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Abstract Insects can remember and return to a place
of interest using the surrounding visual cues. In previous
experiments we showed that crickets could home to an
invisible cool spot in a hot environment, and that they
did so most e�ectively with a natural scene surround,
though they were also able to home with distinct land-
marks or blank walls. Here we compare six di�erent mod-
els of visual homing with the same visual environments
used for testing the crickets. Only models deemed bio-
logically plausible for use by insects were implemented.
The Average Landmark Vector model and First Order
Di�erential Optic Flow are unable to home better than
chance in at least one of the visual environments. Sec-
ond Order Di�erential Optic Flow and Gradient Descent
on image di�erences can home better than chance in all
visual environments, and best in the natural scene envi-
ronment, but do not quantitatively match the distribu-
tions of the cricket data. Two models - Centre of Mass
Average Landmark Vector, and Run Down on image dif-
ferences - could produce the same pattern of results as
observed for crickets. Both performed best using simple
binary images, and were robust to changes in resolution
and image smoothing.

1 Introduction

The ability of insects to return to a location of interest
such as a feeder or nest using visual cues has been well
documented in natural settings (Wehner 2003; Collett
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and Collett 2002). Additionally, it has been shown that
cockroaches (Mizunami et al 1998), and crickets (Wess-
nitzer et al 2008) can learn to return to a target location
in a novel laboratory experiment analogous to the Mor-
ris water-maze used to assess place memory in mammals
(Morris et al 1982). This experimental paradigm placed
insects in a hostile environment (a hotplate maintained
above 40◦C) from which they would seek an escape. An
invisible cool spot, maintained at a moderate temper-
ature represented the only refuge. Over successive tri-
als the time taken by the insects to re-locate the cool
spot decreased signi�cantly. Removal of all visual cues
through trials performed in the dark prevented learning,
and the search is a�ected by rotation of the visual sur-
roundings.

Many visual homing models have been proposed as
possible strategies employed by insects. These can be
broadly split into two classes: feature-based models and
image-based models. Feature-based models, for example
the snapshot model (Cartwright and Collett 1983), ex-
tract features from the visual surround such as angular
size and bearing of prominent landmarks. Comparison of
the features extracted at the goal location with the cor-
responding features extracted from an image taken at a
displaced location allows a homing vector to be calcu-
lated. Image-based models, by contrast, use comparison
of the raw images as seen from the goal and the dis-
placed location. For example, Zeil et al (2003) show that
the pixel-wise root mean square (RMS) error between
a panoramic reference image and image viewed from a
displaced location increases monotonically with distance.
Homing can then be achieved through some form of gra-
dient descent where either agent movements allow the
home direction to be inferred (Zeil et al 2003) or where
simulated agent movements allow a home vector to be
estimated (Franz et al 1998).

If insects are indeed using a feature-based technique
to return to locations of importance then it might be
expected that performance would be best when distinct
landmarks, easily segmented from the background, are
presented. In contrast, an image-based algorithm will
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Table 1: P-values calculated using Wilcoxon rank-sum
test when comparing homing times across trials 7 - 10
within the four experimental paradigms.

NS BW DL DC
NS X <0.01 <0.01 <0.01
BW <0.01 X 0.54 <0.01
DL <0.01 0.54 X <0.01
DC <0.01 <0.01 <0.01 X

perform more successfully when a complex scene is pre-
sented, as it uses information from each pixel directly.
In the hotplate experiments described above (Wessnitzer
et al 2008), crickets were tested with both distinct land-
marks and a natural scene stimulus. Learning was ob-
served in both cases but the natural scene elicited greater
improvement in homing times and more consistent learn-
ing. Figure 1 shows box plots of time taken to locate
the cool spot by crickets during the �nal four out of ten
learning trials, when their homing times had stabilised.
It is clear that crickets locate the cool spot fastest in the
Natural Scene surround followed by Blank Walls, Dis-
tinct Landmarks and then the Dark Control. Statistical
comparisons (Table 1) show that the Natural Scene sur-
round elicits signi�cantly better results than all other
paradigms, and performance in the dark is signi�cantly
worse than any visual condition.

Surprisingly, results in the Blank Walls surround and
Distinct Landmarks are not signi�cantly di�erent, but it
should be mentioned, as noted in Wessnitzer et al (2008)
and below, that the Blank Walls environment did not
eliminate all possible visual cues, as a combination of
shadows in the canopy and light gradients across the
arena wall remained.

In the current study we implement six biologically
plausible models of visual homing, including both image-
based and feature-based model types, and test them us-
ing the visual environments that were presented to the
crickets in Wessnitzer et al (2008). A direct compari-
son can then be made between the homing path lengths
recorded using the competing visual homing models and
the homing times of crickets under varying visual condi-
tions. The models will thus be assessed on their ability to
reproduce the performance shown in �gure 1 and table
1.

2 General methods

2.1 Image Databases

Three image databases were collected from within the
cricket experimental arena on a 2cm*2cm grid using a
Khepera II mobile robot and a custom built panoramic
camera (see �gure 2). Images were collected with the
arena con�gured as for the cricket trials giving three sets

DC DL BW NS

Fig. 1: Box plots showing times taken to locate the cool
spot for crickets across trials 7-10 (i.e. after learning)
in the di�erent visual surroundings (n=12 ). Boxes show
lines at the lower quartile, median, and upper quartile
values. Whiskers indicate the most extreme values within
1.5 times the interquartile range from the ends of the
box. Outliers are shown as red + signs. Testing within
the natural scene (NS) produces fastest homing times,
followed by blank walls (BW), distinct landmarks (DL)
and the dark control (DC) respectively.

of 208 images: natural scene (NS), distinct landmarks
(DL), and blank walls (BW). All images were captured
with the camera in the same orientation (see discussion).
It is worth noting that the BW database images are not
uniform, as might be expected, but have a clear intensity
gradient. This seems to have been su�cient for homing
in the cricket, and as we shall demonstrate, also su�ces
for homing in some of the tested models.

