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Robots can be used to test hypotheses in the neuroscience of sensorimotor control.

Some well explored systems in invertebrates are particularly suited to such

implementations. Examples are discussed from visual motion perception, auditory

localisation, chemotaxis and escape behaviour. The results provide a

complementary insight into understanding these complex systems, by providing a

real-world grounding and thus emphasising the contribution of the physics of

environments, sensors and actuators to the control of behaviour.

If we understand how a biological system works, it should be possible to build

something that works the same way. Advances in neurobiology have been accompanied

by advances in technology, and there is much interest in the possibili ty of designing

robots with the capabiliti es of animals. Invertebrate neuroscience in particular is

providing many neural 'circuit diagrams' that can potentially be copied as sensorimotor

controllers for robotics. While much of this work has a technical focus, in some cases

the robot constitutes a means to test neuroscientific hypotheses, with results that can

feed back to biology. This report describes some recent examples of such work and

discusses what can be learnt.

One important way in which work in robotics can contribute to neurobiology is

by testing models of neural systems within the constraints of real sensing, tasks and

environments. Because neurobiological systems are complex, and modern modelli ng
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methodologies allow the construction of ever more complex representations of them,

validation of models has become more problematic. It can sometimes seem possible to

reproduce whatever output is observed from the real system simply by tuning the many

parameters, adding extra connections, or finding the right format for the model input or

output. It is necessary to find ways of constraining the model i f we are to have

confidence that reproducing the behaviour is really a criti cal test of the underlying

hypothesis.

It is also worth keeping in mind that producing testable predictions is not the

only useful function of implementing models. A model is a powerful way to combine

and summarize data that may be gathering piecemeal. Connections and gaps can be

revealed in model building that otherwise may be overlooked. The logical adequacy of

hypotheses to account for the data is sometimes revealed to be incomplete when they

are formalised for modelli ng. Often alternative hypotheses present themselves during

model construction and the understanding of what a particular mechanism may be

capable of is improved. In these respects, different kinds of models can offer different

perspectives. Analytical models provide clear statements and can often lead to useful

generalisation by drawing out equivalencies between processes. Highly detailed

simulations e.g. of neural biophysics, may focus attention on areas of missing data. A

physical model, such as a robot, places the focus on the complete problem, that is how

interaction with the world and neural systems mutually constrain each other. A

consequence is that addresses how the embodiment7 and effect of actions on the

environment contribute to behaviour, rather than treating sensory processing as a

unidirectional information-extracting computation. Our view and interpretation of

neurobiological data is changed when we take a more holistic, task-oriented and

embodied view of what the neural circuitry is doing.
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Over the last decade there have been an increasing number of robots built to

explore biological ideas, ranging from lego models of pre-cambrian worms39 to

humanoids4. But as for other problems in neuroscience, invertebrates have provided

particularly fruitful model systems for this approach. This is because we have in some

cases come close to having a full understanding of the specific neural connections that

underlie the production of particular motor responses to particular sensory stimuli .

Insect visual control

One of the best studied areas in invertebrate neuroscience is the sensory system

underlying visual motion perception, so it is not surprising that this is also an area in

which a number of robot models have been built i n recent years. Several authors 10;17;47

have speculated on the various ways we might exploit our understanding of the insect

for robotic, in particular how some rather simple but clever algorithms apparently used

by insects could be adopted for controlli ng mobile robots. Examples of implemented

systems include: balancing lateral visual velocities to move down the centre of a

corridor 44;52using the maintenance of a constant angular velocity to slow down when

approaching a tighter passageway, or landing place46; and using peering to extract range

information29. Such implementations indirectly test the efficacy of the proposed

controllers as an explanation of the insect's behaviour; in what follows I will discuss

some examples of more explicit attempts to use the robot in evaluating hypotheses.

Collision avoidance

A leading example in this field was the work done at the end of the 1980s by

Franceschini and colleagues37. The aim was to show how the implementation of insect-

li ke vision could provide a mobile robot with a rapid and robust capabili ty to steer

through a complex environment. At the same time it was an investigation of how the

motion detection system of the fly might be used to perform colli sion avoidance. This
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involved both analog hardware modelli ng of the neural circuitry thought to perform

motion detection, and analysis of the information available from motion parallax for

guiding movement. Franceschini et al12 note that by the use of a robot they were "forced

to an ultimate level of concreteness in specifying the design of the complete optomotor

loop" for the fly.

