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Abstract—A nonlinear feedforward compensator was de- on the issue of adding a visual capability, tbptomotor
signed as part of a bioinspired neural network to model sen- reflexto the robot.

sorimotor integration and control in crickets. Female crickets For a mobile robot (or an animal) a rotation of the

perform auditory orientation (phonotaxis) towards the male’s fi . | field | v th It of If-rotati
calling song to find a mate. Crickets also use visual sensing, for entre visual ne ; IS ysua y the rgsu of sefi-rotation.
example in the optomotor reflex which allows them to maintain  Consequently, unintentional self-rotation can be corrected by

a straight trajectory against disturbances. The compensator turning in the opposite direction in response to visual rotation
describe in this paper allows the efficient integration of the signals. This reflex compensates for external disturbances
phonotaxis and optomotor systems. The design is inspired by gnq inaccuracies of the muscle-motor response, to maintain a

the neurophysiological concepts of efferent-copy and corollar . . . .
dischargel,ovxyhich gan be dire([:)tly intepreted witﬁ?/n control the-y straight trajectory. Note, however, that the acoustic and visual

ory as feedforward compensation for predictable disturbances. Mechanisms have conflicting aims. The auditory response
The aim is to predict the reafferent visual stimulus caused by tries to align the trajectory towards the sound source, while

phonotaxis, based on the efferent response, thus filtering out the visual response tries to correct for any change in the

the optical disturbances induced by the phonotactic reflex, while trajectory, thus counteracting the alignment attempted by the
still detecting any external noise. The feedforward compensator auditory s'ystem

design was formulated as an identification problem, drawing . : .
data from experiments on a robot performing phonotaxis. The Different solutions have been proposed to solve this sen-

compensator parameters were first derived by trial-and-error,  sory conflict [7], [12], [14] including: adding the outputs
and then optimised using a genetic algorithm. The scheme is of the visual and auditory systems with different gains;
implemented in a bioinspired neural network on a robot, and - paying the auditory system output inhibit the visual system
experiments are carried out to compare the behaviour to the . . . L .
cricket. output; having the auditory system output inhibit the visual
system input; subtracting the auditory system output from the
visual system input; and having the auditory system output
control behaviour via the visual control system.A comparison

The realization of bioinspired control schemes need@Mong these methods, as discussed in [14], showed that
strong interaction between different disciplines such as cogimple suppression of one sensory system by the other was
trol theory and neurophysiological studies. The auditor§t reasonably effective mechanism. However none of these
behaviour of the cricket has been extensively studied pynplementations used dynamics.
biologists [1], [3], [4] and has been the subject of a series A more suitable control method is to predict the amplitude
of robot models [2], [5]-[8]. In this paper we extend theand time-evolution of the visual stimulation that arise when
robot, to test a neurally-implemented ‘forward model’ [9] asn auditory response is accomplished. It was first suggested
a solution to the control problem of combining auditory and?y von Holst and Mittelstadt in 1950 that biological systems
visual behaviours. may use an internafferent copyof motor command signals

Female crickets are able to recognise the species specifcmodulate sensory processing for predicteafference A
pattern of male calling song and move towards it. In recef@milar idea was simultaneously proposed by Sperry, i.e. that
work [10] new data from female crickets reveals a rapi€nsory areas receive arollary d|schargecorresp0n_d|ng
steering response towards the male, modulated by recogHi- the expected feedback. Although this concept is often
tion of the song pattern at a slower timescale. In [11] a neurk¢ferred to in biology, there is surprisingly little direct
system which includes the rapid reactive pathway and tHeeurophysiological evidence of conneptlons f'rom motor to
slow perceptive recognition was designed and tested onS&nsory systems that could support this function. Moreover,
robot. This model is called thiast modekince the acoustic Piologists often overlook the problem that the system must
stimulus gives rise to a reaction &5 — 60 ms. Details of the somehow calculate the expected feedback - in control theory
results from experiments comparing the resulting auditor{g'ms, it must implement a forward model to be able to

behaviour to the cricket are provided in [11]. Here we focu§ompensate the expected disturbance [9]. .
The control strategy proposed in this paper consists of
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Elettrica Elettronica e dei Sistemi, Univessitlegli studi di Catania, Italy. ences due to the acoustically driven motor command. The