2.2 Homing process

Visual homing models, as described in the literature, fre-
quently di�er not only in how the home vector is deter-
mined but also in how it is used to generate motion.
Here we tried to maintain consistency across the im-
plementations so that only the relative e�cacy of each
model's method of determining the home direction will
contribute to the results. A block diagram of the homing
process for one time step is shown in �gure 3.

Visual Input is received from the image database in
the form of an unprocessed image (Figure 2 (c), (d), and
(e)) as would be supplied by a robot positioned at the
corresponding grid position. The Cricket Eye Model then
unwraps and unwarps a ring corresponding to 20◦ above
and below the image horizon. Note that as the camera
turret is mounted above the robot base unit and with
the mirror located above the camera to prevent image
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Fig. 2: (a) Khepera II robot base with custom panoramic camera turret used to record image database. (b) Cricket
arena diagram showing 2cm*2cm grid (blue stars) where images where taken. The cool-spot perimeter is shown
by the inner blue circle and the home position used in the modelling study by the red star. (c), (d) and (e)
Sample images from the BW, DL, and NS image-sets respectively at the home location. Below is shown the images'
unwrapped at 1◦ resolution to the maximum image size of +/- 20◦ around the horizon prior to smoothing, and also
the same sample images post smoothing using the Butterworth �lter.

interference from cables, the image horizon is approxi-
mately X cm above the arena �oor. Images are initially
unwrapped at 1◦ resolution in both azimuth and eleva-
tion. We were not able to �nd a precise estimate for the
visual acuity of the ventral areas of the cricket species
Gryllus bimaculatus eye, but interommitidial angles of 1◦
have been observed in the dorsal rim area (Labhart et al
2001). Note that the models are also tested with lower
resolutions (see Section 2.4). Images are then blurred
using a �rst order Butterworth �lter where the cut-o�
frequency is de�ned using the acceptance angle of 6◦ as
observed in Gryllus campestris (Labhart et al 1984). The
Cricket Eye Model images sampled at the home positions
within each of the test environments are shown in �gure
2 under the corresponding original images.

The speci�c Homing Model under test is then used to
calculate the home vector at the current location. The
Motor Output then selects the cardinal direction most
closely matching the home vector and updates the agent

position to the nearest grid location in the de�ned di-
rection. As described below, di�erent levels of noise can
be added to the home vector direction after it has been
calculated and before the movement is determined. Note
however that the Run Down model (section 3) is an ex-
ception as it does not calculate an explicit home vector
but instead moves �rst and then evaluates, on the ba-
sis of image di�erence, whether to continue in the same
direction or randomly try a new direction. If the agent at-
tempts to move to a location outwith the image-database
(equivalent to the cricket encountering the arena wall)
then the agent is forced to move to the closest available
location to the right. This procedure keeps the agent
within the image-database and simulates a simple wall
following response when the wall is encountered.

The process described above iterates until either the
cool spot location (grid position 16,12) is found or the
path-length exceeds 300 steps. This stop condition was
selected as crickets trials were ended after 300 seconds
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Fig. 3: System Overview: all processing steps are kept
consistent except the method used to determine the hom-
ing direction.
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(b) BW Start locations
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(d) NS Start locations

Fig. 4: Cricket start locations and orientations in the
�nal four trials are approximated giving the 48 image
database start positions and orientations shown for each
test environment. These start-positions, and where ap-
propriate orientations, are used in all subsequent model
testing.

if the cool-spot had not been located. The ability of the
homing models to replicate the cricket behaviour is as-
sessed by recording the homing path lengths produced
within each of the three environments. Homing trials are
initiated from the same 48 positions (and where appro-
priate, orientations) from which cricket trials were initi-
ated. It should be noted that as cricket start locations
were chosen at random in the behavioural study this
leads to somewhat di�erent start positions and orienta-
tions within each environment. The start locations and
orientations used within each environment are shown in
�gure 4. We also calculate the home vector from every
grid position so as to visualise the overall e�ectiveness of
the homing method. Home vector plots are shown with
the average angular error (AAE) which is calculated by
taking the mean error between home vector calculated
at each location and the known ideal home vector and
provides a simple measure of model accuracy.

2.3 Control trials

In the original experiments a completely dark arena acted
as the control. This would produce a uniformly black im-
age set, making any visual homing process ine�ective. To
generate comparable control data for the simulation, we
generated random search paths from same 48 start posi-
tions as the cricket, as outlined previously. At each time
step the agent moves randomly in one of the four pos-
sible directions with equal probability, until either the
cool spot is encountered or the path-length exceeds 300
steps. This process produces path lengths with compa-
rable median (289) and upper and lower quartiles (300
and 125) as the observed path durations of crickets in
the dark (median 258, quartiles 300 and 79).

2.4 Parameter Tuning

In their original forms, the di�erent visual homing mod-
els implemented in this study utilise various further pre-
processing steps such as image smoothing, or using only
a certain area of the image, to improve performance.
Rather than make any assumptions about such image
processing in crickets, which might bias the results to-
wards one or other homing model, we instead use an op-
timisation procedure to tune the pre-processing param-
eters individually for each model. That is, optimisation
is done by exhaustively searching through all possible
parameter combinations and determining which param-
eters (if any) produce the same performance trend across
the di�erent visual environments as we observed for the
crickets. Parameters are optimised according to two suc-
cessive criteria:
1. Median path-lengths in all visual environments must

statistically outperform the control.
2. Median path-lengths in the NS environment must

statistically outperform homing within both the DL
and BW environments.

Statistical comparison of the homing performance is per-
formed using theWilcoxon rank-sum test. For each model,
the outcome from the parameter setting that produces
the closest match of medians and interquartile di�erences
to the cricket data will be presented in the results, and
the pattern of parameter settings that pass or fail the
criteria discussed.

