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Abstract. We developed a computational model of the mushroom body
(MB), a prominent region of multimodal integration in the insect brain,
and tested the model’s performance for non-elemental associative learn-
ing in visual pattern avoidance tasks. We employ a realistic spiking neu-
ron model and spike time dependent plasticity, and learning performance
is investigated in closed-loop conditions. We show that the distinctive
neuroarchitecture (divergence onto MB neurons and convergence from
MB neurons, with an otherwise non-specific connectivity) is sufficient
for solving non-elemental learning tasks and thus modulating underlying
reflexes in context-dependent, heterarchical manner.

1 Introduction

Insects are well adapted to their respective ecological niches, but this does not
mean (as is often assumed) that they only perform reflexive, hard-wired be-
haviours. Insects (and other invertebrates) have been shown to have complex and
flexible capabilities. For example, honeybees can solve ‘delayed match to sam-
ple’ and ‘delayed non-match to sample’ tasks [1] and appear to be able to learn
concepts such as symmetry [2]. Studying and understanding these competences
(which might be considered minimalist solutions for cognition) in invertebrate
brains may ultimately help in better understanding more complex vertebrate
brains, and in providing useful design methodologies for intelligent robotics.

A large body of evidence suggests that the mushroom body (MB), a distinct
region in the insect brain, plays a cardinal role in adaptive behaviour. One of the
central functions linked with the MB is olfactory associative learning and mem-
ory [3]. However, the MB in many species receives input from a variety of sensory
modalities and is involved in multimodal sensory integration. Its roles have been
reported to include context generalisation [4] and place memory [5]. Furthermore,
there is evidence that MB neurons react differently to self-generated stimuli and
other stimuli [6], suggesting proprioceptive or ‘efference copy’ input. The MB
is thus a potential neural substrate for associations and transfer between sen-
sory modalities, underlying context-specific and non-elemental forms of learning.
These non-elemental forms of learning constitute the main interest of this paper.
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Thus far, computational models of MB function have been restricted to classi-
fication of sensory inputs in open-loop conditions [7,8]. In this paper, we develop
a MB model that modulates reflexive sensorimotor loops through non-elemental
associative learning [9], that is, forms of learning that go beyond simple associ-
ations between two stimuli (classical conditioning) or between a stimulus and a
response (instrumental conditioning). In non-elemental learning tasks, the stim-
uli are ambiguously associated with reward or punishment [9]; each stimulus is
followed as often by appetitive (+) as aversive (–) reinforcement so that learning
requires the context of the stimulus to be taken into account. In negative pat-
terning, the agent has to learn to approach (appetitive action) the single stimuli
A and B but retreat (aversive action) from the compound AB. In biconditional
discrimination, the agent has to learn to respond appetitively to the compounds
AB and CD but aversively to the compounds AC and BD. In feature neutral
discrimination, the agent has to learn to respond appetively to B and AC but
aversively to C and the compound AB. In our simulation experiments, we take
‘reinforcement’ and ‘punishment’ to be sensory cues causing different reflex re-
sponses (appetitive or aversive); in successful learning, these responses become
associated with the appropriate conditioned stimuli.

Non-elemental learning task Stimuli-reward combinations
Negative patterning A+ B+ AB–
Biconditional discrimination AB+ CD+ AC– BD–
Feature neutral discrimination AC+ C– AB– B+

We propose a minimalist architecture able to modulate reflex behaviours in
closed-loop conditions (where the system’s output influences the system’s inputs)
for non-elemental learning tasks. In this paper, we show that the general neuroar-
chitecture of the MB (fan-out and fan-in) is sufficient for explaining the above
forms of non-elemental learning. Section 2 describes the simulation framework
and Section 3 outlines the general architecture (as suggested by neurobiology).
Section 4 describes the neural model in detail. The MB model uses a biolog-
ically plausible neuron model and synapses obey a local spike-time dependent
plasticity rule. Section 5 presents the simulation results. Section 6 concludes and
discusses directions for future work.

