
The primary goal of this article is to promote awareness 
of the various statistical problems associated with the use 
of p value null-hypothesis significance testing (NHST). 
Making no claim of completeness, I review three prob-
lems with NHST, briefly explaining their causes and con-
sequences (see Karabatsos, 2006). The discussion of each 
problem is accompanied by concrete examples and refer-
ences to the statistical literature.

In the psychological literature, the pros and cons 
of NHST have been, and continue to be, hotly debated 
(see, e.g., Cohen, 1994; Cortina & Dunlap, 1997; Cum-
ming, 2007; Dixon, 2003; Frick, 1996; Gigerenzer, 1993, 
1998; Hagen, 1997; Killeen, 2005a, 2006; M. D. Lee & 
Wagenmakers, 2005; Loftus, 1996, 2002; Nickerson, 
2000; Schmidt, 1996; Trafimow, 2003; Wagenmakers 
& Grünwald, 2006; Wainer, 1999). The issues that have 
dominated the NHST discussion in the psychological lit-
erature are that (1) NHST tempts the user into confusing 
the probability of the hypothesis given the data with the 
probability of the data given the hypothesis; (2) α 5 .05 
is an arbitrary criterion for significance; and (3) in real-
world applications, the null hypothesis is never exactly 
true, and will therefore always be rejected as the number 
of observations grows large.

In the statistical literature, the pros and cons of NHST 
are also the topic of an ongoing dispute (e.g., Berger & 
Wolpert, 1988; O’Hagan & Forster, 2004; Royall, 1997; 
Sellke, Bayarri, & Berger, 2001; Stuart, Ord, & Arnold, 
1999).1 A comparison of these two literatures shows that 
in psychology, the NHST discussion has focused mostly 

on problems of interpretation, whereas in statistics, the 
NHST discussion has focused mostly on problems of for-
mal construction. The statistical perspective on the prob-
lems associated with NHST is therefore fundamentally 
different from the psychological perspective. In this ar-
ticle, the goal is to explain NHST and its problems from a 
statistical perspective. Many psychologists are oblivious 
to certain statistical problems associated with NHST, and 
the examples below show that this ignorance can have im-
portant ramifications.

In this article, I will show that an NHST p value de-
pends on data that were never observed: The p value is a 
tail-area integral, and this integral is effectively over data 
that are not observed but only hypothesized. The prob-
ability of these hypothesized data depends crucially on the 
possibly unknown subjective intentions of the researcher 
who carried out the experiment. If these intentions were 
to be ignored, a user of NHST could always obtain a sig-
nificant result through optional stopping (i.e., analyzing 
the data as they accumulate and stopping the experiment 
whenever the p value reaches some desired significance 
level). In the context of NHST, it is therefore necessary 
to know the subjective intention with which an experi-
ment was carried out. This key requirement is unattain-
able in a practical sense, and arguably undesirable in a 
philosophical sense. In addition, I will review a proof that 
the NHST p value does not measure statistical evidence. 
In order for the p value to qualify as a measure of statisti-
cal evidence, a minimum requirement is that identical p 
values convey identical levels of evidence, irrespective 
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of sample size. This minimum requirement is, however, 
not met: Comparison to a very general Bayesian analysis 
shows that p values overestimate the evidence against the 
null hypothesis, a tendency that increases with the number 
of observations. This means that p 5 .01 for an experi-
ment with 10 subjects provides more evidence against the 
null hypothesis than p 5 .01 for an experiment with, say, 
300 subjects.

The second goal of this article is to propose a principled 
yet practical alternative to NHST p values. I will argue that 
the Bayesian paradigm is the most principled alternative 
to NHST: Bayesian inference does not depend on the in-
tention with which the data were collected, and the Bayes-
ian hypothesis test allows for a rigorous quantification of 
statistical evidence. Unfortunately, Bayesian methods can 
be computationally and mathematically intensive, and this 
may limit the level of practical application in experimen-
tal psychology. The solution proposed here is to use the 
Bayesian information criterion (BIC; Raftery, 1995). The 
BIC is still principled, since it approximates a full-fledged 
Bayesian hypothesis test (Kass & Wasserman, 1995). The 
main advantage of the BIC is that it is also practical; for 
instance, it can be easily calculated from SPSS output (see 
Glover & Dixon, 2004).

Several disclaimers and clarifications are in order. First, 
this article reviews statistical problems with p values. To 
bring out these problems clearly, it necessarily focuses on 
situations for which NHST and Bayesian inference disagree. 
NHST may yield entirely plausible inferences in many situ-
ations, particularly when the data satisfy the interocular 
trauma test. Of course, when the data hit you right between 
the eyes, there is little need for a statistical test anyway.

Second, it should be acknowledged that an experienced 
statistician who analyzes data with thought and careful-
ness may use NHST and still draw sensible conclusions; 
the key is not to blindly apply the NHST machinery and 
base conclusions solely on the resulting p value. Within 
the context of NHST, sensible conclusions are based on 
an intuitive weighting of such factors as p values, power, 
effect size, number of observations, findings from previ-
ous related work, guidance from substantive theory, and 
the performance of other models. Nevertheless, it cannot 
be denied that the field of experimental psychology has a 
p value fixation, since for single experiments the p value 
is the predominant measure used to separate the experi-
mental wheat from the chaff.

Third, the existence of a phenomenon is usually deter-
mined not by a single experiment in a single lab, but by 
independent replication of the phenomenon in other labs. 
This might lead one to wonder whether the subtleties of 
statistical inference are of any relevance for the overall 
progress of the field, since only events that are replica-
ble and pass the interocular trauma test will ultimately 
survive. I fully agree that independent replication is the 
ultimate arbiter, one that overrules any statistical consid-
erations based on single experiments. But this argument 
does not excuse the researcher from trying to calculate a 
proper measure of evidence for the experiment at hand, 
and it certainly does not sanction sloppy or inappropriate 
data analysis for single experiments.

On a related point, Peter Killeen has proposed a new 
statistic, prep, that calculates the probability of replicat-
ing an effect (Killeen, 2005a, 2005b, 2006). The use of 
this statistic is officially encouraged by Psychological 
Science, and a decision-theoretic extension of prep has re-
cently been published in Psychonomic Bulletin & Review. 
Although the general philosophy behind the prep statistic 
is certainly worthwhile, and the interpretation of prep is 
arguably clearer than that of the NHST p value, the prep 
statistic can be obtained from the NHST p value by a sim-
ple transformation. As such, prep inherits all of the p value 
problems that are discussed in this article.