This search through parameter space also allows us
to compare the relative robustness of the the di�erent
models. The free parameters optimised by the models
are:
Image Smoothing: In many studies, visual homing is per-

formed on images that have been highly low-pass �l-
tered; a processing step easily performed in neural
hardware. Vardy (2005) outlines a Gaussian low-pass
�ltering scheme where images are convolved with the
kernel:
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G = [0.005 0.061 0.242 0.383 0.242 0.061 0.005 ] (1)

in the x and then the y direction. It is shown that suc-
cessive applications of this �lter is comparable to con-
volving with a single larger Gaussian. Thus smooth-
ing the cricket eye images using Gaussians of various
sizes is achieved by optimising for 0, 1, 3 or 5 appli-
cations of this Gaussian Filter.

Down-sampling rate: As the cricket eye model unwraps
the raw image at a resolution of 1◦, down-sampling
can be thought of as resetting the visual acuity to 1◦,
2◦, or 4◦. This is achieved by sampling every 1, 2 or
4 pixels both horizontally and vertically from those
supplied by the cricket eye model. It is worth noting
that these values are closely matched to the visual
acuity of Gryllus campestris (1◦), the honeybee eye
Apis meliphora (1.7◦), and desert ant Cataglyphis bi-
color (4◦) (Land 1997). Although it should also be
noted that the acceptance angle of the honeybee and
ant eye are 2.6◦ and 3◦ degrees respectively compared
with the cricket eye acceptance angle of 6◦ which
would result in less initial smoothing.

Image area used: Each model also optimises for the por-
tion of the input image used to calculate the home
vector. The input image from the Cricket Eye Model
consists of +/- 20◦ of elevation around the horizon
sampled at 1◦ azimuth giving a maximum image size
of 360*41 pixels. Each model then selects whether to
use:
1. 10◦ above the horizon.
2. 10◦ below the horizon.
3. Horizon pixels only
4. +/- 5◦ around the horizon.
5. +/- 10◦ around the horizon.
6. +/- 20◦ around the horizon.
Note the optic �ow models cannot use the horizon
pixels only image area as it does not allow vertical
image gradients to be calculated.

Addition of noise to home vectors: The addition of noise
to the homing signal aids certain models that other-
wise become trapped in deterministic loops in the
grid leading to high failure rates despite good gen-
eral approximation of the home direction. At each
homing iteration, noise is generated through the ad-
dition of an error term to the derived home vector.
The error term is randomly selected from a circu-
lar normal (Von Mises) distribution with a mean of
zero and variable concentration parameter κ (analo-
gous to standard deviation in a non-circular normal
distribution). Models optimise for the concentration
parameter κ which ranges from 0 (no noise) to 90◦ in
increments of 10◦. The maximum concentration pa-
rameter setting of 90◦ results in a 62% chance that
additional noise corrupts the home vector by more
than 90◦, resulting in movement in a random orien-
tation with respect to the generated home vector.

Image Type: Some models can operate with black and
white, rather than greyscale, images. For the CO-
MALV and gradient descent methods we optimise
for either image type, where black and white im-
ages are generated by thresholding the output of the
cricket eye model at the median greyscale value. The
ALV model inherently converts images to black and
white to de�ne landmarks and thus only optimises for
greyscale images. The di�erential optic �ow models
can only operate on greyscale images.

3 Models of Visual Homing

As the explicit aim of this study is to investigate the
strategies employed by crickets when returning to the
cool spot, only visual homing models that can be con-
sidered �biologically plausible� are implemented. A cri-
terion for the selection of such models was outlined by
Vardy (2005):
1. As the insect brain has limited neural capacity, mod-

els must not be so computationally complex that no
convincing argument can be made for their imple-
mentation in the neural hardware of an insect.

2. As the retinotopic mapping is maintained throughout
sensory pathways from the insect eye through the op-
tic lobes then all calculations required by the model
must be theoretically possible using local retinotopic
calculations rather than global searches in the image
space.

Applying the above criterion, the following six models
were selected for use in this study:
1. Average Landmark Vector Model.
2. Centre-of-Mass Average Landmark Vector Model.
3. Di�erential Optic Flow Models:

(a) First Order
(b) Second Order

4. Gradient Descent Models using:
(a) GradDescent
(b) RunDown
For each model we present a brief outline of how it

works, the results for the optimised model after parame-
ter tuning, and discussion of why the homing behaviour
succeeds or fails in the di�erent environments.

3.1 Average Landmark Vector Model

The Average Landmark Vector (ALV) model is a deriva-
tive of the classic snapshot model (Cartwright and Col-
lett 1983) o�ering an extremely parsimonious system
which also bypasses the correspondence problem (Lam-
brinos et al 2000). At the home location (H) the pro-
cessed home image is further reduced to a 1D vector of-
ten referred to as the horizon ring. Vertical edges in the



6

+
C

+
H

Fig. 5: The ALV is calculated at the home location H (red
arrow) and also at the current location C (blue arrow).
Through a simple vector subtraction the home vector
(green arrow) is calculated.

horizon ring are then identi�ed, and a unit vector drawn
towards each edge (Figure 5). Taking the mean of the
vectors across the entire image provides the home loca-
tion average landmark vector (ALVH). When the agent
is moved to a distant location (C) the current average
landmark vector (ALVC) is calculated in the same man-
ner. The home vector can then be calculated through a
simple vector subtraction (h = ALVC −ALVH).

The ALV model has been shown to successfully home
in simulated environments consisting of distinct land-
marks within an in�nite horizon background (Lambrinos
et al 2000). Homing has also been successfully achieved
on a mobile robot in a desert habitat with black cylin-
ders provided as landmarks, and in a university lobby
(Möller et al 2001).

Simple edge detection techniques such as those em-
ployed by Lambrinos et al (2000) are found inadequate
for homing within the cricket surrounds, speci�cally within
NS. Therefore, the edge detection procedure implemented
by Möller et al (2001) to achieve successful homing in the
university lobby is adopted. Firstly, the snapshot image
image is column averaged producing a 1-D greyscale im-
age. Regions of this 1-D snapshot image showing con-
sistent intensity levels are identi�ed as stable points in
the image, and their intensity values recorded. The mid-
point between the largest di�erence in stable points is
then de�ned as the threshold value. Selection of the thresh-
old value in this manner is intended to o�er robustness to
light and contrast variance. Any points where the image
intensity crosses this threshold are considered edges and
are associated with a unit vector. The threshold calcu-
lated at the home location is then used throughout when
de�ning all subsequent edges at displaced locations.

