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W. Grey Walter built robotic systems to improve understanding of biological
systems. In that tradition, this paper reports ongoing work on a robot model of
cricket sound localisation. The main advances are the inclusion of a much larger
range of neuroethological detail, and the investigation of multimodal influences on
the behaviour. The former allows exploration of the functionality of identified neu-
rons in the insect, including the possible roles of multiple sensory fibres, mutually
inhibitory connections, and brain neurons with pattern-filtering properties. The lat-
ter focuses on the inclusion of an optomotor stabilisation response, and how this
might improve tracking particularly under conditions of random disturbance.
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1. Introduction

But if the performance of a model is to be demonstrably a fair imi-
tation of cerebral activity, the conditions of stimulation and behaviour
must be equally comparable with those of the brain.

[Walter, 1961]

W. Grey Walter is rightly credited as a forerunner in many areas of the study of
brain and behaviour. In the field of biologically-inspired robots, it is important to
remember that his ingenious devices were seriously intended as working models for
understanding biology, a ’mirror for the brain’ that could both generally enrich our
understanding of principles of behaviour (such as the complex outcome of combining
simple tropisms) and be used to test specific hypotheses (such as Hebbian learning).
The research described here follows directly in this tradition, with the focus on
building robot systems as a means of exploring biological questions.

We, like Walter, are interested in the complexity of behaviour that can result
from the interaction of a small number of neural elements. However, Walter chose
to explore this in the context of rather abstract, generic characterisations of animal
behaviour such as ’exploring’, ’approaching’ and ’avoiding’; whereas we have cho-
sen to focus on modelling the specific neural circuit underlying a particular animal
behaviour, the sound localisation ability of the cricket. We consider the modelling
of this ’simple’ insect behaviour to be the focal point for investigating a range of
interesting, interconnected general issues for biology. As illustrated in figure 1, these
include: the functional significance of low-level neural properties; the importance
of physical embodiment as a solution and constraint on behaviour; the possible
connections between biological solutions and conventional engineering approaches
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Figure 1. Cricket phonotaxis is the central focus for exploring a range of general themes
in behavioural neuroscience.

Female crickets can locate conspecific males by moving towards the species-
specific calling song the males produce by opening and closing their wings. Typical
male songs consist of groups of short sound bursts (e.g. for Gryllus bimaculatus,
four 20 ms bursts of 4.7 kHz sound) produced several times a second. Females ap-
pear to be particularly selective for the repetition rate of bursts (syllables) within
each group (a chirp). The neuroethology of this system has been extensively studied
[reviewed in Pollack, 1998] and we have built a series of robot models that have
led to interesting reinterpretations of this data. In [Webb, 1995, Lund et al., 1997,
1998] it was shown that the recognition and localisation aspects of the task could
be closely interlinked, allowing a surprisingly simple controller to produce the same
kind of selective approach behaviour in a robot as was observed in the cricket. In
Webb and Scutt [2000] the robot hardware was interfaced with a spiking neural
network simulation, and it was shown that the algorithmic controller explored pre-
viously could be captured in a four neuron circuit (figure 2). Although the essence
of this circuit is a Braitenberg-like connection between the input on each side and
the motor outputs [Braitenberg, 1984], the actual function is more subtle, e.g. it ex-
ploits spike timing and dynamic synaptic properties to be selective for the temporal
pattern of signals in a manner resembling the female cricket.

Effective biological modelling requires repeated cycles of implementation, testing
and refinement. The previous robot’s neural circuit could reproduce much of the
cricket behaviour, but this is not sufficient to conclude that the cricket’s neural
circuit is the same. There may be alternative wirings that work as well or better, or
are more consistent with the anatomical and physiological data. For example, the
inhibitory cross-connections from prothoracic auditory neurons (AN) to opposite
motor neurons (MN) in the model are not particularly plausible, and may not
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Figure 2. The four neuron circuit used in previous work [Webb and Scutt, 2000]. The
auditory neurons (AN) represent the first stage of processing in the cricket’s prothoracic
ganglion in which a small number of neural pairs receive direct input from the auditory
nerve. The motor neurons (MN) produce an output signal to turn left or right depending
on which AN neuron fires first. The AN-MN synapses exhibit depression, so the response
is best for a signal with appropriate temporal patterning.