The robot carried a compound eye consisting of 100 facets around the horizontal

plane. The photosensors were wired with lateral interactions to form elementary motion

detectors, copied from the fly. The layout of the visual axes of the sensors followed a

sine gradient from front to back; this also resembled the fly and had the attractive

property of compensating for the sine law inherent in the optic flow field for forward

translation. After each translational step, the distance of obstacles was extracted from

the flow field and used to determine a rotation that would avoid obstacles while

remaining as close as possible to the target direction. The resulting mechanism could

'slalom' the robot at 50 cm/s to a target through a random array of posts.

A problem that emerged from this work is that the range of effective vision

decreases as the visual axis approaches the line of travel. In other words, the robot or

animal will have trouble detecting obstacles directly ahead, obviously a problem for

motor control. A solution investigated by Mura & Franceschini34 is to introducing a

scanning movement of the eye during the translation. Moreover, investigation of the fly

compound eye motivated by this problem has suggested that it actually has a muscle and

tendon system that carries out scanning movements of this kind11. In 18 a microscale

sensor based on this principle is described. An alternative implementation of the same

basic concept is for the robot to use a zig-zag motion, i.e. periodically changing

direction to compensate for the parallax blindspot. Lewis28 suggests that such behaviour

is observed in insects and demonstrates that using it on a robot enables successful

navigation through a field of obstacles.
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Optomotor and tracking response

Another specific hypothesis about the neurocircuitry of the fly visual motion system

was investigated in a robot model by Huber et al21;22. Flies show a number of reflex

responses to visual stimuli . These include the optomotor reflex, producing torque in

response to largefield rotation, and a fixation response to a vertical stripe. It has been

suggested that a common behavioural module may underlie both these behaviours, that

is, they may make use of the same sensory circuit. In particular, the fixation could be

explained by the front-back asymmetry in the response of horizontal cells which

integrate the output of elementary motion detectors. Because the response to (randomly

generated) progressive motion is stronger than to regressive motion, the fly will end up

oriented towards the stripe.

The robot implementation of this hypothesis uses a conical mirror above a video

camera to get a 360-degree view, and samples five circles along the horizon, averaging

vertically to get 96 sensor inputs each with an aperture of 2.1 degrees. The signals are

spatially and temporally filtered by processes analogous to the large monopolar cells in

the fly's lamina, motion is detected using the Hassenstein-Reichardt model of

processing in the medulla and then integrated by a model of the widefield horizontal

cells in the lobula plate. These signals are coupled proportionally to the motor response,

such that leftward visual movement produces leftward rotation and vice-versa, but as

described above, the signal (and hence the response) for front-to-back motion is

stronger than the signal for back-to-front. With the normal optomotor stimulus of a

striped drum, these signals are balanced and the usual compensatory rotation to stabili se

the environment is seen. With a single stripe, the stronger turning for progressive

motion results in the robot orienting towards the stripe, and reliably tracking towards it.

The results demonstrate that one visuomotor control mechanism can generate

both responses in the fly. The expressed behaviour depends on the environmental



6

conditions without there being any explicit recognition of the conditions or switch

between the responses. Thus the work on the robot has provided a 'criti cal evaluation of

biological models' (22, p.227) in this area.

Looming response

Blanchard et al2 used a robot to investigate a different behavioural subsystem of insect

vision, the 'looming' response. In locusts, an evasion response is triggered when objects

approaching on a colli sion course exceed a threshold visual angle. An identified neuron

- the lobula giant movement detector - appears to be a criti cal element of this

behaviour42. A camera mounted on a miniature robot was used to provide input to a

model of the anatomical and physiological organisation of this neuron41. The response

of the neuron appears to depend on a 'race' between excitatory and inhibitory inputs,

such that only rapidly expanding visual stimulus will excite it. With ideal stimuli , the

rate of f iring of the neuron encodes the rate of approach of the stimulus. However it was

found with the robot, that even in a rather simple environment, the variation in the

visual stimulus meant there was a great deal of variance in the neural response,

suff icient to obscure the relationship between firing and approach rates. Nevertheless it

was possible to define a threshold firing-rate level for reacting that enabled the robot to

avoid colli sions, albeit at varying distances from the obstacles.

The results suggest that more realistic stimuli need to be used to correctly

characterise the neuron's response, but also that high accuracy in sensing is not a

prerequisite for effective behaviour in this case. A further issue that arose from this

implementation is that when the robot reacts to avoid a colli sion, the visual stimulus

during its reaction can provide an inappropriate input to the colli sion detector. This

suggests there needs to be some kind of inhibitory or efferent-copy connections within

the avoidance system.
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Taxis

Many other sensory systems in insects are also well studied and the neural

underpinnings sought. Behaviourally, a common response to various sensory signals is

taxis, i.e. to orient to the source in order to find it. Many mobile robots have been built

with generic taxis capabiliti es (particularly inspired by the 'thought-experiments' in

Braitenberg3). Some of these robots have been designed to investigate specific

hypotheses about animal taxis.