. INTRODUCTION

email: parena@diees.unictit _ _prediction is used to inhibit the optomotor system, so that
B.Webb and R.Reeve are with the Institute of Perceptloni . hi bined with ph is. M h
Action and Behaviour, University of Edinburgh, UKemail: t Is smoothly combined with phonotaxis. Moreover, the

bwebb@inf.ed.ac.uk system is realised as part of a network of spiking neurons,



Corollary Efferent

Discharge | Forward Copy
ompensato

Optomotor

acoustc  When the membrane potential reaches the threshold value
Input V7, it is set to its recovery valueV,.. and kept for a
refractory time (), thus a spike takes place, according

motor  tO the following equation:
Cutput

Phonotactic
System

Exogenous Visual
Visual Input Sensor

Vazan (t) =1
Vmemb(t) = Ve

Reafferent Zf( Vmemb (t) > Vth) { (3)

Fig- 1. The FeedForward compensation model. Synaptic effects are modelled as changes in conductance,

and include facilitation and depression mechanisms to allow

demonstrating that it is a plausible solution for the CriCkettemporal filtering. Such techniques allow the construction of

i . ) : small networks with useful capabilities, such as selectivity
and can be used effectively in controlling a mobile robot. W . . :
o particular patterns, or copying of external dynamics.

sgggest _that_th|s methodology, used to mtegrat_e acoustic aJPHe trend of conductancé,,,, facilitation Gfacs,, and
visual stimuli, could be extended to many similar problems . . ; o
: : o depressiorGdeps,, is exponential, each one with its charac-
of integrating sensory stimuli. L A .
teristic exponential timing (respectively,,, 1facs,, and
I[I. DESIGN OF THE CONTROL SYSTEM Tdepsyn). These variables are governed by the following

A. Control theory basis and application first-order ODEs:

The multisensory integration is based on feedforward com- Gsy.n () + Goyn(t) ;? 2 _9
pensation, a well-known method in industrial applications of . v 109
control theory. It is an simple method to compensate for Gfacsyn (t) + Gfac_‘;yn(t)TfaT =0 4)
disturbances that are a priori known and accessible. In such . ln; n2
cases, the correct identification of the plant allows an exact Gdepsyn (t) + Gdepsyn(t)

. : . Tdepeyn  Tdepsyn
compensation of the noise. Here we consider the optomotor e Pey

reflex as the plant and the phontaxis system as the sourt@erefore the spikes emitted by the pre-synaptic neurons
of noise: acoustic sensing produces a series of actions tiégger the facilitation and depression mechanisms in order to
will change the motor output planned by the optomotoproduce the synaptic inpu;,,, for the post-synaptic neuron,
reflex. Hence it can be compensated by using a dynam@s illustrated in 2. When a spike occur®fon(t) = 1),
feedforward model of the plant to predict the visual sensorfpe synaptic variables are updated applying the algebraic
(reafferent) signal corresponding to any action caused [®fuations described below:

the pho_notaxis behaviour (Fig. 1)_. Ea(?h pair _of phonotactic Gan(t) = Gogn(t) + Gdepoyn () [Gincsyn + Gfacsy (t)]

motor s_lgnals and the ggrrespondmg visual st!mulus form_ an Gfacoym(t) = Gfacsyn () + Gfacinceyn 5)
output-input couple, utilized to learn the required dynamic. Gepapn(t) = Gdepun(t) - Gdepfrace