be necessary to create a winner-take-all response to the stronger auditory signal.
Instead the AN or MN could be mutually inhibitory. There is neurophysiological
evidence of mutual inhibition at the prothoracic AN level, mediated by so-called
omega neurons (ON). The previous model did not include the adaptation that
occurs in the auditory nerve and prothoracic neurons. It appears this property may
serve to enhance the onsets of the syllables, which could help explain the apparent
insensitivity of the female to variation in syllable length (Hedwig, pers. comm.),
so it should be included in the new model. In addition, the cricket is unlikely
to have such a direct connection between the auditory input and motor output.
There is information about intermediate stages of processing in brain neurons from
Schildberger [1984] that can be more directly addressed. Finally, the basic neural
model used in the earlier work was itself somewhat abitrary; so a representation of
spiking dynamics that links more closely to current theoretical neuroscience would
improve the biological plausibility of the circuits implemented on the robot. In
section 2 (b) we describe such a model, and in section 3 (a) discuss the results of
including the specific neural properties mentioned above.

An important motivation for using a robot model, rather than a simulation, is
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to test the behaviour of a given neural circuit in the context of real environmental
interaction [Webb, 2001]. An issue that then needs to be addressed is whether the
movements of the robot replicate the speed and size of movements of the cricket;
and how this relates to possible motor neuron circuitry. A first point to note is
that crickets behave somewhat differently when performing this task in the dark
vs. in the light. In the light, forward velocities are higher and the animal makes
fewer /shorter stops [Weber et al., 1981]. This effect is probably both motivational
(being in the light represents a predation risk) and a result of having visual cues
available to aid navigation, as will be discussed below. In arena tests in the light,
walking velocities are in the order of 520 cm per second, with stops typically
occuring every few seconds, although some animals may not stop at all. In the
dark, stopping becomes more regular. Turns in response to sound occur both after
stopping and during walking, on average every two seconds. A turn made when at
an angle of more than 30 degrees from the sound source will almost always be in
the correct direction; but turns also occur, in a random direction, when the angular
error is less than 10 degrees, or with increasing reliability to sounds between the
midpoint and 30 degrees [Rheinlédnder and Blatgen, 1982]. It has been suggested the
size of turn is fairly consistent at around 3040 degrees [Oldfield, 1980]. In section
3 (b) we present a motor circuit that produces similar behaviour when implemented
on the robot.

We are working towards the implementation of a robot system able to perform
phonotaxis outdoors. As a step in this direction we are investigating the issue of
how different sensory modalities involved in navigating through real environments
should be integrated. It is generally agreed that the biological solution to the issue
of integrating behaviours is unlikely to take the classic form of sensor fusion into
a general world model over which a problem solving process produces an output.
On the other hand, there are many alternative architectures that seem plausible:
subsumption-type architectures that hierarchically suppress different reflexes; ac-
tion selection schemes, either centralised or distributed; combining basis functions;
or using some form of forward model to distinguish afferent and reafferent signals.
We are exploring how simple neural interactions at the motor circuit level might be
used to reproduce some of the observed behavioural effects of interacting modalities
in the cricket, in particular, the effects of light level on the dynamics of approach
behaviour (discussed above), and the use of an optomotor reflex to stabilise tracks,
especially under circumstances of random disturbance.

The optomotor reflex is shown when an animal rotates if stimulated by global
rotation of their visual field. This will produce compensation for accidental de-
viations in heading. Bohm et al. [1991] tested crickets in an open-loop treadmill
experiment with competing sound and visual rotation signals. They concluded that
the animal simply added the separate turning tendencies. However, in [Webb and
Harrison, 2000] we found that such a scheme faces problems in the real, closed
loop situation. If the responses to sound and vision are simply allowed to run in
parallel, then whenever the robot makes an intended turn towards sound, a strong
visual rotation stimulus is produced, and the optomotor reflex will cause the robot
to make an unwanted correction. A simple inhibitory interaction, i.e. suppressing
the optomotor response when responding to sound, was shown to be one way to
solve this problem, but a number of alternative solutions can be suggested, such as
the well known concept of ’efferent copy’ signals to cancel out expected feedback.
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In the final section of this paper we compare three different neurally implemented
schemes for combining the behaviours.