Phonotaxis

I have been involved in a series of studies using a robot implementation to elucidate the

neural circuitry involved in auditory localisaton and recognition in the cricket 30;31;49-51.

Female crickets can locate a mate by moving towards the species specific song

produced by the male. The behaviour, neuroanatomy and neurophysiology of this

system have been studied for some years (e.g. see reviews in 19;20;38). However to date

there is not a complete, well -specified model of this system. The work on the robot has

demonstrated one plausible solution, consistent with the biological observations, that is

capable of producing the appropriate behaviour when tested in the same experimental

conditions as the animal.

The cricket's ears are connected by a tracheal tube and thus function as pressure

difference receivers. That is, the vibration of the ear drums is the sum of direct and

delayed inputs and hence is dependent on relative phase which varies with sound source

direction for a given wavelength. The resulting vibration amplitude difference between

the ears is neurally encoded both in spike rate and spike onset latency. The temporal

pattern of the sound - consisting of bursts at a characteristic rate - is also apparent in the

spike pattern of auditory neurons and interneurons. The issue then is how the
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subsequent neural processing filters the pattern to recognise the song and compares the

difference between the ears to determine the direction of the singer.

The solution proposed in 49 is that the two tasks can be linked, by making the

localisation circuit dependent on having the correct pattern. In fact, a very simple neural

network can be devised with the requisite properties51. An adapting synapse between the

auditory neurons and the motor neurons means the latter receive input only at the onset

of sound bursts. This requires a burst repetition rate slow enough to be clearly coded by

the auditory neurons, but fast enough to allow the summation of successive motor

neuron stimulations to reach the threshold for response. Thus a bandpass for the

repetition rate is set, which corresponds to the parameters for 'recognition' established in

experiments on the cricket. Using cross inhibition, the side of f irst onset will suppress

the other side, and the motor output will t hus generate a turn towards the louder or more

clearly patterned sound.

This neural circuit was implemented in a spiking neuron simulation that ran on a

robot equipped with an electronic model of the cricket's ears and capable of moving at

comparable speeds to the cricket. Testing it with real or computer generated cricket

song showed that it could track the sound, provided it had the correct carrier frequency

and bandpass repetition rate, i.e. it appeared as selective as the cricket. Moreover,

testing the robot with two sound sources it was found that this system also appears

capable of 'choosing' and tracking the louder or better song. These results raise a

number of issues for the cricket neurophysiology, some of which are being examined,

such as whether first onset does determine turning direction, and how much of the

filtering can be attributed to inherent low-pass properties of integrating neurons.

In more recent experiments48 the phonotaxis response has been combined with

an optomotor response generated by a hardware analog VLSI chip designed by

Harrison16 that mimics the optomotor visual processing of the fly described in the
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previous section. Experiments on the cricket using combinations of auditory and visual

stimuli had suggested a simple additive combination of the two responses would explain

the behaviour. It was found, using the robot, that this would not in fact suff ice when the

system had realistic feedback from its actions, particularly because the dynamics of the

two sensory systems differed.

Chemotaxis

Although tracking a chemical source might be considered essentially the same problem

as tracking a sound source, in fact it differs substantially because of the nature of the

signal. Chemicals do not usually disperse in a smooth gradient, but rather their dispersal

is determined by the movement of the medium - air or water - in which they are being

dispersed. The resulting 'plume' is typically directed, intermittent and turbulent. Hence a

simple comparison between two spatially separated sensors is li kely to be inadequate to

reliably determine the turning direction that will bring the animal or robot closer to the

source. This has been demonstrated at the algorithmic level in experiments with a

'robolobster'13;14. This robot is designed to operate underwater, in the same flow-tank as

the lobster. It is scaled to the lobster in body size, spatial layout and response resolution

of the sensors, and speed and pattern of locomotion. Using only tropotaxis -

instantaneous comparison of the concentration between two sensors - the robot cannot

effectively track a plume. It would appear necessary to include time-differentiation of

the signal and/or rheotaxis (up-stream orientation) to explain the animal's behaviour.

The neural underpinning of chemotaxis mechanisms is less well understood than

for the auditory or visual processing discussed thus far. Several studies have thus looked

at this problem at the neural level by attempting to design, train or evolve a small

network of model neurons to be capable of dealing with the problems for a real robot

response. In work by Kuwana et al26, the robot is actually equipped with the same

pheromone sensors as the moth it models. The antennae are dissected from the male and
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attached by silver electrodes to an ampli fier circuit on the robot, to detect the potential

difference across the antennae caused by the female pheromone. An eight neuron

recurrent network is used to connect the sensors to the motors, and can be tuned by hand

or by evolutionary methods to produce the casting and turning behaviours described by

Kanzaki23.