2 Experimental setup for non-elemental learning

Our experimental set-up was inspired by conditioning paradigms for visual pat-
tern avoidance in flies, in which the animal in a flight simulator learns an ap-
propriate yaw response to a particular visual pattern which is associated with
an unpleasant heat beam. In our simulation, the agent has a limited field of
view (45 degrees) on a ‘wallpaper’ (of 360 degrees total width) that displays
different patterns. In the absence of any action by the agent, the field of view
is moved gradually to the left, at 1.5 degrees per millisecond. If it reaches the
left edge the agent is “punished” - this generates a reflex action, which moves
the field of view back 180 degrees to the right. Before it reaches the edge it will
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Fig. 1. The wallpapers used for the non-elemental learning tasks: (a) negative pat-
terning, (b) biconditional discrimination, and (c) feature neutral discrimination. The
agent’s field of view is represented by the 4-by-4 grid. As the field of view is gradually
moved to the left, the visual patterns predict what the agent will experience (+ or –)
when it reaches the left edge. Refer to text for further explanations.

encounter a visual pattern, which can thus be used to predict that the edge will
be encountered. The aim is to learn to associate the reflex action with the visual
pattern and execute it before encountering the edge, thus avoiding punishment.
This anticipatory or conditioned reflex, if executed, will move the field of view
21 degrees to the right.

In the non-elemental learning tasks, there are two reflexes, X0-V0 and X1-V1
(these could be called ‘appetitive’ and ‘aversive’, but in fact they have the same
effective result of turning the agent back to 180 degrees). There are two corre-
sponding modes for the simulator, i.e. when the field of view reaches the left
edge, the agent experiences either X0 or X1, and will execute the corresponding
reflex, V0 or V1. Which experience will occur is predicted by the visual pat-
tern, according to the schemes illustrated in figure 1; for example, in negative
patterning, the patterns A and B predict X0(+), and the pattern AB predicts
X1(–). The agent must learn to execute the correct reflex (V0 or V1) when it
sees a particular visual pattern, which will move it away from the edge. If it
executes the wrong reflex, then it is instead moved further towards the edge (i.e.
21 degrees to the left).

The field of view contains 45-by-45 pixels, which are mapped onto a 4-by-4 set
of sensory neurons (see network description below). White areas on the wallpaper
excite these neurons, thus stimulus A will excite the first row of neurons, B the
second row and so on. A typical simulation run lasts 50 seconds, during which the
wallpapers are switched every 0.5 seconds. The simulation timestep is 0.25ms.

3 The mushroom body model

The neural architecture for the agent is based on the insect brain [10], in par-
ticular, on evidence that the MB is involved in modulating more basic, reflexive
behaviours [11] [12] and thus acts as a neural substrate for associations under-
lying context-specific and non-elemental forms of learning. However, the goal
of the implemented model design was not to imitate physiological mechanisms
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involved in MB-mediated learning as closely as possible, but rather to find an
abstract description of the underlying principles, able to reproduce associative
learning in closed-loop conditions. Yet, we aim to use realistic models of the
biological components as more realistic models can be quantitatively and quali-
tatively different from more abstract connectionist approaches [7].

Detailed discussion of insect brain architecture is provided in [10]. The main
idea is that of parallel pathways, with sensory inputs forming direct reflex loops,
but also feeding into secondary routes that are used to place information from
various sensory modalities or other domain-specific sensorimotor loops into con-
text. The system can thus improve on reflexive behaviours by learning to adapt
and anticipate reflex-causing stimuli. This adaptation process is assumed to oc-
cur in the MB, which form such a parallel pathway for sensory inputs in the
insect brain (see figure 2).