2. Implementation

The robot base used in the following experiments is the Koala”™™; a six-wheeled
base measuring approximately 40x30x20 cm with two drive motors. This choice of
platform is due to the need to mount multiple sensory systems and to accommo-
date future aims to do phonotaxis out of doors, neither of which is practical on
the small robot (Khepera’™) previously used. Although the actuation bears little
direct resemblance to the cricket it is possible to use this robot to replicate ap-
propriate speeds and turning rates. Another current project (Horchler, submitted)
is to implement phonotaxis on one of the cockroach-inspired walking robots being
developed by Quinn and Ritzmann [1998].

(a) Sensory systems

The main sensory systems on our robot are dedicated hardware designs for
processing sound and visual signals, based closely on biology. The auditory system
mimics the pressure difference receiver properties of the cricket ear [Michelsen et al.,
1994] to produce a highly directional signal for a specific frequency range. Details
are in [Lund et al., 1997]. The visual system is an analog VLSI implementation
of the Hassenstein-Reichardt model of elementary motion detection, developed by
Harrison and Koch [1998]. The directional response is summed across an array
of detectors providing a signal for full-field motion, which resembles the response
of certain tangential cells in the lobular plate of the fly brain, associated with the
optomotor response. Cells with similar responses to visual rotation have been found
in the cricket.

We are making use of the onboard Koala sensors to derive two further signals
that resemble (with less accuracy) information available to the cricket. The ambient
light level is being measured, which serves as an indicator of the amount of cover in
the animal’s current position — dark is safety. The infrared reflection detectors are
being used as antennae, that is, to provide a signal giving approximate distance to
obstacles in a particular direction, which is indicated by mechanical sensing of the
bend point in insect antennae [Camhi and Johnson, 1999]. We have also constructed
and interfaced a number of additional sensors, to detect tilt, body contact, wind
direction, and compass heading. However, in this paper we only use the auditory,
ambient light{ and optomotor sensors.

(b) Neural model

The overall behaviour of the neurons is similar to single compartment ’leaky
integrate and fire’ models, but based more closely on the models described by Koch
[1999]. Their state is a representation of the potential difference across the neural
membrane (the membrane potential). They have a base potential, to which they
will decay in the absence of external input. Synapses attach to them and raise and

t Due to problems in controlling the light level reliably during experiments and interactions
with the optomotor, we simulated the inputs from this sensor.

Article submitted to Royal Society



6 R.E.Reeve and B.H. Webb

lower their potential when their pre-synaptic neurons spike. If the potential rises
above a specific level, the neuron will fire, sending a spike to any connected output
synapses; then the potential will reset to some lower value, and the neuron will
enter a refractory period when it will be unable to receive synaptic input.

The model synapses are conductance based, which is to say they model the
conductance and battery potential of the ion channels which open when a synapse
is activated, pulling the membrane potential towards the battery potential with a
strength proportional to the conductance. This is more biologically realistic than the
standard ’charge-dump’ or current injection synapses used in most artificial neural
networks, which directly raise or lower the membrane potential by depositing a
small or large packet of charge into the neuron.

Pre-synaptic : Conductance based

Neuron input Synapse Neuronal membrane ' Spiking mechanism " Neural output

Figure 3. A simplified electrical model of a neuron with synapses

Koch (ibid.) explains neuron and synapse models with these features in terms
of their electrical properties, thus describing neurons and synapses based on elec-
trical circuits (this makes it very suitable for VLSI implementation). The features
described above are given in the simplified circuit shown in Figure 3. The neuron is
an RC circuit with a fixed (membrane) capacitance, and basal potential and con-
ductivity, to which the neuron will decay exponentially at a rate determined by the
capacitance and conductance in the absence of external input. The synapse model
also has an electrical implementation: it is modelled as an additional (variable)
conductance and battery, which will pull the post-synaptic membrane potential to-
wards the potential of the battery with a strength determined by the conductance.
This conductance decays exponentially to zero, but receives a boost when a spike
arrives from the input neuron. The size of the boost to the conductance is effectively
the 'weight’ of the connections.