The outline of this article is as follows. The first section 
briefly describes the main ideas that underlie NHST. The 
second section explains why p values depend on data that 
were never observed. The third section explains why p val-
ues depend on possibly unknown subjective intentions. This 
section also describes the effects of optional stopping. The 
fourth section suggests that p values may not quantify sta-
tistical evidence. This discussion requires an introduction 
to the Bayesian method of inference (i.e., Bayesian param-
eter estimation, Bayesian hypothesis testing, and the pros 
and cons of priors), presented in the fifth section. The sixth 
section presents a comparison of the Bayesian and NHST 
methods through a test of the “p postulate” introduced in 
Section 4, leading to an interim discussion of the problems 
associated with p values. The remainder of the article is then 
concerned with finding principled and practical alternatives 
to p value NHST. The seventh section lays the groundwork 
for such alternatives, first by outlining desiderata, then by 
evaluating the extent to which various candidate method-
ologies satisfy them. The eighth section outlines the BIC 
as an practical approximation to the principled Bayesian 
hypothesis test, and the ninth section concludes.

NULL‑HYPOTHESIS SIGNIFICANCE 
TESTING

Throughout this article, the focus is on the version 
of p value NHST advocated by Sir Ronald Fisher (e.g., 
Fisher, 1935a, 1935b, 1958). Fisherian NHST considers 
the extent to which the data contradict a default hypothesis 
(i.e., the null hypothesis). A Fisherian p value is thought 
to measure the strength of evidence against the null hy-
pothesis. Small p values (e.g., p 5 .0001), for instance, 
constitute more evidence against the null hypothesis than 
larger p values (e.g., p 5 .04). Fisherian methodology al-
lows its user to learn about a specific hypothesis from a 
single experiment.

Neyman and Pearson developed an alternative proce-
dure involving Type I and Type II error rates (e.g., Neyman 
& Pearson, 1933). Their procedure requires the specifica-
tion of an alternative hypothesis and pertains to actions 
rather than evidence, and as such specifically denies that 
one can learn about a particular hypothesis from conduct-
ing an experiment: “We are inclined to think that as far as 
a particular hypothesis is concerned, no test based upon 
the theory of probability can by itself provide any valu-
able evidence of the truth or falsehood of that hypothesis” 
(Neyman & Pearson, 1933, pp. 290–291).
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Despite fierce opposition from both Fisher and Neyman, 
current practice has become an anonymous amalgamation 
of the two incompatible procedures (Berger, 2003; Chris-
tensen, 2005; Goodman, 1993; Hubbard & Bayarri, 2003; 
Royall, 1997). The focus here is on Fisherian methodology 
because, arguably, it is philosophically closer to what ex-
perimental psychologists believe they are doing when they 
analyze their data (i.e., learning about their hypotheses).

Before discussing three pervasive problems with Fish-
erian NHST, it is useful to first describe NHST and estab-
lish some notation. For concreteness, assume that I ask 
you 12 factual true–false questions about NHST. These 
questions could be, for example:

1. A p value depends on the (possibly unknown) 
intentions of the researcher who performs the 
experiment. True or false?

2. A p value smaller than .05 always indicates that 
the data are more probable under the alternative 
hypothesis than under the null hypothesis. True 
or false?

.

.

.

12. Given unlimited time, money, and patience, it is 
possible to obtain arbitrarily low p values (e.g., 
p 5 .001 or p 5 .0000001), even if no data are ever 
discarded and the null hypothesis is exactly true. 
True or false?

Now assume that you answer 9 of these 12 questions cor-
rectly and that the observed data are as follows: x 5 {C, C, 
C, E, E, C, C, C, C, C, C, E}, where “C” and “E” indicate 
a correct response and an incorrect response, respectively. 
Suppose I want to know whether your performance can be 
explained purely in terms of random guessing.

In Fisherian p value NHST, one proceeds by specifying 
a test statistic t(⋅) that summarizes the data x in a single 
number, t(x). In the example above, the observed data x 
are reduced to the sum of correct responses, t(x) 5 9.

The choice of this test statistic is motivated by the sta-
tistical model one assumes when analyzing the data. In 
the present situation, most people would use the binomial 
model, given by

 
Pr[ ( ) | ] ( ) ,t x s

n

s
s n s= =







− −θ θ θ1  (1)

where s is the sum of correct responses, n is the number of 
questions, and θ is a parameter that reflects the probability 
of answering any one question correctly, θ [ [0, 1]. The 
model assumes that every question is equally difficult.

The next step is to define a null hypothesis. In this ex-
ample, the null hypothesis that we set out to test is “random 
guessing,” and in the binomial model this corresponds to 
θ 5 1/2. Plugging in θ 5 1/2 and n 5 12 reduces Equa-
tion 1 to
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Under the null hypothesis H0 (i.e., θ 5 1/2), the prob-
ability of t(x) 5 9 is Pr[t(x) 5 9 | θ 5 1/2]  .054. Thus, 
the observed data do not seem very probable under the 
null hypothesis of random guessing. Unfortunately, how-
ever, the fact that the test statistic for the observed data has 
a low probability under the null hypothesis does not neces-
sarily constitute any evidence against this null hypothesis. 
Suppose I asked you 1,000 questions, and you answered 
exactly half of these correctly; this result should maxi-
mally favor the null hypothesis. Yet when we calculate 
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we find that this yields about .025, a relatively low prob-
ability. More generally, as n increases, the probability 
of any particular t(x) decreases; thus, conclusions based 
solely on the observed t(x) are heavily influenced by n.

The solution to this problem is to consider what is known 
as the sampling distribution of the test statistic, given that 
H0 holds. To obtain this sampling distribution, assume that 
H0 holds exactly, and imagine that the experiment under 
consideration is repeated very many times under identical 
circumstances. Denote the entire set of replications xrep | 
H0 5 {x1

rep | H0, x2
rep | H0, . . . , xm

rep | H0}. Next, for each hy-
pothetical data set generated under H0, calculate the value 
of the test statistic as was done for the observed data: 
t(xrep | H0) 5 {t1(x1

rep | H0), t2(x2
rep | H0), . . . , tm(xm

rep | H0)}. 
The sampling distribution t(xrep | H0) provides an indica-
tion of what values of t(x) can be expected in the event 
that H0 is true.