B. Neural Network where Gincs,,, represents the increasing value of the synap-
The neural architecture is based on the neuron moddis conductance(facincs,, the increasing value of the facil-

described by Koch in[15]. The membrane potential dynamidsation andGdepfrac,,y, the fraction to which the depression
is represented by a simple first-order ordinary differentiatariable is reduced.
equation (ODE) and a spike occurs when a threshold is The neuron model introduced in (2,3) and the synapses
reached (i.e. an integrate and fire neuron) [16]. The state déscribed in (4,5), have been used as elementary blocks to
the membrand/,,....;, is governed by the following equation: build a bioinspired neural network. The circuit was built to
G Gy resgmble the cricket neurgl system, and can be divided into
Ve (t)= Ve (1) 4 different subsystems (Fig. 2):

A: The optomotor reflex senses the left/right virtual move-
ent of the world and consequently drives the motor con-

L]

Vmemb (t) +

where the Gpemp, Cmems @nd V.o are respectively the
conductance, the capacitance and the resting value of Sller neurons to compensate the visual stimuli

neural cell. The neural equation is extended when the NeUrgN -1 Acoustic sensing is based on cricket ph)./siology and
is excited by a synapse. The synaptic contribute is visible ig' described in detail in [7]
(2), where G,,,, and V,,,, are the conductance and the :

! s C: The phonotactic reflex has two different pathways:
reference voltage potential of the synapse. The indéx . :
; the reactive one (ANLFast) and the perceptive one
used because several synapses should be considered.

(AN1—BN1—BN7—Gate—Fast) [11].
D: The feedforward compensator has been designed to take
Gmemb + Z G?ynz(t) . . .
i Vines (£) = the outgoing signal from the phonotactic system and to
Crnemb compensate the corresponding reafferent optomotor signal.
{(Vrest Conems) +Z(Vsyn- Gsyn-(t))} / Conem An internal source of noise is used to test the correct
p ‘ ‘ working of the optomotor reflex. The motor controller units
Vazon(t) =0 are biased with random spikes, to represent disturbances that

Vmemb (t) +

)



a genetic algorithm (GA) as an optimization strategy. In
order to identify the feedforward compensator, data were
gathered from experiments in which the roving Koala robot
was allowed to control steering using only phonotaxis, i.e.
with the synaptic connection of the optomotor system to
the motors disabled. During these experiments the reafferent
visual signals were recorded. As depicted in Fig. 3, we
considered as input the efferent copy, i.e. the signal coming
from the phonotactic system (Fig. 3(a)), and as output the
reafferent signal, i.e. the opto neuron membrane potential
(Fig. 3(b)-lower signal). This membrane potential change
results from the changed conductance of the input synapse,
Fig. 3(c), which represents the noise to be filtered.

Following the guidelines of classical identification, we as-
sumed the feedforward model had a fixed dynamic structure,
for which a number of parameters had to be optimally identi-
fied. The structure was fixed by the neuron/synapse structure
already present into the complete model of Fig. 2. Moreover
a subset of the parameters could be a priori fixed due to
some preliminary considerations. For example, appropriate
synaptic delays could be directly estimated from a correlation
B analysis between the efferent signal (cause) and the reafferent
Fig. 2. Schema of the cricket biocinspired neural network model. ThSlgnal (eﬁeCt.)' Following these con5|dergt|ons produced a
whole network is constituted by several subsystems: the optomotor reﬂgQrward nonlinear model structure constituted DyODEs
(substem A), the acoustic sensing block (subsystem B), the phonotactidth 18 parameters to be optimised from experimental data.
model (subsystem C), the feedforward compensator (subsystem D), theThe GA approach, as is well known, minimises a fit-
motor controllers and an internal source of noise. . . .

ness function. The aim here is to keep the opto neuron

to its resting potential, thus filtering out the phonotactic-

could occur during walking in crickets , due to asymmetrie§0-motor noise, so the fitness function was chosen as the
in the motor system or to external factors such as unevé&§uared-difference between the membrane potential of the

Y

Left moving Right moving

terrain. opto neuron (Fig. 3(b)-lower signal) and its own resting
) value, when this neuron was excited by a signal due to the
C. FeedForward compensator design phonotactic behavior of the system. The neural parameters

