is otherwise too diffitubolve the problem. This is contrasted to
‘minimalist’ idealisation, in which the fact thatehmodel is a highly reduced description of the real
system is taken to be a virtue in itself, allowingté&etunderstanding of the real essence of the
problem (Weisberg, 2007). The term ‘idealisation’ seemsdorporate at least two dimensions of
modelling: abstraction and inaccuracy. Perfect accuaadyno abstraction would imply a one-to-
one mapping or isomorphism between the elements, steuahar behaviour of the model and those
of the target systeinFew or no actual scientific models are strict isgshisms; the mapping is
usually partial (i.e., not all elements in the systs® mapped to elements of the model) and many-
to-one (e.g. several steps of a process are mapped fwaness in the model); these are processes
of abstraction. Furthermore, in most or all modeds¢hare ways in which the mapping simply fails,
rendering the model inaccurate. This may take the fdrmpproximation, using a value that is
known to be wrong but considered ‘close enough’, or pushinglee to a limit known to be
impossible in reality, such as zero friction. It mayolve substitution of one process with another
that has an input-output relation that is ‘similar enowgl’ using a linear function for a monotonic

® Note this mapping could be defined at different levely @ mapping of control laws, or of brain structuresfor
individual neurons). | consider the level of a modelgarttlependent of its accuracy or abstraction.
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non-linear relation. It may be a case of having el@sin the model that are not intended to map to
anything in the system, but need to be there to makenit It may also involve an intentional

decision to contradict some known facts about the systither for the sake of creating a more
tractable model, or indeed to directly test, in a catettual model, whether those particular facts
are critical or not. ‘ldealisation’, then, could betight of as inaccuracy and abstraction that limits
the strict ‘completeness’ of a model in a good cjussy., to enable insights, manipulations and

analyses that would not otherwise be possible.

| do not in the least wish to dispute the value of idedlimodels, and my critique of the animat
approach isnot that the simulations are over-simplified or falsifyrte@ aspects of real biology.
Such abstraction and inaccuracy is ubiquitous in scidfareexample, in running an experiment on
real crickets, the environment is usually highly singdif having flat terrain, no visual stimuli,
only one or two auditory cues, and the cues themselsemgh much of the natural variation
removed. The crickets themselves are usually pre-seéléateninimise variation, using one species,
at a certain age, in good condition etc., and the regphdtbaviours are combined across individuals
and trials. Thus even the data that we try to accaunsfalready simplified and distorted model of
the ‘normal’ behavioural situation and response. Theketr robot then further simplifies and
distorts in its representation of real crickets. Tikigperhaps most obvious in the motor output,
where two wheels substitute for six legs. It alsodraes auditory transducer on each side, compared
to the cricket’'s 50 or so receptor cells, and thesesditasers differ in a number of other respects.
The neural circuit does not include a number of identifieditory neurons that may influence
phonotaxis (such as the thoracic neuron pair labell®2*ASchildberger and Horner, 1988). The
output of the robot provides only a qualitative match ¢al rcricket data. For example, the
discrimination or preference curve for songs of differgyllable rates for the robot has the same
characteristic band-pass shape, but it is not valualbg vdentical to the curve for the cricket.

It is also well established in the philosophy of sceethat a great deal can be learnt from models
that are known to misrepresent the target system (dyguhls includes all models in science —
Cartwright, 1983). Wimsatt (1987) discusses the issue in teffilse models as a means to truer
theories”, listing twelve uses for ‘false’ models thatlude: acting as a starting point for
developing better models; undercutting a preferred hypotbgsisdicating an alternative line of
explanation; as a neutral baseline for assessing catlaahs in other models; as a
phenomenological fitting of data that might suggest an widgrinechanism, or indicate which
factors have most predictive power; by comparing wheshults hold across a family of models that

" Of course, models are often inaccurate or abstrachdoe mundane reasons, such as lack of facilities awledge,
without thereby being considered ‘ideal’ for any purpose.

19



have differing false assumptions. Frigg (2003) adds severalsp@nch as how we may learn
during the building process, forcing us to see the targemmysom a new point of view; and that
features may be highlighted by isolation or exaggerati@teels (2001) in discussing ‘formal
(idealised?) models approvingly quotes the economic modéilem Friedman:“to be important.

... a hypothesis must be descriptively false in its assumptidmgd uses for ‘'idealised models' that
are often stressed in AB and ALife are that we camckefor the minimum set of components that
still produces something like the phenomenon of intersd, that this might be found by some
automatic search process, typically a genetic algoritlomgenerate solutions that are relatively
unbiased by the modeller's theoretical preconceptioedd® 1999). Harvest al. (2005) note that
this work might be independent of any claim that “thigegi us direct insights into the actual

physical mechanisms of real organisms” (p.84).