Figure 6 shows the homing path lengths produced
by the ALV model in the various image databases, and
the home vectors generated in each environment. Table
2 shows the p-values of the statistical comparisons of
homing paths.
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(d) NS home vectors.

Fig. 6: (a) ALV Model path lengths within the three im-
age databases and control condition. Optimal parameter
settings: downsampling rate = 1, No. of Gaussians=1,
image region used = horizon pixels only, and concentra-
tion parameter κ=10◦ using greyscale images. (b), (c),
(d) Home vectors generated using the optimal parameter
settings in the BW, DL and NS surrounds respectively.
Note that the single bar at 300 for the NS results indi-
cates that all homing trials save outliers reached the stop
condition. AAE: BW=58◦, DL=12◦, NS=93◦

Table 2: P-values calculated for comparisons between
path-lengths the various image databases using the ALV
model. Note the signi�cant di�erence of NS and control
is in the wrong direction (NS worse than control).

DC DL BW NS
DC X <0.01 0.12 <0.01
DL <0.01 X <0.01 <0.01
BW 0.12 <0.01 X <0.01
NS <0.01 <0.01 <0.01 X

It is clear that the ALV Model does not reproduce the
same performance trend as observed in crickets. Indeed
no parameter setting produced shorter path lengths in all
visual environments when compared to the control; the
�rst performance criterion. This failure is caused by inac-
curate home vector generation within NS due to the dif-
�culty in consistently de�ning edges within such an envi-
ronment. The slightly improved path lengths produced
within BW are attributable to the background inten-
sity gradient outlined previously which the ALV Model
de�nes as a single landmark that is generally detected
across arena positions allowing somewhat accurate home
vector generation. In contrast, within the distinct land-
marks surround, where edges are easily identi�ed, home
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Table 3: Comparison of the number of edges identi�ed
in the home image compared to the mean and standard
deviation found at all subsequent image positions in each
environment.

Home Edges µ edges σ

DL 6 5.9320 0.8897
BW 2 1.9612 0.3922
NS 4 4.4951 1.8401

vectors are accurate from most regions of the arena, re-
sulting in short path lengths.

Table 3 shows the mean number of edges detected
across image positions within each of the image databases
compared with the number of edges found in the home
image of those image-sets. Within NS the high degree of
variance in detected edges catastrophically a�ects cor-
rect home-vector calculation. Despite a higher degree of
edge detection accuracy within BW, the small number of
detectable edges also results in inaccurate home vector
calculation when edges are incorrectly de�ned. Further-
more, the reduced intensity range within BW images ren-
ders the model susceptible to noise and makes accurate
ALV computation di�cult resulting in a high AAE. In
contrast, within DL six edges are detected in the snap-
shot image. The larger number of distinguished edges
in this environment increases the robustness of the ALV
when edges are incorrectly identi�ed, or missed, result-
ing in the improved performance displayed. It may be
possible to improve the performance of the ALV Model
in NS using a more sophisticated feature extraction al-
gorithm. However as homing is close to optimal in DL
it seems unlikely that any such enhancement would pro-
duce statistically superior homing in the NS surround.
We thus dismiss the ALV Model as a strategy used by
the crickets to relocate the cool spot.

3.2 Centre-of-Mass Average Landmark Vector Model

The Centre-of-Mass Average Landmark Vector (COMALV)
Model (Hafner 2001) as its name suggests is conceptu-
ally similar to the ALV model. Vectors are again derived
at both the home and current locations and the home
vector through vector subtraction. However rather than
using edges or landmarks to calculate these vectors, the
COMALV model stores the vector projecting to the `cen-
tre of mass' in each image:

COMALV =
∑ (

I(θ)
(

cos(θ)
sin(θ)

))
(2)

where I(θ) is the image intensity value at the bearing
indicated by θ in the one-dimensional input image.

The COMALV Model was originally derived through
the use of a learning procedure on an arti�cial neural
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(c) DL home vectors.
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(d) NS home vectors.

Fig. 7: (a) COMALVModel path lengths within the three
image databases and control condition. Optimal parame-
ter settings: downsampling rate = 2, No. of Gaussians=0,
image region used = +/- 20◦ around the horizon, concen-
tration parameter κ=80◦, using black and white images.
(b), (c), (d) Home vectors generated using the optimal
parameter settings in the BW, DL and NS surrounds
respectively. AAE: BW=32◦, DL=38◦, NS=14◦

Table 4: P-values calculated for comparisons between
path-lengths the various image databases using the CO-
MALV model.

DC DL BW NS
DC X <0.01 <0.01 <0.01
DL <0.01 X 0.28 <0.01
BW <0.01 0.28 X 0.01
NS <0.01 <0.01 0.01 X

network, but in this study we directly implemented the
above equations. The COMALV model has performed
successful homing trials in simulation and also on a mo-
bile robot within an o�ce environment. Furthermore it
is computationally cheap and bypasses both correspon-
dence and feature extraction issues. The model however
failed to home successfully in various image databases
without re-tuning of parameters (Vardy 2005). Never-
theless as Vardy's image database consisted of an o�ce
environment where the homing capability of insects is
unknown the COMALV is included in this study.

Figure 7 shows the homing path lengths produced by
the COMALV model in the various image databases, and
the home vectors generated in each environment. Table
4 shows the p-values of the statistical comparisons of
homing paths.



8

Parameter optimisation of the COMALVmodel found
80 parameter combinations that pass both performance
criteria. These settings include every possible smoothing
and acuity variant at least once indicating a robustness
to these pre-processing procedures. In contrast, the only
successful image region is +/-20◦ around the horizon,
and the image type is restricted to black and white im-
ages. All parameter settings require some level of noise
for successful homing.