The feedforward compensator (i.e. subsystem C in Fig. 20 be optimised are: the resting/(..;) and recovery U,..)
integrates the responses of the phonotactic system and tradues of the membrane potential, the spiking threshold
optomotor reflex. It takes the driving commands from thé¢ V), the refractory time T.¢), the membrane conductance
phonotactic system and tries to predict the reafferent visuédz,,...;,) and capacitance(,...»). The synaptic parameters
signal. The driving commands also stimulate the motaio optimise are: the conductance increasing vatigi,y,,),
controllers and consequently the motor actuators. A sourtde facilitation effect (Gfacincs,,), the depression fraction
recognized, e.g. from the left, produces an inhibition oGdepfracs,,), the characteristic times of the conductance
the left motor controller and an excitation on the right one(7%,,), the facilitation (I’fac,,,) and depression(depsyy).
making the robot steer to left towards the sound source. Thefde total number of parametersis (6 for the neuron and
is a significant delay (a few hundred milliseconds) beforé for each synapse) and we chose a precisiof(obit for
the optomotor reflex will sense this left turn. Without anyeach parameter. The number of individuals 2@ and1000
compensation, the optomotor system would react with a cothe number of generations. The generation gap Wasthe
rection to the right side, driven by the opto-clockwise (OCnutation probability wad).05 and 0.7 the recombination
neuron, annihilating phonotaxis. The feedforward compemate.
sator (forward-OC neuron and related synapses) will avoid The results of the GA optimization stage are reported in
this incorrect response. The Fast-left neuron will stimulat€ig. 4. 4(a) shows the output (upper signal) and membrane
the forward-OC neuron with the same number of spikepotential (lower signal) of the optomotor neuron, when the
used to drive the motor controller. If the parameters of theptimised feedforward model is introduced into the loop.
forward-OC neuron and its input and output synapses ate can be seen that the optomotor neuron is completely
tuned to predict the reafferent signal, this will counterbalanc@hibited during phonotactic behaviour. Fig. 4(b) shows the
the OC neuron stimulation, holding the neuron on its restinfpedforward compensator output, i.e. the forward synapse
membrane potential. conductance, while Fig. 4(c) depicts the reafferent optomotor

Tuning of the forward neuron, pre- and post-neuromsynapse conductance. The obtained results confirm the suit-
synapses was carried out initially by hand, and then usirapility of the proposed control system. In fact, the forward



gﬁ‘ on insect sensory systems as described in [12]. A tether
@ £3 connects the robot to a PC running the neural simulation
Ed ‘ program and recording data. The auditory stimulus is a sim-
=0 1 R 5 ulated cricket song. The speaker is placed on the laboratory
Opto Neuron floor. No special soundproofing or other controls for noise or
g o i - echoes are used. We carry out trials with the robot starting
®) %f ~5°-_ﬂ i m 1 in one of three positions: from near the center of the room,
L : ; ; - facing the speaker from abou80 c¢m and from half-way
Time (s) down each side wall, facing the opposite wall, abtid cm
2z ‘ Reallereqt Shnel from the speaker. For each position ten trials are recorded.
© %z‘\j '\f 'fv ] The robot is stopped when it is about to hit the speaker or else
e | ] one of the lab walls; a successful trial is counted when the
© 5 center of the robot is withiB0 c¢m of the speaker at the point

Time (s)

it is stopped. The tracks are recorded using shaft encoders,

Fig. 3. Neural data gathered after a turn. It is shown: (a) the efferent copyhich are sufficiently accurate for dead reckoning over the

signal Comln(g from the F;)honztaﬁtlc Systﬁm (b) the Oultl%:ﬂ (spike) Olf) th(short paths considered in these experiments. The number of

opto neuron(upper signal) and the membrane potential (lower signa

the conductance of the excitatory synapse coming from the visual sensognaﬁ encoder counts coming from the left and right wheels
for each successive point recorded (usually evidiyy m.s)

OploMeursn . is converted to x-y position data.

g ° To valuate the robot performance in each set of trials, a
@ 2 50 'directness’ parameter is calculated [17]:
L : : L . MA : From the x-y coordinates we compute the distance covered
Time (5) and heading angle for each acquisition step:

Forward2Opto Inhibitory Synapse

o

distance; = \/(zit1 — 7:)% + (Yis1 — vi)?