These "weights’ are further affected by short-term facilitation and depression
mechanisms (not shown in the figure) of variable size and time constants. This allows
the synapses to affect the post-synaptic neuron more or less strongly depending on
whether they have recently received other spikes or analogue inputs. Indeed, it
is possible to combine the effects so that, for instance, the synapses will respond
increasingly strongly for the first few spikes, and then that response will die away
to nothing until the synapse has had a period of time to recover. They also all
have variable synaptic delays (the time from the firing of the presynaptic neuron
to the reception of the excitation or inhibition by the post synaptic neuron). In
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real neurons this delay involves axonal, synaptic and dendritic delays. These are all
combined as a single variable in the model.

Despite this level of complexity, the neural model remains analytic under a very
broad range of conditions, and the synaptic model in isolation is always closed
form. Thus we are able to specify constraints and calculate exact values for param-
eters directly from the equations without an optimisation step, which enormously
simplifies the parameter search task when compared to most sophisticated neural
models.

For cases where the above neural model is too complex (for instance for sensory
neurons attached to the ears), we use a simpler model of a poisson distributed spike
train proportional to the synaptic input (in this case the amplitude of vibrations in
our artificial tympanum) with optional depression. Again the closed form solutions
to this model allow us to calculate directly the required depression parameters to
match the data we have for parallel sensory fibre spike rates.

(¢) Ezperimental methods

The neural simulation system described above is embedded as part of a C++
program for running robot experiments. This system deals with the serial transfer of
sensory data and motor data to and from the robot, and is designed for easy transfer
between different robot bases and the addition of arbitrary new sensor inputs or
motor outputs. It can also be run without the robot, using previously recorded or
artificially generated data files as input, which is particularly useful when tuning
circuit parameters. It automatically incorporates data from an overhead camera
tracking system (or alternative tracking mechanisms) into the data record produced
from running the robot.

The results described below were produced in two ways: analytical and simula-
tion results; and results from running the robot. The latter experiments occurred in
the normal lab environment, within a 2x1.6 metre space determined by the overhead
camera’s field of view. The sound was a computer-generated song. The standard
song consists of 20 ms bursts (syllables) of 4.7 kHz sound, with 20 ms gaps be-
tween them, grouped into a four-burst chirp followed by 340 ms silence. This is the
characteristic calling song of male Gryllus bimaculatus. In some experiments the
pattern was varied to produce different ’syllable repetition intervals’: the length of
the chirp was held constant at 250 ms, and the length of syllables within the chirp
varied from 5 ms to 45 ms, with intersyllable gaps of the same length as the the
syllable.

3. Results

The process of designing the specific neural circuits to test on the robot was highly
interactive — moving back and forth between issues of neural data and functional
efficacy. We have therefore chosen to explain the various elements of the circuits with
immediate reference to the relevant results. We first discuss the neural connections
underlying the processing of the sound signal, then the motor control, and finally
the combination of these circuits with optomotor behaviour.
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(a) The phonotazis circuit

The previous neural model tested on the robot focussed on one pair of identified
ascending interneurons (AN1) in the cricket’s prothoracic ganglion that appear to
be critical for phonotaxis. AN1 respond best to sound at the calling song carrier
frequency, and clearly encode the pattern of the song in their spiking response.
Hyperpolarising one of the pair leads to a change in walking direction. In the
current model we incorporate more of the neural data from the cricket, motivated
by functional hypotheses about the various neural elements, aiming to reproduce
specific response properties. The new model is illustrated in figure 4.
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Figure 4. The new neural circuit for phonotaxis, based on cricket neuroanatomy, as de-
scribed in text. AN’ 'ON’ and BN’ refer to specific ’ascending’, mutually connected
’omega’, and ’brain’ neurons that have been identified in the cricket nervous system.