The selection of only the maximum image region set-
ting is due the interaction of the landmarks and the back-
ground intensity gradient within the DL surround. CO-
MALVs obtained within both BW and NS generally ori-
ent towards an attractor in the environment when sam-
pled across image locations. For example within BW,
COMALVs are oriented towards the peak of the back-
ground intensity gradient outlined previously. An attrac-
tor is necessary such that when the snapshot COMALV
is subtracted from the current COMALV an appropriate
angular o�set is present resulting in correct home vector
computation. However within DL, for smaller image re-
gion settings, no such attractor exists as the T shaped
landmark and background intensity peak coincide. This
�attens the intensity gradient and removes the presence
of a prominent COMALV within DL. However, when +/-
20◦ images are presented, the proportion of blank arena
wall to landmarks is increased, introducing a prominent
attractor to which COMALVs orient and resulting in the
improved homing observed.

It was found that the use of greyscale images had a
catastrophic e�ect in the BW environment, caused by a
subset of home vectors located near the home position
the snapshot which are inverted with respect to the true
home direction across many parameter settings. Homing
agents would be de�ected from the goal. The incorrect
home vector direction was a result of the magnitude of
the current COMALVs at these locations exceeding that
of home COMALV; often only by a small amount but
this is su�cient to produce a small but incorrectly ori-
ented home vector. This problem could be partially cir-
cumvented by adding su�cient noise that agents near
the goal would sometimes reach it instead of being de-
�ected, but such high noise levels degraded performance
in the DL surround to chance levels. No parameter com-
bination using greyscale images could be found where
path lengths within both DL and BW are statistically
superior to the control.

The impact of these anomalous home vectors within
the BW surround is probably magni�ed by the use of
an image-database rather than a fully autonomous robot
study where images would be generated repeatedly across
trials. There also exists a number of simple modi�cations
to the COMALVModel that may help overcome such de-
�ciencies such as de�ning a minimum threshold between
magnitudes that should be reached before home vectors
are computed, weighing trust in home vector relative
to magnitude, image normalisation prior to COMALV

calculation, or the use of a momentum component that
would push agents past erroneous home vectors. However
none of these model extensions were implemented in this
study, given that the use of blank and white images was
su�cient to produce cricket-like results.

3.3 Di�erential Optic Flow Models

Building upon the �nding that successful block-matching
models of visual homing are dependent upon low rather
than high frequency components of images, Vardy de-
rived two equivalent models based on classic di�eren-
tial optic �ow techniques (Vardy 2005). The di�eren-
tial models perform only local searches for image cor-
respondences and therefore ful�ll biological plausibility
constraints failed by block-matching methods.

The First Order (FO) model rests on the assumption
that pixel intensities are maintained across images such
that:

H(x, y) = C(x + u, y + v) (3)

where H is the intensity of the pixel at image posi-
tion (x, y) in the home image and C is the intensity of
the same pixel at its new location in the current image
given by summing the previous pixel location with the
translation vector (u, v) caused by agent movement.

The Second Order (SO) model assumes that inten-
sity gradients rather than pixel intensities are maintained
across images such that:

Hx(x, y) = Cx(x + u, y + v) (4)

Hy(x, y) = Cy(x + u, y + v) (5)

where Hx and Hy are the partial derivatives of the
pixel intensity at image position (x, y) in the home image
and Cx and Cy are the partial derivatives of the intensity
of the same pixel at its new location in the current image
given by summing the previous pixel location with the
translation vector (u, v) caused by agent movement.

Di�erential models seek to calculate the translation
vector (u, v) of each pixel by calculating the intensity
gradients (FO model), or the second derivative of the
intensity gradient (SO model), surrounding the pixel in
question. This allows the translation vector orientation
to be calculated locally, which is then converted into
a home-vector through an approximate vector mapping
technique. That is, knowledge of the robot hardware al-
lows the translation vector existing in image space to be
transformed into a home vector in robot space. As dif-
ferential models derive home vectors at all pixels in the
image, the overall home-vector is computed by taking
the mean of all home vectors across pixel locations.
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Di�erential methods have classically been applied to
optic �ow problems where pixel translation is small be-
tween successive images and therefore intensity gradi-
ents are robust ensuring good translation vector calcula-
tion. The success of these models in homing tasks there-
fore is somewhat counter-intuitive as the scale of agent
translation between image captures causes large pixel
translations between home and current image. Such im-
age shifts are shown to have catastrophic e�ects on cor-
rect translation vector accuracy. However Vardy demon-
strated that incorrect home vectors are uncorrelated and
therefore when averaged they generally cancel each other
out. Moreover in the focus of expansion and contraction
in the image, pixel movement remains small such that
the small image translation assumption is valid. This al-
lows correct home vectors to be calculated at pixel loca-
tions within these regions. These correct and correlated
home vectors dominate when home-vectors are averaged
across pixel locations (known as the democracy e�ect)
producing accurate overall home-vector and the positive
homing results in the environments outlined below.

Although the procedure outlined above may sound
computationally complex, di�erential optic �ow models
remain biologically plausible. The majority of the model
calculations are local and are ideally suited to parallel
computation as could be performed retinotopically by
insects. The di�erential visual homing models have been
shown to home successfully within a number of indoor
image databases such as an o�ce environment, and a
university hall-way (Vardy 2005).

First Order Di�erential Model

Figure 8 shows the homing path lengths produced by the
FO model in the various image databases, and the home
vectors generated in each environment. Table 5 shows the
p-values of the statistical comparisons of homing paths.

Parameter optimisation of the FO Model found no
parameter settings that passed the �rst performance cri-
terion where improved path-lengths are sought in all vi-
sual environments when compared with the control. De-
spite performing excellently within both NS and DL, the
FO Model fails to generate accurate home vectors within
the BW surround, where it never outperforms the con-
trol. This is because the lack of signi�cant intensity vari-
ations within the BW environment does not allow a suf-
�cient number of correct pixel-wise home-vectors to be
calculated such that when pixel-wise home vectors are
averaged, the correct home vector prevails.