N
[=]
T

Conductance (nS)

© . v v — vt (6)
Aot . ‘ heading, = atan —atan | ————
1 2 3 4 5 T Ti — Ti+1
Time (s) .
a2 Reaferent2Opto Excitatory Synapse The average vector for these moves is then calculated
50 : :
© éi V v ] — > dzstancezix cos(heading,)
g° 1 .St i
sl “ | 1 ' > dis ance ' @
© N 5 _ > —distance; x sin(heading;)
- v= > distance;
Fig. 4. Neural data with the forward compensator enabled. It is shown: _
(a) the output (spike) of the opto neuron(upper signal) and the membrane anal ¢ ¥
f X : k gle = atan
potential (lower signal); (b) the feedforward compensator output; (c) the (8)
conductance of the excitatory synapse coming from the visual sensor. . _2 , -2
magnitude =T~ + 7
The robot speed is used to calculate the tracktime:
synapse 'dynamlcs (predicted signal), indirectly found by ‘ minimam time to do trial
optimization, has the same shape as the reafferent optomo- tracktime = . . 9)
actual time to do trial

tor synapse, so succeeds in balancing its effect. The two

conductance scales are rather different because the refereh§ maximum speed of the robot260 mim/s.

voltage potential value for the excitatory synaps@ is:}’, Finally we compute the directness:

whereas for the inhibitory synapse 4s100 mV'. Since the directness = magnitude x cos(angle) x tracktime  (10)

resting value of the neuron is set 180 mV/, the inhibition

needs a larger conductance value to hold down the membrahiee range of the directness is withirand 1, because all its

potential of the neuron against excitation. factors are in that range. To explain the meaning of directness
The results obtained by using the feedforward compensge can consider a route straight forward toward the source of

tion allow concurrent use of both phonotactic and optomotdhe sound. In that case we have a null angle and a maximum

reflexes. The visual noise introduced by the phonotact@mplitude, thus the directness value is one.

behavior is now efficiently filtered out without suppressing

the optomotor system, which is ready to react to other Il. EXPERIMENTS

external environment disturbance. In this section we present the results of several experiments
) carried out to demonstrate the functioning of the system
D. Experimental setup under different conditions. Note that the parameters used for

The robot behaviour is tested in an indoor arena. The robtite compensator in these experiments were those initially
is a Koala, equipped with auditory and visual sensors base@rived by hand-tuning.



Phonotaxis: Fig. 5 shows the behaviour of the robot driven

by phonotaxis only. It performs successfully,reaching the
target every time, withlirectness = 0.38.

Phonotaxis and Optomotor Reflex:Fig. 6 shows the trials 1400y
carried out when the optomotor reflex is also enabled and a 1200
potential conflict with phonotaxis can occur. The robot does

not manage to reach the target every time. The optomotor
reflex allows the phonotaxis to work correctly when the angle EBoor
towards the sound source small, in which case it helps to  %e00]
keep the robot stabilised in the correct direction, hence the >
directness is slightly higher overah=(0.40).

FastModel with Optomotor Additive

1600 Directness
average: 0.401
std.dev.. 0.136

Phonotaxis and Random NoiseThe phonotaxis behaviour 200y \
when a random noise is introduced into the motor output ot \X Loudspeaker
is shown in Fig. 7. The trajectories are more winding, but 500 ? 500 1000

phonotaxis still guides the robot towards the loudspeaker, X axis (mm)

d_eSp|te the_n0|se, SO_ the auditory behaviour is robust. T . 6. Phonotaxis and optomotor are in additive mode. The robot
directness is lowerdfrectness = 0.31) than the default sometimes is not able to reach the target.
value.