The ubiquitous p value is obtained by considering 
Pr[t(x) | H0], as well as that part of the sampling distribu-
tion t(xrep | H0) more extreme than the observed t(x). Spe-
cifically, the p value is calculated as p 5 Pr[t(xrep | H0) $ 
t(x)]. The entire process is illustrated in Figure 1. Return-
ing to our example, we have already seen that Pr[t(x) 5 9 | 
θ 5 1/2]  .054. To calculate the p value, we also need the 
probabilities of values for the test statistic more extreme 
than the t(x) that was observed. We could follow the gen-
eral scheme of Figure 1 and obtain the sampling distribu-
tion t(xrep | H0) by simulation. However, in simple models, 
the sampling distribution of popular test statistics is often 
known in analytic form. Here, of course, we can use Equa-
tion 2, from which it follows that t(10)  .016, t(11)  
.003, and t(12)  .0002. The one-sided p value, which 
corresponds to the hypothesis H1 : θ . 1/2, is given by
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To calculate the two-sided p value, corresponding to 

the hypothesis H1 : θ  1/2, the more extreme values at 
the low end of the sampling distribution also need to be 
taken into account:
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A low p value is considered evidence against H0. The logic 
is that a low p value indicates that either the null hypoth-
esis is false or a rare event has occurred.
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In sum, a p value is obtained from the distribution of a 
test statistic over hypothetical replications (i.e., the sam-
pling distribution). The p value is the sum [or, for continu-
ous t(⋅), the integral] over values of the test statistic that are 
at least as extreme as the one that is actually observed.

PROBLEM 1 
p Values Depend on Data That 

Were Never Observed

As was explained in the previous section, the p value 
is not just based on the test statistic for the observed data, 
t(x) | H0, but also on hypothetical data that were contem-
plated yet never observed. These hypothetical data are 
data expected under H0, without which it is impossible 
to construct the sampling distribution of the test statistic 
t(xrep | H0). At first, the concern over dependence on hypo-
thetical data may appear to be a minor quibble. Consider, 
however, the following examples.

Example 1. Hypothetical events affect the p value 
(Barnard, 1947; Berger & Wolpert, 1988, p. 106; D. R. 
Cox, 1958, p. 368). Assume a variable x that can take on 
six discrete values, x [ {1, 2, . . . , 6}. For convenience, 
take x to be the test statistic, t(x) 5 x. Furthermore, as-
sume that we observe x 5 5 and wish to calculate a one-
sided p value. Table 1 shows that under the sampling dis-
tribution given by f (x), the p value is calculated as p 5 
f (x 5 5) 1 f (x 5 6) 5 .04. Under the sampling distribu-
tion given by g(x), however, the same calculation yields 
a different p value: p 5 g(x 5 5) 1 g(x 5 6) 5 .06. This 
discrepancy occurs because f (x) and g(x) assign a differ-
ent probability to the event x 5 6. Note, however, that 
x 5 6 has not been observed and is a purely hypothetical 
event. The only datum that has actually been observed is 
x 5 5. The observed x 5 5 is equally likely to occur under 

f(x) and g(x)—isn’t it odd that our inference should differ? 
Sir Harold Jeffreys summarized the situation as follows: 
“What the use of P implies, therefore, is that a hypoth-
esis that may be true may be rejected because it has not 
predicted observable results that have not occurred. This 
seems a remarkable procedure” (Jeffreys, 1961, p. 385). 
The following example further elaborates this key point.

Example 2. The volt‑meter (Pratt, 1962). A famous 
example of the effect of hypothetical events on NHST 
was given by Pratt (1962) in his discussion of Birnbaum 
(1962).2 Rather than summarize or paraphrase Pratt’s well-
written example (see Berger & Wolpert, 1988, pp. 91–92; 
Stuart et al., 1999, p. 431), it is given here in its entirety:

An engineer draws a random sample of electron 
tubes and measures the plate voltage under certain 
conditions with a very accurate volt-meter, accurate 
enough so that measurement error is negligible com-
pared with the variability of the tubes. A statistician 
examines the measurements, which look normally 
distributed and vary from 75 to 99 volts with a mean 
of 87 and a standard deviation of 4. He makes the 
ordinary normal analysis, giving a confidence inter-
val for the true mean. Later he visits the engineer’s 
laboratory, and notices that the volt meter used reads 
only as far as 100, so the population appears to be 
“censored.” This necessitates a new analysis, if the 
statistician is orthodox. However, the engineer says 
he has another meter, equally accurate and reading to 
1000 volts, which he would have used if any voltage 
had been over 100. This is a relief to the orthodox 
statistician, because it means the population was ef-
fectively uncensored after all. But the next day the 
engineer telephones and says: “I just discovered my 
high-range volt-meter was not working the day I did 
the experiment you analyzed for me.” The statisti-
cian ascertains that the engineer would not have held 
up the experiment until the meter was fixed, and in-
forms him that a new analysis will be required. The 
engineer is astounded. He says: “But the experiment 
turned out just the same as if the high-range meter 
had been working. I obtained the precise voltages 
of my sample anyway, so I learned exactly what I 
would have learned if the high-range meter had 
been available. Next you’ll be asking me about my 
oscilloscope.”

I agree with the engineer. If the sample has volt-
ages under 100, it doesn’t matter whether the upper 
limit of the meter is 100, 1000, or 1 million. The sam-
ple provides the same information in any case. And 

Table 1 
Two Different Sampling Distributions, f(x) and g(x), 

Lead to Two Different p Values for x 5 5

Distribution  x 5 1  x 5 2  x 5 3  x 5 4  x 5 5  x 5 6

f (x) | H0 .04 .30 .31 .31 .03 .01
g(x) | H0 .04 .30 .30 .30 .03 .03

Note—x 5 5 is equally likely under f(x) and g(x). See the text for 
further details.
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Test Statistic

x
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…

…

…

t(x)

x1
rep x2

rep xm
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t x1
rep( ) t x2
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Figure 1. A schematic overview of p value statistical null‑
 hypothesis testing. The distribution of a test statistic is  constructed 
from replicated data sets generated under the null hypothesis. 
The two‑sided p value is equal to the sum of the shaded areas on 
either side of the distribution; for these areas, the value of the test 
statistic for the replicated data sets is at least as extreme as the 
value of the test statistic for the observed data.
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this is true whether the end-product of the analysis is 
an evidential interpretation, a working conclusion, a 
decision, or an action. (Pratt, 1962, pp. 314–315)

More specifically, consider the case of a sample x1, x2, 
. . . , xn from a variable X that is exponentially distributed, 
with scale parameter θ. Under normal circumstances, the 
expected value of X, E(X ), equals θ, so that the sample 
mean X− is an unbiased estimator of θ. However, when 
the measurement apparatus cannot record observations 
greater than some value c, the data are said to be censored, 
and as a result X− is now a biased estimator of θ. Because 
values higher than c are set equal to c, X− will underes-
timate the true value of θ. For this censored setup, the 
expected value of X is equal to

 E(X ) 5 θ[1 2 exp(]c/θ)]. (3)

Note that E(X ) is now a proportion of θ: When c  ` 
(i.e., effectively no censoring), E(X )  θ, and when 
c  0 (i.e., complete censoring), E(X )  0.