First, we have represented the parallel sensory fibres that provide input from the
tympanum (on the cricket’s legs) to the prothoracic ganglion. In the cricket there
are around 50-60 sensory neurons, with perhaps half of these tuned to the calling
song frequency [Esch et al., 1980]. There is some evidence of range fractionation
for different sound amplitudes. Recording from the leg nerve shows fairly fast time
constants (in the order of a millisecond) and thus clear copying of time varying
patterns, with some adaptation within the first few milliseconds of response to a
sound burst, levelling off to a steady rate . We are currently using eight such sensory
inputs per ear (as opposed to only one previously), and have found this has the
advantage of increasing reliability by reducing the total variability of the input, and
also enables the coding of amplitude differences over a larger range. The plots in
figure 5 show the group response of the simulated auditory nerve, which has been
tuned to resemble the cricket data.

Second, we have included a second pair of neurons that receive input from the
auditory nerve, based on the omega neurons (ON) described in the cricket [Wohlers
and Huber, 1981]. These are mutually inhibitory and also inhibit the opposite as-
cending interneurons. The most obvious function of these connections is to increase
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Figure 5. The summed spiking response of multiple units in the simulated auditory nerve
to the normal cricket song pattern at different amplitudes. Note the peak at syllable onsets
at the inter-syllable interval used here caused by recovery from adaptation during the gap
between syllables.

the difference in activation between the two sides, to emphasise the directional-
ity of the response. Elegant experiments from Horseman and Huber [1994] have
shown that inhibition from the opposite side makes a difference of several spikes
per chirp to the AN1 response. Figure 6 illustrates the replication of this effect
in our model (compare to their figure 3). Here the decrease in firing rate to an
ipsilateral sound level is proportional to the contralateral sound level. Although
the decrease in firing rate is not large, its role may be in gain control, so that for
varying amplitudes of sound (experienced as the cricket or robot approaches the
sound source) the response adapts to encode the relevant difference between the
ears within a similar range of firing rates, without saturation. Another effect of the
inhibitory cross-connection is that, due to the delay introduced by the additional
synapse, the onset of the syllable is less affected than the remainder of the syllable.
This serves to enhance the onset encoding and effectively cleans up the signal so
that the encoding of the sound pattern becomes clearer in the ascending neuron
firing pattern for real sound stimuli.

Third, we have included a stage of neural processing in the ’brain’ before signals
are sent to the motor output. The most comprehensive study of the role of cricket
brain neurons in phonotaxis is provided by Schildberger [1984], who suggests a
possible filtering circuit for syllable rate recognition by the female. He identifies
two main classes of auditory responsive cells: BNC1 which appears to get direct
input from AN1; and BNC2 which get input via BNC1. These neurons vary in their
response to the pattern of sound. BNC1d appears to require a minimum syllable
duration near to the typical calling song before it reaches threshold, which makes
it a lowpass filter for the syllable rate, assuming a constant duty cycle. BNC2b
appears to spike around once per syllable, which makes it highpass i.e. as the
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Figure 6. Effect of inhibitory cross connections on the firing rate of AN1. The ipsilateral
firing rate decreases as the contralateral sound level increases.

syllable rate decreases the firing rate will also decrease. BNC2a shows a bandpass
filtering effect, responding at somewhat less than a spike per syllable for normal
rates but producing fewer spikes for slow rates or fast rates. Schildberger argues
that the response of BNC2a reflects an ’AND’ing of the output of BNC2b and
BNC1d, to produce a neural recognition signal for the appropriate sound pattern.

We initially attempted to copy these response patterns in our simulated neu-
rons, but there were several difficulties. In particular, it seemed impossible to tune
neuron or synapse parameters to distiguish very long syllables from very rapid syl-
lables, as they both produce the same response — more or less continuous firing — in
the AN1 neurons. After some systematic searching of the parameter space we found
that a lowpass filter could be produced by having a moderately depressing synaptic
connection from AN to BN1. This would fire several spikes at the onset of sylla-
bles. If the syllable rate was fast, the depression would not recover and fewer spikes
would occur. The ideal syllable rate was the upper limit for which clear enough
gaps occurred for the synapse to recover. At slower rates, the recovery would be
greater and the chance of spiking at syllable onsets increased; however as the time
between onsets increases the number of spikes per chirp starts to decrease. A sec-
ond depressing synaptic connection from BN1 to BN2, with a relatively slow time
constant, performs temporal summation of the BN1 output so that these slower
responses were not usually sufficient to produce a spike, making BN2 a bandpass
filter for the correct syllable rate. In figure 7 we show the response of our 'BN1’
and 'BN2’ neurons to song patterns identical to those used by Schildberger, i.e. us-
ing equal length chirps with syllable repetition intervals (SRI) ranging from 10 ms
to 90 ms. It can be seen that BN1 has a moderately bandpass response which is
sharpened by BN2; the response of BN2 is very similar to the BN2a neuron reported
by Schildberger. In the top plots which show results with simulated sound inputs,
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the apparent best tuning is to an SRI of 26 ms. However, using the same neural
parameters with real sound input, as shown in the lower plots, syllables at this rate
are not so clearly coded, and the best response in BN2 moves to an SRI of between
42 ms and 58 ms.