An exception to the 'plume'-type stimulus for chemotaxis is given by the

experimental conditions used to test chemotaxis in the nematode worm. In this case, a

gradient of concentration is established from the center to the edge of a petri dish, and

nematodes released into the dish are observed to orient themselves up the gradient to

reach the center. On the other hand, the nematode's anatomy means that it samples this

gradient essentially at one point only, unlike the spatially separated sensors of the

lobster or moth. This environmental interface was modelled in a robot by Morse et al33

using a light source to create the sensory gradient and a single non-directional li ght

sensor to detect it. They also modelled the observed motor control of the nematode

which moves at a near constant speed and steers by the relative contraction of muscles

on each side of the head and neck.

The neural network used to control the behaviour is a simpli fication of identified

neural properties in the nematode. The neurons are non-spiking, and can be represented

as a single isopotential compartment. They are further simpli fied by being made linear,

which makes analysis possible although at some loss of realism, e.g. the voltage-

dependence of conductances and non-linear synaptic functions are not represented. The

network in the nematode is known to consist of chemosensory neurons, interneurons

and motor neurons which are highly interconnected. A model with one sensory neuron,

three interneurons and two motor neurons (one for each side) was fully interconnected

and the parameters determined using a simulated annealing algorithm. The resulting

circuit could control the robot so as to approach the sensory source, and was robust to
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changes in speed or the addition of turning bias. Analysis of the network enabled Ferree

& Lockery9 to describe the function in terms of a computational rule that combines

klinotaxis (changing turning rate proportionally to the gradient of the stimulus) with

klinokinesis (changing turning rate in response to the scalar value of the stimulus field)

to best match the observed behaviour of the nematode. These strategies are thus

candidate mechanisms for chemotaxis control in C. elegans.

Escape behaviour

As well as approaching certain sensory sources, another basic behaviour in many

animals is to move away from or escape a sensory source - typically signalli ng a

predator or some other risk. One well explored neural circuit for such behaviour is that

involved in the wind-mediated escape response of the cricket and cockroach. These

insects have two rear appendages - the cerci - that are covered in hair sensors that detect

air movement. When stimulated by a puff of air, such as might be created by a

predator's strike, the animal rapidly turns and runs away from the direction of the wind.

The anatomical layout and neural connectivity of the sensory axons has been well

described25;36 and a small number of identified neurons well characterised. These

include four pairs of  'giant' interneurons that connect the abdominal ganglion directly to

the motor areas of the thoracic ganglion, and are involved in initiating and steering a

rapid escape.

Chapman6 has built a set of direction sensitive wind sensors that resemble the

hair sensors on the crickets cerci, and modelled the neural system using low-level

programming features in a robot's microprocessor, to produce an escape response in the

robot. The neural pathway is divided into a 'trigger' system and a 'direction' system,

which respond to acceleration sensitive and velocity sensitive hairs respectively. At the

thoracic ganglion level, the trigger system integrates sensory input and starts a central

pattern generator circuit that causes forwards or backward movement for a short time.
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The direction system modulates the response by inhibiting one side or the other, causing

a turn. Furthermore the network includes input from 'antennae', light and sound sensors.

This enables the robot to integrate these other modaliti es with its escape response, e.g.

to avoid obstacles and follow walls while escaping, to have heightened sensitivity for

escape when light or noise levels are high, or indeed to show an escape response to

suff iciently strong changes in any of these sensory cues.

The resulting behaviour of the robot replicates a number of characteristics of the

animal's escape response, such as the abili ty to make different kinds of initial turns

depending on the stimulus direction. As well as providing a complete model of this

system, a number of testable predictions could be made, for example regarding the

response duration of escape runs and the lack of effect of additional stimuli during an

escape run. Some interesting features of the circuit were that it delayed integration of

different sensory pathways to the final pre-motor stage, and that it was found that some

'priming' effects were not possible when a linear approximation for the membrane decay

function was used.

Discussion

In this report I have focussed on just a few examples of robots modelli ng biological

systems taken from invertebrate neuroscience. There are many other similar studies to

be found in the fields of invertebrate behaviour (e.g. 27;32), and vertebrate neuroscience

(e.g. 5;15;43;45). A major motivation for the work remains the possibili ty of f inding new

solutions to engineering problems. But from the viewpoint of the biologist, what are the

advantages and costs of actually building physical replicas to test hypotheses? Do robots

provide a more realistic way to ascertain how a neural circuit controls behaviour?