Because Equation 3 leads to unbiased results, a tra-
ditional statistician may well recommend its use for the 
estimation of θ, even when no observations are actually 
censored (Stuart et al., 1999, p. 431; for a critique of 
the concept of “unbiased estimators,” see Jaynes, 2003, 
pp. 511–518). When replicate data sets are generated ac-
cording to some null hypothesis, such as θ 5 1, the re-
sulting sampling distribution depends on whether or not 
the data are censored; hence, censoring also affects the p 
value. Note that censoring has an effect on two-sided p 
values regardless of whether the observed data were ac-
tually censored, since censoring affects the shape of the 
sampling distribution.

In the statistical literature, the fact that p values depend 
on data that were never observed is considered a violation 
of the conditionality principle (see, e.g., Berger & Berry, 
1988b; Berger & Wolpert, 1988; D. R. Cox, 1958; A. W. F. 
Edwards, 1992; Stuart et al., 1999). This principle is illus-
trated in the next example.

Example 3. The conditionality principle (see Berger 
& Wolpert, 1988, p. 6; Cornfield, 1969; D. R. Cox, 1958). 
Two psychologists, Mark and René, decide to collaborate 
to perform a single lexical decision experiment. Mark in-
sists on 40 trials per condition, whereas René firmly be-
lieves that 20 trials are sufficient. After some fruitless de-
liberation, they decide to toss a coin for it. If the coin lands 
heads, Mark’s experiment will be carried out, whereas 
René’s experiment will be carried out if the coin lands tails. 
The coin is tossed and lands heads. Mark’s experiment is 
carried out. Now, should subsequent statistical inference 
in this situation depend on the fact that René’s experiment 
might have been carried out, had the coin landed tails?

The conditionality principle states that statistical conclu-
sions should only be based on data that have actually been 
observed. Hence, the fact that René’s experiment might 
have been carried out, but was not, is entirely irrelevant. In 
other words, the conditionality principle states that infer-
ence should proceed conditional on the observed data.3

In contrast, the situation is not so clear for NHST. As 
was illustrated earlier, the sampling distribution of the test 

statistic is constructed by considering hypothetical repli-
cations of the experiment. Does this include the coin toss? 
Indeed, in a hypothetical replication, the coin might have 
landed tails, and suddenly René’s never-performed exper-
iment has become relevant to statistical inference. This 
would be awkward, since most rational people would agree 
that experiments that were never carried out can safely be 
ignored. A detailed discussion of the conditionality prin-
ciple can be found in Berger and Wolpert (1988).4

PROBLEM 2 
p Values Depend on Possibly Unknown 

Subjective Intentions

As illustrated above, the p value depends on data that 
were never observed. These hypothetical data in turn de-
pend on the sampling plan of the researcher. In particular, 
the same data may yield quite different p values, depend-
ing on the intention with which the experiment was carried 
out. The following examples underscore the problem.

Example 4. Binomial versus negative binomial 
sampling (e.g., Berger & Berry, 1988b; Berger & Wolpert, 
1988; Bernardo & Smith, 1994; Cornfield, 1966; Howson 
& Urbach, 2006; Lindley, 1993; Lindley & Phillips, 1976; 
O’Hagan & Forster, 2004). Consider again our hypotheti-
cal questionnaire of 12 factual true–false questions about 
NHST. Recall that you answered 9 of the 12 questions cor-
rectly and that p(2-sided)  0.146. However, now I tell you 
that I did not decide in advance to ask you 12 questions. In 
fact, it was my intention to keep asking you questions until 
you made your third mistake, and this just happened to 
take 12 questions. This procedure is known as negative bi-
nomial sampling (Haldane, 1945). Under this procedure, 
the probability of n, the total number of observations until 
the final mistake, is given by 
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where f 5 n 2 s is the criterion number of mistakes; in 
this example, f 5 3.

By comparing this formula with Equation 1 for binomial 
sampling, one may appreciate the fact that the part of the 
equation that involves θ is the same in both  cases—namely, 
θs(1 2 θ)n2s. The main difference between the binomial 
and negative binomial sampling plans is the number of 
possible permutations of correct and incorrect decisions: 
In the negative binomial sampling plan, the result for the 
final question has to be a mistake. Another difference is 
that for negative binomial sampling, the dependent mea-
sure is the total number of trials, a quantity that is fixed in 
advance in the case of binomial sampling.

Note that the observed data, x 5 (C, C, C, E, E, C, C, 
C, C, C, C, E), are consistent with both the binomial and 
the negative binomial sampling plans—hence, nothing in 
the data per se informs you about my sampling intention. 
Nevertheless, this intention does affect the p value. This 
happens solely because the sampling plan affects the hy-
pothetical data expected under the null hypothesis. For 
instance, under the negative binomial sampling plan, a hy-
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pothetical data set may have n 5 3, as in xrep 5 (E, E, E), 
or n 5 15, as in xrep 5 (E, E, C, C, C, C, C, C, C, C, C, 
C, C, C, E). My intention influences the sampling dis-
tribution of the test statistic, and with it, the p value. In 
the case of sampling until the third mistake, the more ex-
treme results under H0 consist of the hypothetical replicate 
experiments that take more than 12 trials to produce the 
third mistake. Thus, using Equation 4, the p value under 
the negative binomial sampling plan is given by 

 

n n

n

−



 ( ) ≈

=
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1
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As in the previous example, the data are precisely the 
same, but the p value differs.

The present example is well known and clearly demon-
strates that p values depend on the sampling plan. It thus fol-
lows that the p value is undefined when the sampling plan is 
unknown. The following example illustrates this notion in a 
way that is familiar to every experimental psychologist.