The failure of the FO Model to successfully outper-
form the control when homing within the BW surround
contrasts with the observed behaviour of the cricket and
we therefore dismiss the FO Model as a candidate visual
homing technique used by crickets.

DC DL BW NS

(a) Path-length data.
0 4 8 12 16 20 24 28 32 36

0

4

8

12

16

20

24

28

32

36

(cm)

(c
m

)

(b) BW home vectors.

0 4 8 12 16 20 24 28 32 36

0

4

8

12

16

20

24

28

32

36

(cm)

(c
m

)
(c) DL home vectors.

0 4 8 12 16 20 24 28 32 36

0

4

8

12

16

20

24

28

32

36

(cm)

(c
m

)
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Fig. 8: (a) FO Model path lengths within the three im-
age databases and control condition. Optimal parameter
settings: downsampling rate = 2, No. of Gaussians=1,
image region used = +/-10◦ around the horizon, and
concentration parameter κ=90◦ using greyscale images.
(b), (c), (d) Home vectors generated using the optimal
parameter settings in the BW, DL and NS surrounds
respectively. AAE: BW=66◦, DL=20◦, NS=15◦

Table 5: P-values calculated for comparisons between
path-lengths the various image databases using the FO
model. Note the signi�cant di�erence of BW and control
is in the wrong direction (BW worse than control).

DC DL BW NS
DC X <0.01 <0.01 <0.01
DL <0.01 X <0.01 <0.01
BW <0.01 <0.01 X <0.01
NS <0.01 <0.01 <0.01 X

Second Order Di�erential Model

Figure 9 shows the homing path lengths produced by the
SO model in the various image databases, and the home
vectors generated in each environment. Table 6 shows the
p-values of the statistical comparisons of homing paths.
Note the signi�cant di�erence between BW and control
is in the wrong direction (BW worse than control)

Parameter tuning of the SO Model found �ve pa-
rameter settings that passed both performance criteria.
These are comprised of two distinct settings buoyed by
the addition of large noise terms. The �rst setting applies
one Gaussian �lter, to maximally sampled +/- 20◦ with
concentration parameters κ=70◦, 80◦, and 90◦. The sec-
ond setting applies no smoothing +/- 20◦ images down-
sampled at 2◦ with concentration parameters of κ=70◦
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Fig. 9: (a) SO Model path lengths within the three image
databases and control condition. Optimal parameter set-
tings: downsampling rate = 1, No. of Gaussians=1 and
image region used = +/- 20◦ around the horizon, and
concentration parameter κ=80◦ using greyscale images.
(b), (c), (d) Home vectors generated using the optimal
parameter settings in the BW, DL and NS surrounds
respectively. AAE: BW=53◦, DL=46◦, NS=30◦

and 80◦. The SOModel was tuned for only image type=greyscale
as explained in the methods.

As with the FO Model, homing within BW rarely
outperforms the control due to the same absence of ro-
bust intensity gradients required by di�erential optic �ow
models to accurately compute home vectors. The in-
creased accuracy of the home vectors generated by the
SO Model within BW may have been expected as some
image gradients are likely to be maintained even where
individual pixel intensities are not. The use of minimal
levels of downsampling and image smoothing increases
the robustness of such gradients where they exist. More-
over, the use of the largest image region increases the
in�uence of correct and correlated home vectors where
they can be generated. However, despite this improve-
ment the resultant path-lengths still fail to out-perform
the control without the addition of a substantial noise
term.

3.4 Gradient Descent Models

Gradient descent models of visual homing have their
roots in the �nding that the pixel-wise intensity di�er-
ence between aligned images taken from di�erent loca-
tions tends to increase smoothly and monotonically with
distance (Zeil et al 2003). Plotting the di�erence between

Table 6: P-values calculated for comparisons between
path-lengths the various image databases using the SO
model.

DC DL BW NS
DC X <0.01 0.01 <0.01
DL <0.01 X <0.01 <0.01
BW 0.01 <0.01 X <0.01
NS <0.01 <0.01 <0.01 X

images across locations therefore reveals a sloping surface
where the minimum corresponds to the target location.
Figure 10 shows the di�erence surfaces calculated within
the various image databases using the error metrics fur-
ther detailed below.

By sampling the image di�erence at a number of lo-
cations in the environment (by either simulated or actual
agent movement), simple gradient descent algorithms can
utilise the error slope to return to the goal. Gradient
descent models have been shown capable of homing in
natural scenes (Zeil et al 2003), in indoor environments
using image databases (Zampoglou et al 2006), (Vardy
2005), and also on a mobile robot in a laboratory envi-
ronment (Zampoglou et al 2006). Furthermore Gradient
Descent models are computationally cheap, and ideally
suited to parallel computation as is expected in a retino-
topic structure.

Previous Gradient Descent models generally make
use of only greyscale images and both the pixelwise root-
mean-square (RMS) (?)Zeil2003) error and sum-squared
di�erence (SSD) (?)Vardy2005 have been implemented
as error metrics. In this study the error metric shall be
the pixelwise RMS for use when both greyscale and black
and white images are presented. It should be noted that
use of the SSD metric was investigated but changing the
error metric had no e�ect on the resultant path lengths.

GradDescent Homing Method

Vardy (2005) outlined the GradDescent method of hom-
ing which samples image di�erences at multiple locations
such that an explicit home vector can be derived. Thus
homing can proceed as for the other models implemented
in this work. GradDescent samples image di�erences in
all four cardinal directions surrounding the current loca-
tion. Comparison of the values in the cardinal directions
with that at the central point allows a di�erence vec-
tor to be drawn in each direction. Taking the mean of
the di�erence vectors indicates the orientation produc-
ing the largest increase in image di�erence and thus the
home-direction is correspondingly calculated by invert-
ing the mean di�erence vector. In the implementation of
GradDescent in this study when locations outside of the
current image database are to be sampled the di�erence
values are set to the maximum possible value such that
the agent moves away from the wall.
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(f) NS black and white error surface.