The mushroom bodies in insects have a characteristic neuroarchitecture:
namely a tightly-packed, parallel organisation of thousands of neurons, the Kenyon
cells. The mushroom bodies are further subdivided into several distinct regions:
the calyces (input), the pendunculus, and the lobes (output). The dendrites (in-
puts) of the Kenyon cells have extensive branches in the calyces, and the axons
(outputs) of the Kenyon cells run through the pendunculus before extending to
form the lobes. Synaptic interconnections between Kenyon cell axons have been
reported [13]. Note that there is considerable divergence (1:50) from a small num-
ber of sensory projection neurons (PN) onto the large number of Kenyon cells
(KC), and considerable convergence (100:1) from the Kenyon cells onto extrinsic
output neurons (EN) (these ratios are estimates based on data from [14]). KC
receive direct excitatory input from PN neurons, but also indirect inhibitory in-
puts from the same neurons via lateral horn interneurons (LHI), arriving shortly
after the excitation. These connections are illustrated in figure 2.

It is hypothesised that the MB help disentangle spatio-temporal input pat-
terns by operating as coincidence detectors selective to particular correlations in
the input spike trains [15]. The mapping of sensory neurons onto MB neurons
shows high divergence which can serve for the recognition of unique relationships
in primary sensory channels. In our model, nonlinear transformation, separating
the activity patterns in the PN layer into sparse activity patterns in the KC
layer, is implemented by a randomly determined connectivity matrix between
these layers. EN linearly classify the KC activity patterns. Plasticity of KC-
EN synapses is achieved with a spike timing dependent plasticity rule. The EN
output mediates conditioned responses by activating the appropriate reflex re-
sponses. The inhibition from the LHI, quickly following excitation from the PN,
limit integration time for the KC to short time windows, making them highly
sensitive to precise temporal correlations.

3.1 Model description

We chose the neuron model proposed by Izhikevich [16] since it exhibits bi-
ologically plausible dynamics, similar to Hodgkin-Huxley-type neurons, but is
computationally less expensive and thus, suitable for large-scale simulation:
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Fig. 2. The implemented MB network receives sensory cues from the visual field via
projection neurons (PN), which make direct excitatory connections, and indirect in-
hibitory connections (via the lateral horn interneurons (LHI)) to the Kenyon cells (KC).
The MB output converges on a small number of extrinsic neurons (EN), which are also
excited by the underlying direct reflex pathways, and can activate these pathways.
Learning occurs between the KC and EN, allowing anticipation of the reflex responses
due to associations with particular visual patterns.

C
dv

dt
= k(v − vr)(v − vt)− u + I + [ξ ∼ N(0, σ)] (1)

du

dt
= a(b(v − vr)− u) (2)

where v is the membrane potential and u is the recovery current. a = 0.3,
b = −0.2, c = −65, d = 8, and k = 2 are model parameters. C = 100 is the
capacitance, vr = −60 is the resting potential, and vt = −40 is the instantaneous
threshold potential. ξ is a Gaussian noise term with standard deviation σ = 1.
The variables v and u are reset if v ≥ +35mV:

{
v ← c
u← u + d

. (3)

Synaptic inputs are modelled by:

I(t + ∆t) = gS(t)(vrev − v(t)) (4)

where vrev is the reversal potential of the synapse (vrev = 0mV for excitatory
and vrev = −90mV for inhibitory synapses) and g is the maximal synaptic
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conductance. S(t) is the amount of neurotransmitter active at the synapse at
time t and is updated as follows:

S(t + ∆t) =

{
S(t)e

−∆t
τsyn + δ , if presynaptic spike

S(t)e
−∆t
τsyn , otherwise

. (5)

where δ = 0.5 is the amount of neurotransmitter released when a presynaptic
spike occurred and τsyn is the synaptic timescale. The simulation timestep ∆t is
set to 0.25ms.

3.2 Network geometry

The network geometry as shown in figure 2 retains proportional dimensions to
the MB system in insects but is smaller in size. A strategy based entirely on
random connectivity and self-organisation through local learning and competi-
tion is explored. Each neuron pair X-X is connected with probability pX,X. The
system implements non-specific connectivity with the exception of full inhibitory
connectivity between EN (c.f., [8]). We describe the various network layers, their
parameters, and their roles below. Learning occurs only through modulation of
the KC-EN connections. We report in section 4 the effects on learning perfor-
mance of changing connectivity between the LHI and KC layers, and varying
the size of the KC layer.