Example 5. The importance of hypothetical actions 
for imaginary data (see, e.g., Berger & Berry, 1988a; 
Berger & Wolpert, 1988, p. 74.1). Consider the following 
scenario: Amy performs a lexical decision experiment to 
test whether words immediately preceded by an emotional 
prime word (e.g., cancer or love) are categorized as quickly 
as words that are preceded by a neutral prime word (e.g., 
poster or rice). Amy’s experiment involves 20 subjects. A 
standard null-hypothesis test on the mean response times 
for the two conditions yields p 5 .045, which leads Amy 
to conclude that the emotional valence of prime words 
affects response time for the target words. Amy is obvi-
ously pleased with the result and is about to submit a paper 
reporting the data. At this point, you ask Amy a seemingly 
harmless question: “What would you have done if the ef-
fect had not been significant after 20 subjects?”

Among the many possible answers to this question are 
the following:

1. “I don’t know.”

2. “I can’t remember right now, but we did discuss 
this during a lab meeting last week.”

3. “I would not have tested any more subjects.”

4. “I would have tested 20 more subjects, and then I 
would have stopped the experiment for sure.”

5. “That depends on the extent to which the effect 
would not have been significant. If p was greater 
than .25, I would not have bothered testing addi-
tional subjects, but if p was less than .25, I would 
have tested about 10 additional subjects and then 
would have stopped the experiment.”

6. “That depends on whether my paper on retrieval 
inhibition gets accepted for Psychonomic Bulle-
tin & Review. I expect the action letter soon. Only 
if this paper gets accepted would I have the time 
to test 20 additional subjects in the lexical deci-
sion experiment.”

After the previous examples, it should not come as a 
surprise that the p value depends in part on Amy’s answer, 
since her answer reveals the experimental sampling plan. In 
particular, after Answer 1 the p value is undefined, and after 
Answer 6 the p value depends on a yet-to-be- written ac-
tion letter for a different manuscript. Only under Answer 3 
does the p value remain unaffected. It is awkward that the 
conclusions of NHST depend critically on events that have 
yet to happen—events that, moreover, are completely unin-
formative with respect to the observed data.

Thus, in order to calculate a p value for data obtained 
in the past, it is necessary that you look into the future 
and consider your course of action for all sorts of eventu-
alities that may occur. This requirement is very general; 
in order to calculate a p value, you need to know what 
you would have done had the data turned out differently. 
This includes what you would have done if the data had 
contained anomalous responses (e.g., fast guesses or slow 
outliers); what you would have done if the data had clearly 
been nonnormally distributed; what you would have done 
if the data had shown an effect of practice or fatigue; and 
in general, what you would have done if the data had vio-
lated any aspect of your statistical model (Hill, 1985).

Thus, p values can only be computed once the sampling 
plan is fully known and specified in advance. In scientific 
practice, few people are keenly aware of their intentions, 
particularly with respect to what to do when the data turn 
out not to be significant after the first inspection. Still 
fewer people would adjust their p values on the basis of 
their intended sampling plan. Moreover, it can be difficult 
to precisely quantify a sampling plan. For instance, a re-
viewer may insist that you test additional participants. A 
different reviewer might hold a different opinion. What 
exactly is the sampling distribution here? The problem of 
knowing the sampling plan is even more prominent when 
NHST is applied to data that present themselves in the real 
world (e.g., court cases or economic and social phenom-
ena), for which no experimenter was present to guide the 
data collection process.

It should be stressed that NHST practitioners are not at 
fault when they adjust their p value on the basis of their 
intentions (i.e., the experimental sampling plan). When 
one uses the NHST methodology, this adjustment is in fact 
mandatory. The next example shows why.

Example 6. Sampling to a foregone conclusion (i.e., 
optional stopping) (see, e.g., Anscombe, 1954; Berger & 
Berry, 1988a; Kadane, Schervish, & Seidenfeld, 1996). 
It is generally understood that in the NHST framework, 
every null hypothesis that is not exactly true will even-
tually be rejected as the number of observations grows 
large. Much less appreciated is the fact that, even when a 
null hypothesis is exactly true, it can always be rejected, at 
any desired significance level that is greater than 0 (e.g., 
α 5 .05 or α 5 .00001). The method to achieve this is to 
calculate a p value after every new observation or set of 
observations comes in, and to stop the experiment as soon 
as the p value first drops below α. Feller (1940) discussed 
this sampling strategy with respect to experiments that test 
for extrasensory perception.
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Specifically, suppose we have data x1, x2, . . . , xn that 
are normally distributed with standard deviation s 5 1 
and unknown mean m. The null hypothesis is m 5 0, and 
the alternative hypothesis is m  0. The test statistic Z is 
then given by Z = x−√ 

__
 n  , where x− is the sample mean. When 

the null hypothesis is true, the sampling distribution of Z 
is the standard normal [i.e., N(0, 1)]. For a fixed-sample-
size design, the p value is given by p(H0 : m 5 0) 5 2[1 2 
F(| Z |)], where F is the standard normal cumulative dis-
tribution function.

Now suppose that the researcher does not fix the sample 
size in advance, but rather sets out to obtain a significant 
p value by using the following stopping rule: “Continue 
testing additional subjects until | Z | . k, then stop the 
experiment and report the result.” It can be shown that 
this strategy will always be successful, in that the experi-
ment will always stop, and | Z | will then be greater than 
k (Feller, 1970). When the resultant data are subsequently 
analyzed as if the researcher had fixed the sample size in 
advance, the researcher is guaranteed to obtain a “signifi-
cant” result and reject the null hypothesis (see Armitage, 
McPherson, & Rowe, 1969).

To appreciate the practical ramifications of optional 
stopping, consider successive tests for the mean of nor-
mally distributed data with known variance. Suppose the 
data become available in batches of equal size, and a test is 
conducted on the accumulating data after each new batch 
of data arrives. Table 2 shows that the probability that at 
least one of these tests is significant at the .05 level in-
creases with the number of tests (Jennison & Turnbull, 
1990; McCarroll, Crays, & Dunlap, 1992; Pocock, 1983; 
Strube, 2006). After only four “sneak peaks” at the data, 
this probability has risen to about .13.