Phonotaxis, Optomotor Reflex and Random NoiseFig. 8 FastModel with Random Noise
shows the trials carried out when both the random noise and wor \
the optomotor reflex are enabled, but the forward model is teoof ~_ Directness

average: 0.308

not active. The trajectories show the conflict between the two 1400}
sensory systems. Although both the phonotaxis and optomo-

tor systems are working against the noise, the optomotor 12007

reflex also “corrects” phonotactic turns. The directness is 1000
very low (directness = 0.22). Eoool
FeedForward compensator allows to integrate Phonotaxis w

and Optomotor Reflex: The forward model behaviour is ‘EBOO’
shown in Fig. 9. Here the feedforward controller compen- 4007
sates the reafferent signal, correctly predicting optical signals 200l

induced by phonotaxis. The optomotor reflex no longer tries
to “correct” these turns, leaving the phonotaxis to reach the
target. Directness is improvedifectness = 0.44) showing

that the optomotor reflex is still active in stabilising the
Fig. 7. The Fast model alone makes the robot able to reach the target

traje_ctory, bUt.nOW Wi_thOUt .interfering with t.he phonOta;XiS- also when a noise disturbs motor controllers but the robot trajectory are not
Multisensory integration with Random Noise In the fi- straighter.

nal experiment the multisensory integration capabilities of

\ Al | .
-500 0 500 1000
X axis (mm)

the forward model are verified when a random noise is
FastModel introduced in the motor system (Fig. 10) The prediction
of the phonotactic turns is efficient: in fact the attempts
look like the previous experiment when no disturbance was
considered. The optomotor reflex is able to compensate turns
due to random noise, without conflicting with turns caused
by phonotaxis. It means that phonotaxis is able to accomplish
its purpose turning the robot towards the sound source. The
value of directness is lower than the experiments without
noise (irectness = 0.34), but improved in respect to
the experiments with noise in which the phonotaxis and
optomotor behaviours were not integrated by the forward

Directness
average: 0.383
std.dev.: 0.069

200} model.
o . _— : . IV. CONCLUSIONS
-500 0 500 1000
X axis (mm) In this paper a nonlinear feedforward compensator was

Fig. 5. Experimental results. The robot starts from three different position?g.eSIgned to solve the problem of multlsensor){ Integration
For each position ten trials are recorded . The robot every time reaches it & complex neural network based on the cricket neural
target. system for phonotaxis and optomotor control. The feedfor-



FastModel with Optomotor and Random Noise

Directness
average: 0.216
std.dev.. 0.072

Loudspeaker
N
-500 0
X axis (mm)

500 1000

ForwardModel with FastModel and Optomotor and Random
18001

Directness
average: 0.341
std.dev.: 0.072

16001

14001

12001

.
1000

X axis (mm)

Fig. 8. Optomotor reflex and random noise are enabled and are in confligig. 10. Noise are enabled. Forward model correctly integrates phonotaxis

with the phonotaxis.

and optomotor systems. The robot every time reaches the target (phono-

taxis), while optomotor compensates the noise.

ForwardModel with FastModel and Optomotor

1800f
1600 Directness
average: 0.438 (1]
1400¢ std.dev.: 0.072
1200f 2]
1000 )
EEDD- \ [3]
[9)
%6001
> [4]
400t
2001 [5]
ot . N . .
-500 0 500 1000
X axis (mm) [6]

Fig. 9.
systems. The robot every time reaches the target.

Forward model correctly integrates phonotaxis and optomotor

(7]

[8]
ward compensation was more efficient than the previous
solutions, which simply inhibited optomotor response when[9]
a phonotactic induced reflex was taking place. Rather, the
implemented feedforward controller showed the capabilitgl1 ol
to correctly predict and filter out phonotactic induced op-
tical noise, leaving the optomotor system ready to reatll
to unknown disturbances, as observed in experiments with
crickets. Because the feedforward compensator could e
implemented in a realistic spiking neural network, it is a
plausible mechanism to explain real cricket behaviour, aqgis
shows how biological systems might implement, and tune,
this form of control. The result obtained in this paper als®4]
opens the way to the hardware design and implementatin[Jlr?]
of the whole neural-controller system for the integration in
a complete autonomous machine. [16]
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