But if the results of animat models are to be relevartiology, then ultimatelgomeclaim about
the physical mechanisms of real animals must betasisérhere are at least two ways in which the
animat approach limits such claims. The first is thetenting or imagining a system is not
necessarily the same as devising an idealised repregerté a real system. There is no basis for
assessing what has been abstracted or distorted, thext@ssumptions in the hypothesis are false
or true, if there is no identified target to which thedel can be compared. One cannot provide a
coherent argument for why the factors that have lggered are negligible, or a systematic outline
of how non-negligible factors could be gradually reintrodueallow the real situation to be more
closely represented, or what facts the model is cofacteal to. The second is that lacking @an
priori target, the animat researcher can chqusst hocto note any biological data that seems to

match their results while conveniently ignoring anyadéat does not.
4.3 Animats as generalisations

One possible response to the above criticism regardedatk of clear targets in animat models is
that they do indeed have real targets, but these arbmiteid to some specific organism; rather,
what is represented by the model is some general pradfidsiology or cognition. Moreover, in
contrast to tightly targeted modelling such as the crickbbt, this very lack of specificity means
that the model is more likely to provide some fundamesdateptual insights. Indeed, this idea is
explicit in Dennett’s original (1978) suggestion tméke upa whole cognitive creature” in order
“to uncoververy generalyery abstract principles”.

Generality is sometimes contrasted to being definit@recise, for example when we talk about
something in ‘general terms’, meaning we are using roymginoaimations. But this meaning of
general does not seem to apply to animat models whicllyuauaprecisely defined, with the exact
properties of inputs and outputs and the equations of tramsfions fully described, as they need
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to be for the simulated or physically implemented sydi@ine run. On the other hand, ‘generality’
can be contrasted to specificity; when we talk aboatpitoperties common to a range of systems,
rather than those specific to only one system. Urililee previous definition this explicitly invokes
the idea of a description that covers multiple systgms;cannot talk about a ‘general’ description
of only one system. This idea of generality is mobgi@usly the one that is valued in science. To
be able to represent multiple systems with one modalemunification of explanation, a widely
accepted criteria for a good scientific theory.

How can this desirable generality be obtained? We dHost dispose of the common but mistaken
idea that abstractiodirectly implies generality, with all its virtues: e.g. Bedau (19®80justifying
simple ALife models says “the more abstract the maithel, more broadly it applies, so the more
unified the explanation it provides” (p.20). It is true ttia subset of properties general or common
to a number of different systems must necessarilyoblanger than the set of properties of any one
of those systems, and thus a general description iy tigketontain fewer elements, i.e., be more
abstract. But the opposite is not automatically trueatastract model, containing few details, is not
necessarily general. It may still only describe ogstesn, or indeed no existing system at all.
Similarly it is important not to assume that generatitust be associated with higher levels of
description. Lower level principles in biology are mgeneral: biochemistry encompasses a larger
range of systems than neuroscience; and neuroscidaogea range than cognitive science. Lower
level models ofterare elaborations of higher level ones and hence ledsaghsBut this does not
necessarily make them less general, as these lowar details may still be common to all the
systems being targeted — e.g. the neural level cricket Irapgées to just as many cricket species
as the algorithmic version did. And lower level modeés rzot always less abstract. Neural network
models of perceptual classification were interesting ipecbecause they seemed much simpler
than the higher-level rule-based models that had beetopsty proposed: the lower level waset
just implementation detail but an entirely differentinger, and more abstract, principle of
operation. Much of the interest in ALife and AB configsn just this kind of explanation, in which
some abstract low-level principle accounts for higreleamplexity.

However, a more interesting association of ‘highdleaed ‘generality’ is the idea that we can find
general principles of operation turning up at higher leeglslescriptiondespitethe intervening
levels having different principles of operation. We assuboth computers and animals are
governed at the lowest level under the same generaldapisysics; general principles at the level
of biochemistry are not relevant to computers; yetasgume the principles governing networks of
neuron-like units are the same for computer simulatiows far real neurons. For example, we
assume that there is nothing at the level of biockteynthat is essential to performing ‘real
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phonotaxis, thus a robot can not only represent butodege the relevant mechanisms in the
cricket. This idea, of higher level capabilities thah de multiply realised in systems that differ in
their lower level properties, is of course central Abife (and to Artificial Inteligence and
Cybernetics before it):

“Of course, the principle assumption made in Artificial Life is thia¢ ‘logical form’ of an
organism can be separated from its material basis of construction, and theineds’ will be
found to be a property of the former, not of the latter.” [Langton, 1989, page 11].