This example forcefully demonstrates that within the 
context of NHST, it is crucial to take the sampling plan 
of the researcher into account; if the sampling plan is ig-
nored, the researcher is able to always reject the null hy-
pothesis, even if it is true. This example is sometimes used 
to argue that any statistical framework should somehow 
take the sampling plan into account. Some people feel that 
“optional stopping” amounts to cheating, and that no sta-
tistical inference is immune to such a devious sampling 
strategy. This feeling is, however, contradicted by a mathe-
matical analysis (see, e.g., Berger & Berry, 1988a; W. Ed-

wards, Lindman, & Savage, 1963; Kadane et al., 1996; 
Royall, 1997; for a summary, see an online appendix on 
my personal Web site, users.fmg.uva.nl/ewagenmakers/).

It is not clear what percentage of p values reported 
in experimental psychology have been contaminated by 
some form of optional stopping. There is simply no in-
formation in Results sections that allows one to assess 
the extent to which optional stopping has occurred. I have 
noticed, however, that large-sample-size experiments 
often produce small effects. Perhaps researchers have a 
good a priori idea about the size of the experimental ef-
fects that they are looking for, and thus assign more sub-
jects to experiments with smaller expected effect sizes. 
Alternatively, researchers could be chasing small effects 
by increasing the number of subjects until “the pattern of 
results is clear.” We will never know.

The foregoing example should not be misinterpreted. 
There is nothing wrong with gathering more data, examining 
these data, and then deciding whether or not to stop collect-
ing new data (see the online appendix cited above). The data 
constitute evidence; gathering more evidence is generally 
helpful. It makes perfect sense to continue an experiment 
until the pattern of results is clear. As stated by W. Edwards 
et al. (1963), “the rules governing when data collection stops 
are irrelevant to data interpretation. It is entirely appropriate 
to collect data until a point has been proven or disproven, or 
until the data collector runs out of time, money, or patience” 
(p. 193). What the previous example shows is that within 
the NHST paradigm, the researcher may not use this sen-
sible and flexible approach to conducting an experiment. 
The practical consequences are substantial.

Consider, for instance, a hypothetical experiment on 
inhibitory control in children with ADHD. In this experi-
ment, Hilde has decided in advance to test 40 children 
with ADHD and 40 control children. She examines the 
data after 20 children in each group have been tested and 
discovers that the results quite convincingly demonstrate 
the pattern she hoped to find: Children with ADHD have 
longer stop-signal response times than control children. 
Unfortunately for Hilde, she cannot stop the experiment 
and claim a significant result, since she would be guilty 
of optional stopping. She has to continue the experiment, 
wasting not just her own time and money, but also the time 
of the children who still need to undergo testing, as well as 
the time of the children’s parents.

In certain situations, it is not only wasteful, but in fact 
unethical to refrain from monitoring the data as they come 
in, and to continue the experiment regardless of how con-
vincing the interim data may be. This especially holds true 
for clinical trials, where one seeks to minimize the num-
ber of patients that have to undergo an inferior treatment. 
The NHST framework has been extended in several ways 
to deal with such situations, but the resulting procedures 
have also not been without controversy, as the next ex-
ample illustrates.

Example 7. Sequential procedures in clinical tri‑
als (see, e.g., Anscombe, 1954, 1963; Berger & Berry, 
1988a; Berger & Mortera, 1999; Cornfield, 1966; W. Ed-
wards et al., 1963; Howson & Urbach, 2006; Royall, 1997, 
pp. 97–107; Ware, 1989). A team of medical doctors sets 

Table 2 
The Effect of Optional Stopping on Statistical Inference 

Through p Values (cf. Jennison & Turnbull, 1990, Table 1; 
Pocock, 1983, Table 10.1)

 Number of Tests K  Pr(Signif | H0)  

 1  .05
 2  .08
 3  .11
 4  .13
 5  .14
10  .19
20  .25
50  .32
∞ 1.00

Note—Pr(Signif | H0) indicates the probability that at least one of K tests 
is significant, given that H0 is true.
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out to study the effect of an experimental Method A on the 
treatment of a dangerous infectious disease. The conven-
tional treatment is Method B. Obviously, it is important 
to stop the experiment as soon as it is apparent that the 
new drug is either superior or inferior (see Ware, 1989). 
Procedures that involve the online monitoring of data are 
known as interim analyses, sequential analyses, or re-
peated significance tests. For the reasons outlined above, 
NHST dogma outlaws data from sequential designs from 
being analyzed as if the number of participants was fixed 
in advance. In order to analyze such data within the frame-
work of NHST, several methods have been proposed (e.g., 
Armitage, 1960; Friedman, Furberg, & DeMets, 1998; 
Siegmund, 1985; for concise reviews, see Jennison & 
Turnbull, 1990, and Ludbrook, 2003).

For concreteness, the focus here is on a matched-pairs 
restricted sequential procedure proposed by Armitage 
(1957). This procedure is applied to binomial data as fol-
lows (see Figure 2). Pairs of participants are assigned to 
Treatment A and Treatment B. The quantity to be moni-
tored is the number of pairs for which Method A leads 
to better results than Method B. Thus, when Treatment A 
works better for one member of the pair than Treatment B 
does for the other member, a “counter” is increased by 1. 
When Treatment B works better than Treatment A, the 
counter is decreased by 1, and when both treatments are 
equally effective the counter is not updated.

The characteristic feature of the restricted sequential 
procedure is that one can make one of three decisions. 
First, as soon as the counter exceeds the upper threshold 
shown in Figure 2, one stops the experiment and con-
cludes that Treatment A is better than Treatment B. Sec-
ond, as soon as the counter exceeds the lower threshold, 
one stops the experiment and concludes that Treatment B 
is better than Treatment A. Third, if neither threshold has 

been crossed after a preset number of participants have 
been tested, one stops the experiment and declares that 
the data are inconclusive. In Figure 2, the maximum num-
ber of participants is set at 66 3 2 5 132. When, say, the 
counter is still close to 0 after about 45 pairs of subjects 
have been tested, it may be impossible to reach either of 
the two horizontally slanted boundaries before exceeding 
the maximum number of participants. This explains why 
the vertical threshold is wedge-shaped instead of verti-
cally straight.