The need for a clear pattern makes the BN2 neurons much more likely to respond
to clearer firing patterns in AN, which generally correspond to the louder side,
particularly after the cross-inhibitory effects of ON. We found it was not necessary
to include any explicit mechanism for comparing the firing rates or latencies at the
BN level. We could simply take a spike in the left or right BN2 as indicating the
need to turn in that direction to approach the sound.

Simulated BN1 response ‘Simulated BN2 response
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a2 58 a2 58
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Figure 7. Spike rates of simulated brain neurons to songs with different syllable repetition
intervals. Upper plots, simulated inputs; lower plots, real sound inputs. Left, the BN1
neuron shows a lowpass/bandpass response; right, the BN2 neuron shows a bandpass
response.

(b) Motor circuit

Our aim in designing the motor circuit was to reproduce the specific kinds
of moves, turns and stops observed in crickets performing phonotaxis, with as few
neural connections as possible. There is unfortunately little direct data on the neural
connectivity from the brain to the motor control circuits for sound localisation
in the cricket. Staudacher and Schildberger [1998] describe some 200 descending
neurons, some of which show a response to sound, with their response often 'gated’
by whether or not the animal is walking. One of these neurons has a firing rate
that correlates with the walking direction of the animal. Current models of motor
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control for six-legged walking in other insects [e.g. Cruse et al., 1998] suggest several
features to include in our circuit. Motor patterns tend to be self-sustaining through
local feedback or Central Pattern Generator (CPG) activity, so that only a trigger
signal is required to start the movement. Steering appears to be modulated by
fairly simple turn signals from the brain interacting with this pattern generator so
as to modify limb movements appropriately. The neural circuitry we have used is
adapted from the scheme devised by Chapman [2001] in his robot model of cricket
escape behaviour. It is illustrated in figure 8. The paired burst generators (BG)
will, when initiated by an incoming spike, mutually activate each other to produce
a continuous burst of spikes that go to right and left forward neurons (RF and LF)
and drive the robot forward. The length of the burst is limited by the eventual
activation of the STOP neuron which inhibits the BG neurons. One trigger for
movement is the ambient light level. The other is a spike in the left or right BNC2.
These act via a right or left turn neuron (RT or LT) to additionally modulate the
forward velocity by appropriate excitatory and inhibitory connections to RF and
LF.

ambient light

JANRA

Right motor L eft motor

Figure 8. Neural circuit for motor control. The BG pair form a burst generator that excites
right forward (RF) and left forward (LF) neurons when triggered by RT, LT or GO till
deactivated by STOP. BNC2 is the output from the auditory circuit in figure 4 and RT
and LT produce right and left turns respectively by excitatory and inhibitory modulation
of RF and LF.
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Figure 9 shows the performance of the robot using the combined phonotaxis and
motor circuits to track cricket song. A total of 30 trials were run, from 3 different
starting positions relative to the speaker. It can be seen that the robot is capable
of successfully locating the sound source, producing a cricket-like path that zigzags
towards the sound.

Tracks to the sound source

-1.2r
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-1.81
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Figure 9. Tracks of the robot to a cricket song from three starting positions (thirty
tracks in total). The sound source is at (0,0).