It also supplies a potential motivation for the aniaggproach. As spelt out by Langton, the idea is
that by inventing or artificially constructing novetaamples of the phenomenon of interest (‘life’ or
‘adaptive behaviour’) we discover the general (high-jelsts of life-as-it-could-be rather than the
contingent (low-level) specifics of life-as-it-is. @problem remains, however, of how to decide
that the invented systeism an example of the same phenomenon, if we lack thesrajdaws. This
issue does not seem too problematic for phonotaxisisthdtly debated for ‘life’ and ‘cognition’.
Moreover, as Keeley (2000) usefully points out, there sa@enfie an inherent circularity in which
we decide the taxonomy of a phenomenon without referemdower levels, and then take this as
proof that the lower levels are irrelevant to thermeenon. It remains a possibility that to replicate
life — or cognition — requires the right artificial chetny, for example. Discovering principles
relevant to all life is a laudable aim, but these map out to be contingent after all. It should be
noted, then, that is possible to aim for general explanations (e.g. ofxaditing examples of life or
cognition) without assuming multirealisability (i.e.,athlife could also occur with some different

material basis).

Again, it is not the potential value of general modéist t| wish to dispute. Rather, | wish to
guestion the basis for the assertion that animat maadelgeneral. An animat is a made-up creature
(usually with its own unique set of “cognitive eccenties’, such as having exactly seven distance
sensors, and only being able to move horizontallgt tas been specifically designed not to
represent any real animal. Why should we then suppogeitttsmmehow, at the same time,
represents more biological systems than a simulatianis explicitly based on at least one existing
species? To show that a ‘general’ model targets mastereg still requires that these systems be
specified, that the mapping (however partial and inaccutagéénveen the model and the real
systems be described, and the behaviour compared. Evolsgdf is a good example of a general
hypothesis, asserted to apply to all biology, but supporyethdo exhaustive demonstration of its
applicability in explaining a huge array of specific cases

In fact, Beer does not explicitly claim his ‘idealisedbdel is a general one in the sense discussed

so far. Rather, he says it is put forward as a speniBenple of a ‘minimally cognitive systenm’, and
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that close examination of this specific system Wwél a route by which general principles about
cognition may emerge. Just the same motivation is gfeem Reeve and Webb, 2003) for the
cricket robot: phonotaxis is being studied in detail moply to understand more about crickets, but
because it represents many general problems of sensoricontrol. Indeed, these are largely the
same problems that interest Beer — such as the ititerad body, task and environment, the role of
individual neurons in behaviour, and what minimal compfexif behaviour requires cognitive

capabilities.
5 Conclusion

| have argued that animat simulations, if they areetodievant to biology, should be considered as
models. That they are abstract, approximate and nessadly accurate; that they are used mostly
for exploring general principles, providing existence praofd generating novel hypotheses; does
not remove the requirement to demonstrate that theybeausefully compared to observations
made on real biological systems. The practice of imgna non-existent animal, rather than
specifying the real animal system(s) that are thgetaof the model, tends to undermine the
fulfilment of this requirement. For example, it allowstique of any particular element of the
representation to be deflected, and rigorous comparisoemntpirical data to be indefinitely
postponed. But unless this requirement is fulfiled, workanimats can be considered only as the
exploration of artificial systems — perhaps interestingtheir own right, or with potential

technological applications — but not part of biology.

It is noticeable that many of the arguments for thienat approach are based on 'making the best
the enemy of the good'. Thus, it is often argued thadusecit is impossible to provide detailed,
accurate and complete models of any real animal systenmpnly alternative is to invent artificial
creatures for study. But this ignores the perfectly pléusiption of building abstracted, inaccurate
and incomplete models of real animals. As | have argeee, lthere is little difference between my
cricket robot and Beer's minimally cognitive agent oostnof the dimensions of modelling. The
level of description is much the same, i.e., neuralvibctsupporting discriminatory motor
behaviour. The robot model abstracts and distorts rekemyents and processes in the real cricket,
and only qualitatively matches cricket data. It is assubyeboth models that general insights into
sensorimotor control, relevant to biology, can béamied from these specific examples. Although
the medium (robot or computer) differs, it is not hardmagine a purely computational version of
the cricket model, or a robotic implementation of Beagent. The cricket robot provided a novel
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view of, and new hypotheses for, the perceptual task noeetb by the animal, and an existence
proof that no explicitly representational processingisded for this “minimally cognitive” takk

The only apparent advantage in not grounding one's modelfdrngnce to some real target system
(i.e., for using animat rather animal models) is i model is thus immune to criticism of its
validity. The price paid for this immunity, however, s undermine any justification for its
relevance. It is often forgotten in discussions ofitBriberg's (1984) thought experiments about
‘hypothetical’ vehicles that he spends the second bflhis book explaining the biological
relevance of each of the features with which thexeHaeen endowed. To do so requires reference
to real iguanas, not the Martian three-wheeled variety

8n fact, | do not wish to claim the cricket task isgnitive', but it is no less 'cognitive' than the tpekformed by
Beer's agent.
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