Fig. 10: RMS error surfaces within the three image data-bases. Note that the parameter settings are constant for
both image types used: Number of Gaussians=0, downsampling rate=1, image regions=+/- 20◦ around the horizon.
(a) - (c) Error surfaces generated using greyscale images in the BW, DL and NS surrounds respectively. (d) - (f)
Error surfaces generated using black and white images in the BW, DL and NS surrounds respectively.

Figure 11 shows the homing path lengths produced
by the GradDescent algorithm in the various image-sets,
and the home vectors generated in each environment.
Table 7 shows the p-values of the statistical comparisons
of homing paths.

Parameter tuning of the GradDescent method found
six parameter settings that passed both performance cri-
teria. The image region used is limited to +/-20◦ around
the horizon, and the downsampling rate to 2 or 4. How-
ever the model seems robust to smoothing with all set-
tings except no smoothing being used. The image type
used is �xed as black and white. All six parameter set-
tings require a small amount of additive noise (max κ=30◦,
µ=16.67◦, σ=8.16◦ across the parameter set). When greyscale
images are used, homing paths within BW fail to statis-
tically outperform the control across all parameter set-
tings. This failure is caused by the error surface gen-
erated within BW (Figure 10(a)) which appears noisy
and littered with local minima making successful and
repeatable homing almost impossible. Conversion of the
input images to black and white removes a dimensional-
ity of the data producing smoothed error surfaces across
image-sets, but with particularly profound e�ect on the
BW error surface (Figure 10(d)). The use of black and
white images in preference to greyscale, improves homing

Table 7: P-values calculated for comparisons between
path-lengths the various image databases using the
GradDescent model.

DC DL BW NS
DC X <0.01 <0.01 <0.01
DL <0.01 X 0.3 <0.01
BW <0.01 0.3 X 0.03
NS <0.01 <0.01 0.03 X

across image-sets to the extent that statistically separat-
ing the performance between paths generated within NS
and those generated within the other surrounds becomes
the main cause of model failure. The use of the largest
image type in conjunction with downsampling increases
the proportion of blank arena wall in comparison to land-
marks and thus degrades the error surface in DL, without
overly e�ecting the error surface in NS. With the further
addition of noise statistical separation can be achieved,
at the expense of a much higher variance in the DL paths
than was found in the cricket data.
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(d) NS home vectors.

Fig. 11: (a) GradDescent Model path lengths within the
three image databases and control condition. Optimal
parameter settings: acuity = 4◦, No. of Gaussians=1,
image region=+/- 20◦ around the horizon, concentration
parameter κ=10◦ and using black and white image type.
(b), (c), (d) Home vectors generated using the optimal
parameter settings in the BW, DL and NS surrounds
respectively. AAE: BW=23◦, DL=26◦, NS=27◦

RunDown Homing Method

In contrast to the other methods described so far, the
RunDown homing method (Zeil et al 2003) does not com-
pute a home vector at all but instead uses agent move-
ment to assess the current error gradient. The agent's
�rst movement in our simulation is determined by the
initial orientation of the cricket in the corresponding trial
(�gure 4). At each iteration the current image di�erence
is compared to the that computed when at the previ-
ous location. If the movement resulted in a decrease in
error then the agent continues in its current direction.
However, if the error value is equal or larger the agent
performs a 90◦ turn, with the orientation selected at ran-
dom. The entire procedure is then repeated until the
home location is found. The random turning inherently
incorporates noise into this approach.

The resulting path-lengths, and statistical compar-
isons are shown in �gure 12 and table 8 respectively.
Optimisation of parameters for the RunDown algorithm
found six parameter settings successfully passing the per-
formance criteria. The RunDown method seems robust
to most parameter settings with all possible smoothing,
downsampling and image regions (excluding horizon pix-
els only) being used. However, as with the GradDescent
method, if greyscale images are used, path-lengths in
BW are never signi�cantly better than the control. With

DC DL BW NS

Fig. 12: Box plots showing path-lengths obtained
using the RunDown model within the three image
databases and control condition. Optimal parameter set-
tings: downsampling rate = 1, No. of Gaussians=3 and
image region used = +/-20◦ around the horizon using
black and white images.

Table 8: P-values calculated for comparisons between
path-lengths the various image databases using Run-
Down Model.

DC DL BW NS
DC X <0.01 0.02 <0.01
DL <0.01 X 0.01 <0.01
BW 0.02 0.01 X <0.01
NS <0.01 <0.01 <0.01 X

black and white images, many parameter settings pass
the �rst criteria of signi�cantly shorter paths in all visual
surrounds than the control, but though most combina-
tions also show the trend of shorter paths for NS, this
is not statistically signi�cant except for the six settings
mentioned.

4 Conclusions

Six biologically plausible models of visual homing have
been implemented and tested using image data-sets taken
directly from the visual environments used in homing ex-
periments on crickets. Each model was assessed for its
ability to replicate the performance trends observed for
crickets homing with di�erent visual surrounds (Wess-
nitzer et al 2008). That is: that homing was better with
any visual surround than in the dark and that homing
was better with a natural scene than with distinct land-
marks and blank walls. Homing paths were initiated from
the same start-points, and where appropriate start di-
rections, as the crickets. Additionally, across the model
implementations, aspects of visual pre-processing and
movement control were either held constant or optimised
for each model by an exhaustive parameter search.

Table 9 summarises the results of the parameter search,
indicating the number of possible parameter permuta-
tions (which, as explained in the methods, could vary
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Homing model Number of parameter Control outperformed DL and BW
permutations tested in all visual surrounds outperformed by NS

ALV 720 0 0
COMALV 1440 102 80

FO 600 0 0
SO 600 5 5

GradDescent 1440 426 6
RunDown 144 41 6

Table 9: Summary of the model parameter tuning results. The maximum parameter permutations are shown for
each model. The the numbers in the subsequent columns indicate the number of parameter permutations that failed
to pass the performance indicated by the heading.

for di�erent models) and the number of permutations
that met the performance criteria for each model.