PN layer. This layer receives sensory input. The layer consists of 16 neurons
(the agent’s 45-by-45-pixels FoV is divided into a 4-by-4 grid - c.f., section 2).
The input to a single PN neuron is calculated as follows:

IPN =
sum of pixel values
number of pixels

255
(6)

The neurotransmitter released at each timestep is calculated as follows:

S(t + ∆t) = S(t) + IPN× δ. (7)

Black areas have a pixel value of 0 whereas white areas have pixel values of 255,
thus only white areas in the FoV excite the network.

KC layer. The KC layer consists of 16C2 = 120 neurons. Each KC will
act as a coincidence detector and receive inputs from a small number of PNs
(pPN,KC = 0.1). The synaptic timescale τPN,KC is set to 2 ms. This parameter
needs to be small in order to make the KC neurons very sensitive to the relative
timing of incoming input from the PN layer. This setup allows the KC neu-
rons to act as coincidence detectors. The synaptic strength of PN-KC synapses
needed to be carefully adjusted (gPN,KC are initialised uniformly at random in
[20,30]). In addition to this we add an uniformly distributed jitter to the synap-
tic strengths. We implemented excitatory and inhibitory KC-KC connections
(pKC,KC = 0.1, τKC,KC = 5ms) with equal probability (gKC,KC are initialised
uniformly at random in [5,10]).
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LHI layer. Feed-forward inhibition by lateral horn interneurons (LHI) damp-
ens KC activity in the MB. Thus, the integration time for the KC neurons is
limited to short time windows, making them highly sensitive to precise temporal
correlations. This was implemented through 16 LHIs receiving their inputs from
the PN layer and inhibiting activity in the KC layer (pPN,LHI = 0.2, τPN,LHI =
5ms, gPN,LHI are initialised uniformaly at random in [20,30], pLHI,KC = 0.1,
τLHI,KC = 5ms, gLHI,KC are initialised uniformly at random in [20,30]).

EN layer. Every KC-EN pair is connected (pKC,EN = 1 and τKC,EN = 5ms).
However, the synaptic conductance gKC,EN for all synapses is initialised to 0,
and is subsequently modified by STDP as described below. The ENs also receive
excitatory input from the underlying reflex pathways, thus the learning reflects
the coincidence of activity in these pathways and particular patterns of KC
activity.

3.3 Spike Time-Dependent Plasticity

Synapses are modified using Spike Time-Dependent Plasticity (STDP) which
has been observed in biological neural systems (e.g., [17]). In STDP, synaptic
change depends on the relative timing of pre- and post-synaptic action potentials.
Synaptic conductances are adapted as follows:

∆g =





A+e
tpre−tpost

τ+ − gmax
r , if tpre − tpost < 0

A−e
−(tpre−tpost)

τ− , if tpre − tpost ≥ 0
. (8)

where tpre and tpost are the spiking times of the pre- and postsynaptic neuron
respectively. A+ = 2, A− = −1, τ+ = 50ms, and τ− = 5ms are parameters. We
modified the STDP rule proposed by [18] by adding an additional term − gmax

r
if tpre− tpost < 0 where r = 103 is a parameter. This means that if postsynaptic
spikes are not matched with presynaptic ones, the synaptic conductance between
them is decreased by this term. If this modification rule of synaptic conductances
g pushes the values out of the allowed range 0 ≤ g ≤ gmax, g is set to the
appropriate limiting value (gmax = 30).

A ‘forgetting’ factor is introduced in the form of a slow decay of g:

g(t + ∆t) = g(t)e
∆t

τdecay (9)

where τdecay = 105.