The answer depends what is meant by 'realistic'. This can, firstly, concern how

applicable the results of the robot are to the real biological system - is the model it
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implements intended as "an empirical claim about some part of the physical world"35?

Much of the engineering end of biologically-inspired robotics is not, in this sense,

realistic modelli ng of any actual biological system. But as I have tried to ill ustrate here,

there are examples that do closely relate to biology. Provided the robot implementation

is properly assessed, it can, li ke other kinds of models, provide useful evaluation of and

predictions from biological hypotheses.

However a robot may be a 'realistic' biological model in this sense yet not in a

second sense: that of how detailed the model is. That is 'real' as the opposite of 'ideal'.

For example many of the models discussed above use a rather idealised notion of motor

control and do not include the details of limb movements to generate motion. They

nevertheless provide an interesting examination of real biological questions. Other

robots not discussed here attempt to replicate in more realistic detail the motor

mechanisms (e.g. for six-legged walking in insects24;40, or for lobster locomotion1).

However hardware constraints on robot models can limit the realistic detail possible.

For example we still l ack motor technology that is comparable to muscle in its strength

and flexibili ty for space and energy requirements. Thus a robot model may necessarily

be more abstract than a detailed simulation.

A third use of 'realistic' is to refer to the biological level of the mechanisms

represented in the model. As noted by Churchland & Sejnowski8 "Not uncommonly, a

model will be criti cised as unrealistic for faili ng to include very low-level properties"

(p.136). Here the use of the term can be highly relative - the simple spiking neurons

used in the model of escape behaviour are 'realistic' compared to most artificial network

research but not so realistic as the multicompartmental ion channel models used in

many small network simulations. Though there is no theoretical reason why such low-

level neural simulations could not be connected to a robot's actuators and effectors, in

practice there are problems, for example, with having the processing of sensory input
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occur in something approximating real time. Hence there limits on the 'level of realism'

possible in robot models as a consequence of the aim of building complete systems that

connect sensors to actuators and guide behaviour in actual tasks.

It is worth noting, however, that realism in the sense of detailed or low-level

mechanisms is not a guarantee of realism in a fourth sense, that of whether the

mechanisms built i nto the model accurately represent the system being modelled. A

highly detailed low-level simulation may turn out to be an incorrect explanation of the

phenomenon, where a higher level or a more abstract representation in fact captures the

'real' situation. The nematode robot ill ustrates this point: the exact neural connectivity

used in the robot probably will not map exactly to the circuit in the nematode when this

is determined; whereas the analytic description of it as combining klinotaxis and

klinokinesis is li kely to be an accurate description of the function of whatever actual

circuit is found. Robot models may be biologically plausible at one level but not at

another.

A related debate is whether we can ever know that we have 'accurately

represented reali ty' in a scientific model. Logically, we cannot, but it is apparent that

some models, such as those derived from regression analysis on the data, make lesser

claims to this kind of realism. On the other hand, such models can be capable of highly

'realistic' reproduction of the data. In robot models of animal behaviour, there can be a

superficial sense of such 'output' realism induced by our natural reactions to seeing a

real-world device moving autonomously. The robot can appear impressively 'animal-

like' even when the behaviour only loosely resembles the real animal. Relying on this

effect is a potential pitfall for robot modelli ng. It is a poor substitute for what should be

a real strength of robot models - that the model can actually be tested in the same

experimental situation as the animal and data collected to make direct comparisons.
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This leads to a final sense of 'realistic' - when it is used to refer to the nature and

context of the model i .e. does it exist in and interact with the real world? It is only in

this sense that robot models are, of their nature, more realistic than other kinds of

simulation. Hence it is here that we should look for the advantages of such models, that

may counteract some of the limitations described above. One is that by providing a real-

world grounding, researchers are prevented from making unrealistic assumptions about

the environment, which may mislead them about the mechanisms needed to deal with

the environment, as ill ustrated in the work on the looming detector described above.

Another is that it is sometimes easiest to represent reali ty with reali ty, as in the use of

real moth antennae on a robot described above. Additionally it is important, if we are to

understand the neurobiology of an animal, to understand some of the real physics of the

sensors, actuators and environments that it inhabits.

In summary, then, the use of robots can offer a complementary method of

modelli ng biological systems. The field of insect neuroscience seems particularly ripe to

take advantage of the strengths of such models, as we have something approaching a

holistic understanding of parts of the behaviour from sensors to control at the level of

neural connectivity. As well as there being a potential technological pay-off in

generalising the small and eff icient mechanisms found in insects, there is also much that

biologists might learn through these approaches.
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