The Average Landmark Vector and First Order Dif-
ferential models were found to be incapable of reproduc-
ing the performance trends of crickets. The ALV model
was unable to home in the natural scene, and always pro-
duced the best homing with distinct landmarks. Similar
results might be expected for any feature-based homing
algorithm that relies on reliable extraction of landmark
features. The FO model in contrast homes well within
both DL and NS but performance within the BW sur-
round is statistically worse than the control condition.
This can be explained by the fact that the useful hom-
ing information for this model is contained largely in
the focus of expansion and contraction. In the BW en-
vironment, the foci always coincide with regions of bare
arena wall where intensity values are broadly similar and
thus correspondences are di�cult to accurately assess.
We therefore dismiss the Average Landmark Vector and
First Order Di�erential models as homing strategies em-
ployed by crickets.

The increased robustness of image gradients com-
pared with absolute pixel intensities within the blank
walls surround enabled the Second Order Di�erential
Model to produce some parameter combinations that
passed the performance criteria. However this is depen-
dent on large levels of additive noise which are not only
required to improve homing within BW but also to in-
crease the performance gap between NS and DL. As a
result, even with the optimal parameter setting, which
minimised for both the di�erence in medians and inter-
quartile range between cricket and model data, the me-
dian and variance generated within BW are substantially
greater than the cricket homing times when tested in the
same environment. We note that though not included as
a speci�c criterion, crickets show no signi�cant di�erence
for DL and BW whereas this model always produces sig-
ni�cantly worse results in BW than DL.

Gradient descent based models of visual homing were
found capable of reproducing the performance trend of
crickets. However success could not be found when grey-
scale images were used due to the noisy error surface
within the BW surround. Through the use of black and
white images rather than grey-scale error surfaces are

smoothed such that homing is successful in all environ-
ments. Indeed this smoothing makes performance within
NS and the other tests environments di�cult to statis-
tically separate. The GradDescent homing method suc-
cessfully achieved statistical signi�cance between NS and
both DL and BW by downsampling the image at the
maximum rate, which reduced the robustness of the er-
ror surface within DL, in combination with a small noise
term. However, even with the optimal parameter choice,
this produces much higher variance in path lengths in
DL than observed for crickets. Given that this method
also requires the sampling of all cardinal directions before
moving in the home direction, it is seems less plausible
than the simple RunDown method.

The RunDown method could successfully reproduce
the right pattern of statistical di�erences across the vi-
sual environments and also provided a reasonable match
to the observed median and spread in the cricket data.
The COMALV Model also accurately reproduced the
performance of crickets. The performance criterion was
reached for 6 out of 144 possible parameter combina-
tions for RunDown and for 80 out of 1440 possibilities for
COMALV. For both methods, the performance criteria
were only met when black and white images were used
as input. This reduction in information dimensionality
reduces the e�ects of noise in the blank walls environ-
ment. Both models were successful for all possible levels
of image smoothing and image resolution suggesting they
may be robust for di�erent insect eye models, such as
bee or ant. COMALV required some noise to prevent it
from being trapped in loops; RunDown is an inherently
noisy procedure. The COMALV algorithm worked only
with the largest image type, whereas RunDown was also
successful with more restricted �elds of view, excepting
when only horizon pixels were used.

From these results we conclude that the `place mem-
ory' observed in our original cricket experiment (Wess-
nitzer et al 2008) can be explained by visual homing
(rather than requiring more explicit spatial representa-
tions); and that simple calculation of either the image
`centre of mass' or the image di�erence is not only suf-
�cient, but produces results closer to those observed for
the cricket than more complex algorithms requiring fea-
ture extraction or optic �ow calculation. In passing it is
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worth noting that the initially unexpected cricket hom-
ing in the Blank Walls environment is accounted for by
these models without including the canopy area in the
images; the very slight light gradient that existed across
the arena was su�cient for homing. This may be im-
portant for eliminating unintended cues in any visual
orientation experiments on insects.

Both successful methods are computationally cheap.
The COMALV method is also cheap in requiring only
one vector, rather than a home image, to be stored: al-
though parallel retinotopic processing in the insect brain
may mean image storage is also relatively cheap. The re-
liance of the COMALV Model on the entire image region
suggests a possible experimental design to separate the
COMALV and RunDown models. If the �eld of the view
of the insect could be limited, either through eye cap-
ping or physical barriers, and its impact on the homing
ability of insects observed, then the likelihood that the
COMALV Model is the homing strategy in use could be
inferred. Such screening experiments have sought to in-
fer the portion of the visual scene used by homing wood
ants (Fukushi 2001) and desert ants (P. Graham, per-
sonal communication), and may o�er a modelling envi-
ronment able to distinguish the homing models.

One limitation of the all models described is that
the orientation of the images had to be kept consistent
throughout. Such image alignment is generally required
for both image-based and feature-based homing models.
While it is theoretically possible to infer the rotation of a
current image in relation to a reference image such that
images may be aligned prior to comparison, and some al-
gorithms carry out this step, it is a non-trivial problem.
Usually it is addressed by assuming the insect or agent
has a compass to provide rotation information. However
within the cricket arena no compass cues (magnetic or
polarised) are available and there is no evidence of crick-
ets rotating to align images from the behavioural data.

A possible solution to the alignment problem, where
compass information is not available, is that insects may
store multiple snapshots at the goal location, while ori-
ented in di�erent directions. Thus when the insect is per-
forming a subsequent homing run, the snapshot memory
most closely matching the current world view would be
used as a reference for calculating the current error or
home vector. In this way locations of importance, which
are visited repeatedly would have multiple, strongly re-
inforced memories and could be approached from many
directions without the need for a compass at all. This
type of gradual learning of a location may account for
the learning curve observed in the cricket behavioural
experiments in Wessnitzer et al (2008) and will be sub-
ject of further study.
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