(¢) Integrating different modalities

The same motor circuitry needs to subserve other sensorimotor behaviours that
are to be integrated on the robot, including the default behaviour when sound
is not present (taken for now to be random search for safe dark places), and the
optomotor response of turning so as to stabilise visual slip. For example the average
speed of the robot should increase with the ambient light as the GO neuron in the
motor circuit receives more stimulation. The instaneous forward speed of the robot
under five different light levels, with or without sound, is shown in Figure 10. Sound
causes no movement unless there is a light level of at least 10, and that level of
light is too low to stimulate movement without sound. The pattern of movement in
response to sound is changed by the light level — in brighter light the robot makes
fewer stops.

In figure 11 we show how the optomotor sensor has been integrated into the
motor control. The sensor is used to produce four spike trains, two for each direction
of motion. These are summed in two optomotor interneurons, which effectively
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Figure 10. Forward speed of the robot’s motors under different light levels: left without
sound; right with sound.

smooths the signal. The interneurons mutually inhibit one another. The output
from the interneurons steers the robot in the appropriate direction by excitatory
inputs to the left or right 'forward’ neurons. For example, if someone walks in front
of the robot it tends to follow this movement, and if it veers off course in anyway
(e.g. through wheel slip) it will compensate, and maintain a straight heading. Note
that unless the robot is already moving (due to light or sound inputs) the optomotor
input is not enough to move the robot on its own, i.e. it only modulates movement.
In figure 12 we show how the optomotor response can correct for randomly imposed
turns (as might be produced by environmental disturbance such as uneven ground
surface, or for a flying insect, wind gusts) to produce relatively straight paths.

In addition, there is an inhibitory connection between the phonotaxis output
(BNC2) and the optomotor interneuron corresponding to the expected turn di-
rection. This will suppress the optomotor response that would otherwise 'correct’
intended turns towards sound. Note that unlike the algorithm in [Webb and Harri-
son, 2000] the suppression is direction specific (as hypothesised for the interaction
of tracking and optomotor behaviour in the fly by Heisenberg and Wolf [1988]. The
supression is the result of shunting inhibition, which will counteract any optomo-
tor excitation up to the strength of the predicted input, but might still enable a
response if the signal, even though in the expected direction, is much larger than
expected. However this is not equivalent to efferent copy, which would require pre-
diction of the exact size and time-course of the expected optomotor signal, so as
to cancel it out. This would seem to require a more complex neural mechanism
to implement it. Indeed, it is theoretically impossible to make a precise prediction
because this depends on the actual spatiotemporal pattern of contrast encountered
during the turn, which is unknown in a non-uniform and unfamiliar environment.
In figure 13 we show the results of running the robot under the same conditions
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Figure 11. Left or right visual movement excites opto-clockwise (OC) or opto-anticlockwise
(OA) respectively to produce an appropriate turn. BNC2, as before, activate the motor
circuit via RT and LT (dashed lines, not all connections from 8 shown) but also inhibit
OC or OA (dotted lines). In the additive scheme, these inhibitory connections are left out.
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Figure 12. Left, paths of the robot with randomly imposed turns (no sound source) and

right, the same conditions with the random turning substantially corrected by the opto-
motor reflex.

as figure 9, but with the optomotor response also active. It is evident that the
robot produces more direct paths to the sound source with fewer corrections. The
advantage of including an optomotor response is even more evident by looking at
the robot’s behaviour when it has random turns imposed, while trying to track
sound (figure 14). The paths with phonotaxis alone diverge much further from the
correct heading direction, and on several occasions it misses the sound source. With

the optomotor response added, the tracks are much more direct and the random
disturbance is hardly evident.
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Figure 13. Paths of the robot integrating phonotaxis and optomotor responses to make a
more direct approach to the sound.
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Figure 14. Comparison of paths when random turns are imposed: left, phonotaxis on its
own produces very indirect paths; right, with the optomotor reflex, the random turns have
almost no effect on the approach to sound.