4 Non-elemental discrimination performance

The system was able to learn each of the non-elemental associations shown in
figure 1. As the system learns to respond to the visual patterns, the reflex re-
sponses to encountering the edge are executed less often and the MB drives the
agent’s behaviour (as shown in figure 3(a)). The performance index used in this
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Fig. 3. (a) Agent behaviour in response to first (0ms), second (2000ms) and final
(18000ms) presentations of the same wallpaper during a 20s simulation run. At the
start it reaches the edge position (lower dotted line) and performs a reflex turn. In
the next presentation it responds to the visual stimulus (between the upper dotted
lines) but the response is sometimes incorrect. By the final presentation it reliably
responds to the visual stimulus and thus successfully avoids the edge. (b) Boxplots
of performance for different learning tasks (1) negative patterning, (2) biconditional
discrimination, and (3) feature neutral discrimination. The agent encounters a median
of 5 punishments before successfully using the visual patterns to anticipate and avoid
it. The simulation runs lasted 50s.

paper is simply the number of times the reflexes are executed. As shown in figure
3(a), the naive system will repond with one reflex action during one presentation
of one wallpaper. In the biconditional discrimination setup, for example, there
are Nw = 4 wallpapers which are interchanged every tc = 0.5s during tT = 50s.
Thus, tT /(Nw × tc) = 25 activations would mean that a run was unsuccessful.
Figure 3(b) shows boxplots of the number of times reflex pathways were active
over 30 simulation runs (each lasting 50 seconds) for each of the three condi-
tioning paradigms. All simulation runs for negative patterning were successful
and only one simulation run for biconditional and feature neutral discrimina-
tion each was unsuccessful. The agent learnt after a median of 5 activations of
the reflex pathways which reflex to use, in response to which visual patterns, to
successfully avoid the edge.

Figure 4(a) shows the learning performance with varying probability of con-
nectivity pLHI,KC. As the connectivity between LHI-KC neurons increases (and
with it the inhibition from this layer), the learning performance becomes maxi-
mal at pLHI,KC = 0.1. As the inhibition increases further, the performance drops
off. With increasing inhibition by the LHI neurons, the activity in the KC layer
becomes sparser. Figure 4(b) shows the network performance with varying KC-
layer size with probability of connectivity pLHI,KC = 0.0. The performance tends
to improve with increasing KC layer size.
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Fig. 4. Boxplots of (a) performance with varying probability of connectivity pLHI,KC

between the LHI-KC layers. Performance with varying KC layer size (10,40,70,100,130,
and 160 neurons) for a probability of connectivity pLHI,KC = 0.0.

5 Discussion

Our aim in this paper is to explore the capabilities of an insect-inspired brain
architecture, consisting of reactive behaviours which are modulated by the MB.
We adapted and simulated a widely used conditioning paradigm (the Drosophila
flight simulator) for non-elemental tasks of visual pattern avoidance, and tested
the role of the neuroarchitecture of the MB for this task. The distinct neuroar-
chitecture of the MB, where input (PN) neurons diverge onto large numbers
of mushroom body (KC) neurons and output converges onto a relatively small
number of output (EN) neurons, is able to recognise unique relationships of exci-
tations in the primary sensory channels indicating particular stimulus situations.
The output (EN) neurons, receiving the output of mushroom body neurons, me-
diate conditioned responses.

Based on the proposed architecture and the presented simulation experi-
ments, the following claims can be made. First, the neuroarchitecture is suited for
pattern recognition and was successfully demonstrated for non-elemental learn-
ing tasks. Note that these tasks essentially require the agent to learn to associate
different patterns of stimuli, rather than single stimuli, with the correct action.
Hence the pattern recognition properties of the MB could indeed be a suitable
substrate for this form of learning (c.f., [9]). Second, coincidence detection and
sparse coding are useful for learning. We could show that learning performance
is maximal for small levels of inhibition from the LHI layer. Sparse coding of
sensory inputs helps “make neurons more selective to specific patterns of input,
hence making it possible for higher areas to learn structure in the data” [19].
Future work will further investigate these issues for more specific (i.e. non ran-
dom) connectivity between layers and for modulating larger collections of reflex
behaviours.
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