The intercept and slope for the upper and lower bound-
aries are determined by considering the Type I error rate 
α and the power 1 2 β against a specific alternative. For 
the design in Figure 2, the probability of crossing either 
the upper or the lower boundary under the null hypothesis 
is α 5 .05. When the alternative hypothesis is true, and 
the proportion of pairs in which one treatment is better 
than the other equals θ 5 .75, the power to reject the null 
hypothesis is 1 2 β 5 .95. From this information, one 
can calculate the intercept to be 66.62 and the slope to 
be 60.2619n, where n is the number of pairs tested (for 
details, see Armitage, 1957). The data shown in Figure 2 
are from an experiment by Freireich et al. (1963). In this 
experiment, the upper threshold was reached after observ-
ing 18 pairs, with a corresponding Type I error rate of .05 
(see also Berger & Berry, 1988a).

The motivation for using a restricted procedure is that it 
imposes an upper limit on the number of participants. In 
unrestricted sequential procedures, in contrast, there can 
be considerable uncertainty as to the number of partici-
pants required to reach a decision. Despite its elegance, 
the sequential procedure has several shortcomings (see 
also Jennison & Turnbull, 1990). First, it is unclear what 
can be concluded when none of the three boundaries has 
yet been reached. A related concern is what should be con-
cluded when the trial is stopped, but then some additional 
observations come in from patients whose treatment had 
already started at the time that the experiment was termi-
nated (see Freireich et al., 1963).

Much more important, however, is that sequential pro-
cedures may lead to very different conclusions than fixed-
sample procedures—and for exactly the same set of data. 
For instance, when the experiment in Figure 2 is stopped 
after 18 trials, the restricted sequential procedure yields a 
Type I error probability of .05, whereas the fixed-sample-
size p value equals .008. For the design in Figure 2, data 
that cross the upper or lower threshold are associated with 
a sequential α 5 .05 Type I error rate, whereas, for the 
same data, the fixed-sample p values are lower by about 
a factor of 10.

Thus, the NHST methodology demands a heavy price 
for merely entertaining the idea of stopping an experi-
ment in the entirely fictional case that the data might have 
turned out differently than they did. That is, “the identical 
data would have been obtained whether the experimenter 
had been following the sequential design or a fixed sample 
size design. The drastically differing measures of conclu-
siveness are thus due solely to thoughts about other pos-
sibilities that were in the experimenter’s mind” (Berger & 
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Figure 2. Example of a matched‑pairs restricted sequential 
procedure (Armitage, 1957). Data from Freireich et al. (1963) are 
represented by open circles. Because the data are discrete, the 
upper and lower boundaries are not perfectly straight. See the 
text for details.
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Berry, 1988a, pp. 41–43). Anscombe (1963, p. 381) sum-
marized the state of affairs as follows:

“Sequential analysis” is a hoax. . . . So long as all 
observations are fairly reported, the sequential stop-
ping rule that may or may not have been followed 
is irrelevant. The experimenter should feel entirely 
uninhibited about continuing or discontinuing his 
trial, changing his mind about the stopping rule in 
the middle, etc., because the interpretation of the ob-
servations will be based on what was observed, and 
not on what might have been observed but wasn’t.

In sum, p values depend on the sampling plan of the re-
searcher. Within the context of NHST, this is necessary, for 
it prevents the researcher from biasing the p value through 
optional stopping (see Example 6). The problem is that 
the sampling plan of the researcher reflects a subjective 
process that concerns hypothetical actions for imaginary 
events. For instance, Example 5 shows that the sampling 
plan may involve events that are completely unrelated to 
the data that had been observed.

From a practical perspective, many researchers prob-
ably ignore any sampling plan dependence and compute 
p values as if the size of the data set was fixed in ad-
vance. Since sampling plans refer in part to future events 
that could have occurred but did not, there is no way to 
check whether a reported p value is biased or not. For 
staunch supporters of NHST, this must be cause for great 
concern.

PROBLEM 3 
p Values Do Not Quantify Statistical Evidence

In the Fisherian framework of statistical hypothesis 
testing, a p value is meant to indicate “the strength of the 
evidence against the hypothesis” (Fisher, 1958, p. 80); the 
lower the p value, the stronger the evidence against the 
null hypothesis (see also Hubbard & Bayarri, 2003). Some 
authors have given explicit guidelines with respect to the 
evidential interpretation of the p value. For instance, Bur-
dette and Gehan (1970; see also Wasserman, 2004, p. 157) 
associated specific ranges of p values with varying levels 
of evidence: A p value greater than .1 yields “little or no 
real evidence against the null hypothesis”; a p value less 
than .1 but greater than .05 implies “suggestive evidence 
against the null hypothesis”; a p value less than .05 but 
greater than .01 yields “moderate evidence against the 
null hypothesis”; and a p value less than .01 constitutes 
“very strong evidence against the null hypothesis” (Bur-
dette & Gehan, 1970, p. 9).

The evidential interpretation of the p value is an impor-
tant motivation for its widespread use. If the p value is in-
consistent with the concept of statistical evidence, there is 
little reason for the field of psychology to use the p value 
as a tool for separating the experimental wheat from the 
chaff. In this section, I review several arguments against 
the interpretation of p values as statistical evidence (see, 
e.g., Berger & Delampady, 1987; Berger & Sellke, 1987; 
Cornfield, 1966; Royall, 1997; Schervish, 1996; Sellke 
et al., 2001).

In order to proceed with our argument against the evi-
dential interpretation of the p value, it seems that we first 
need to resolve a thorny philosophical issue and define 
precisely what is meant by “statistical evidence” (for a 
discussion, see, e.g., Berger & Sellke, 1987; Birnbaum, 
1962, 1977; Dawid, 1984; De Finetti, 1974; Jaynes, 2003; 
Jeffreys, 1961; Royall, 1997; Savage, 1954). The most 
common and well-worked-out definition is the Bayesian 
definition, which will be dealt with in some detail below. 
For the moment, the focus is on a simple rule, a violation 
of which clearly disqualifies the p value as a measure of 
statistical evidence. This rule states that identical p val-
ues provide identical evidence against the null hypothesis. 
Henceforth, this rule will be referred to as the p postulate 
(see Cornfield, 1966).

Example 8. The p postulate: Same p value, same 
evidence? Consider two experiments in which interest 
centers on the effect of lexical inhibition from ortho-
graphically similar words (i.e., “neighbors”). Experi-
ment S finds that p 5 .032 after 11 participants are tested, 
and Experiment L finds p 5 .032 after 98 participants are 
tested. Do the two experiments provide equally strong evi-
dence against the null hypothesis? If not, which experi-
ment is the more convincing?