While this appears to be a fairly successful way to combine the behaviours,
a number of alternatives are possible. Efferent copy has already been mentioned,
but would require more complex neural processing. Two possibilities can be easily
tested by small modifications to the circuit shown in figure 11. The first is ’additive’
interaction in which the connections that suppress the optomotor response during
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turns to sound are disabled, so the LF/RF activity simply reflects the summed
input of optomotor and phonotactic corrections. Note that this was the mechanism
originally suggested by Bohm et al. [1991] on the basis of their open loop tests on the
cricket. The second is ’follow-on’ interaction, shown in figure 15, in which the direct
connection from LT/RT to LF/RF is disabled and instead the steering response to
sound is controlled via the optomotor system, by exciting the appropriate optomotor
integration neuron. This idea was first proposed (in the context of fly tracking
behaviour) by Mittelstaedt (1951 cited in Collett [1980]).

Right motor Left motor

Figure 15. As in figure 11, left or right visual movement excites opto-clockwise (OC) or
opto-anticlockwise (OA) respectively to produce an appropriate turn. BNC2 now activate
the motor circuit only via OC or OA (dotted lines).

Figure 16 shows the behaviour of the robot under these two alternative schemes.
While the ’follow-on’ tracks appear quite direct, this is slightly misleading because
the robot is actually making fewer corrections. Instead of turning to each spike in
RT or LT, at least two consecutive spikes on the same side are needed to cause a
turn when the signal is filtered though OA or OC. Consequently, if the robot is
headed in roughly the right direction, it is unlikely to adjust its course. This might
seem fairly effective behaviour for the robot, but it is not such a good resemblance
to the behaviour of the cricket as the previous mechanism. The ’additive’ tracks
are also moderately successful, but there is a discernable tendency to approach the
sound in an arc rather than an oscillating track, again showing less resemblance to
the cricket. In observing the robot it is evident that this result is due to the robot
repeatedly turning towards the sound, then turning away a little in response to the
optomotor signal produced by its turn to the sound. The average time taken to
arrive at the sound is increased.

Figure 17 shows the performance of the additive and follow-on schemes when
the robot also has to deal with random turns. Both work fairly well to remove
the effects of the disturbance (as might be expected: the optomotor behaviour in
response to a random turn is the same in all three schemes). However both produce
some tracks that miss the sound source, suggesting the interaction with phonotaxis
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Figure 16. paths of the robot using (left) the follow-on’ scheme and (right) the ’additive’
scheme to integrate the optomotor reflex with phonotaxis.
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Figure 17. as for figure 16 with random turns imposed on the robot during phonotaxis.

is less successful. To examine this, figures 18 and 19 show the average number of
attempted turns made in response to sound (produced by counting the spikes in RT
and LT) under the various conditions. Figure 18 corresponds to paths starting in
the centre position. All three schemes significantly reduce the number of corrective
turns needed significantly in the non-random condition. In the random condition,
the number of corrective turns needed is significantly greater for additive mode than
for the original suppressive interaction. Figure 19 shows the paths starting from the
left or right, and separately indicates the number of turns needed in each direction.
The suppression and follow-on schemes show similar results, but the additive scheme
and the no-opto require significantly more turns. The additive scheme also has a
significantly higher imbalance in the ratio of turns in each direction, compared to
all the other schemes. This is a reflection of the curved paths produced by the
additive scheme (discussed above) compared to the oscillating paths produced by
phonotaxis on its own.
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Figure 18. The number of attempted turns to sound during paths from the central starting
position. Dark bars, normal paths; light bars, paths with random turns. All the optomotor
integration schemes reduce the number of turns needed under normal conditions, but under
random conditions, progressively more turns are required by the follow-on and additive
schemes.

4. Conclusions

In this paper we have used small networks of neurons to control a robot so that
it tracks a sensory source. Is this any advance on W. Grey Walter’s ’tortoises’,
demonstrated 50 years ago? Despite the (humbling) similarity, we believe there
are a number of significant differences. The sensor systems for processing sound
and visual motion are far more sophisticated, and allow us to replicate the real
signals that animal brains have to deal with. As yet, the motor system is not much
more complex; this is one of the issues we will be addressing in future work. The
neural model, as well as containing more detail, is far easier to use. We can copy
and tune arbitrary circuits, and the behaviour of all the elements can be recorded
during behaviour for full analysis. The circuits we are building are directly based
on neurophysiological data, so we can test biologically relevant hypotheses, with
results that can translate directly back to experiments in biology. Nevertheless we
are indebted to Walter’s pioneering insight that understanding the brain is best
done within the context of a body.
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