When the p value is kept constant, Rosenthal and Gaito 
(1963) found that the confidence with which a group of 
psychologists were willing to reject the null hypothesis 
increased with sample size (see also Nelson, Rosenthal, 
& Rosnow, 1986). Thus, psychologists tend to think that 
Experiment L provides more evidence against the null 
hypothesis than does Experiment S. The psychologists’ 
reasoning may be that a significant result is less likely 
to be due to chance fluctuations when the number of ob-
servations is large than when it is small. Consistent with 
the psychologists’ intuition, an article co-authored by 10 
reputable statisticians maintained that “A given p value 
in a large trial is usually stronger evidence that the treat-
ments really differ than the same p value in a small trial of 
the same treatments would be” (Peto et al., 1976, p. 593, 
as cited in Royall, 1997, p. 71).

Nevertheless, Fisher himself was of the opinion that 
the p postulate is correct: “It is not true . . . that valid 
conclusions cannot be drawn from small samples; if ac-
curate methods are used in calculating the probability [the 
p value], we thereby make full allowance for the size of 
the sample, and should be influenced in our judgement 
only by the value of probability indicated” (Fisher, 1934, 
p. 182, as cited in Royall, 1997, p. 70). Thus, Fisher ap-
parently argues that Experiments L and S provide equal 
evidence against the null hypothesis.

Finally, several researchers have argued that when the 
p values are the same, studies with small sample size ac-
tually provide more evidence against the null hypothesis 
than do studies with large sample size (see, e.g., Bakan, 
1966; Lindley & Scott, 1984; Nelson et al., 1986). Note 
that the p value is influenced both by effect size and by 
sample size. Hence, when Experiments L and S have dif-
ferent sample sizes but yield the same p value, it must 
be the case that Experiment L deals with a smaller effect 
size than does Experiment S. Because Experiment L has 
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more power to detect a difference than does Experiment S, 
the fact that they yield the same p value suggests that the 
effect is less pronounced in Experiment L. This reason-
ing suggests that Experiment S provides more evidence 
against the null hypothesis than does Experiment L.

In sum, there is considerable disagreement as to whether 
the p postulate holds true. Among those who believe the 
p postulate is false, some believe that studies with small 
sample size are less convincing than those with large 
sample size, and others believe the exact opposite. As will 
shortly become apparent, a Bayesian analysis strongly 
suggests that the p postulate is false: When two experi-
ments have different sample sizes but yield the same p 
value, the experiment with the smallest sample size is the 
one that provides the strongest evidence against the null 
hypothesis.

BAYESIAN INFERENCE

This section features a brief review of the Bayesian 
perspective on statistical inference. A straightforward 
Bayesian method is then used to cast doubt on the p pos-
tulate. This section also sets the stage for an explanation 
of the BIC as a practical alternative to the p value. For 
more detailed introductions to Bayesian inference, see, 
for instance, Berger (1985), Bernardo and Smith (1994), 
W. Edwards et al. (1963), Gill (2002), Jaynes (2003), P. M. 
Lee (1989), and O’Hagan and Forster (2004).

Bayesians Versus Frequentists
The statistical world has always been dominated by two 

superpowers: the Bayesians and the frequentists (see, e.g., 
Bayarri & Berger, 2004; Berger, 2003; Christensen, 2005; 
R. T. Cox, 1946; Efron, 2005; Lindley & Phillips, 1976; 
Neyman, 1977). Bayesians use probability distributions 
to quantify uncertainty or degree of belief. Incoming data 
then reduce uncertainty or update belief according to the 
laws of probability theory. Bayesian inference is a method 
of inference that is coherent (i.e., internally consistent; 
see Bernardo & Smith, 1994; Lindley, 1972). A Bayesian 
feels free to assign probability to all kinds of events—for 
instance, the event that a fair coin will land tails in the 
next throw or that the Dutch soccer team will win the 2010 
World Cup.

Frequentists believe that probability should be con-
ceived of as a limiting frequency. That is, the probability 
that a fair coin lands tails is 1/2 because this is the pro-
portion of times a fair coin would land heads if it were 
tossed very many times. In order to assign probability to 
an event, a frequentist has to be able to repeat an experi-
ment very many times under exactly the same conditions. 
More generally, a frequentist feels comfortable assigning 
probability to events that are associated with “aleatory un-
certainty” (i.e., uncertainty due to randomness). These are 
events associated with phenomena such as coin tossing and 
card drawing. On the other hand, a frequentist may refuse 
to assign probability to events associated with “epistemic 
uncertainty” (i.e., uncertainty due to lack of knowledge, 
which may differ from one person to another). The event 
that the Dutch soccer team wins the 2010 World Cup is one 

associated with epistemic uncertainty—for example, the 
Dutch trainer has more knowledge about the plausibility of 
this event than I do (for a discussion, see R. T. Cox, 1946; 
Fine, 1973; Galavotti, 2005; O’Hagan, 2004).

Over the past 150 years or so, the balance of power in the 
field of statistics has shifted from the Bayesians, such as 
Pierre-Simon Laplace, to frequentists such as Jerzy Ney-
man. Recently, the balance of power has started to shift 
again, as Bayesian methods have made an inspired come-
back. Figure 3 illustrates the popularity of the Bayesian 
paradigm in the field of statistics; it plots the proportion 
of articles with the letter string “Bayes” in the title or ab-
stract of articles published in statistics’ premier journal, the 
Journal of the American Statistical Association (JASA). 
Figure 3 shows that the interest in Bayesian methods is 
steadily increasing. This increase is arguably due mainly 
to pragmatic reasons: The Bayesian program is conceptu-
ally straightforward and can be easily extended to more 
complicated situations, such as those that require (pos-
sibly nonlinear) hierarchical models (see, e.g., Rouder & 
Lu, 2005; Rouder, Lu, Speckman, Sun, & Jiang, 2005) or 
order-constrained inference (Klugkist, Laudy, & Hoijtink, 
2005). The catch is that, as we will see later, practical 
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Figure 3. The proportions of Bayesian articles in the Journal 
of the American Statistical Association (JASA) from 1960 to 2005, 
as determined by the proportions of articles with the letter string 
“Bayes” in title or abstract. This method of estimation will obvi‑
ously not detect articles that use Bayesian methodology but do not 
explicitly acknowledge such use in the title or abstract. Hence, the 
present estimates are biased downward, and may be thought of as 
a lower bound. JSTOR (www.jstor.org) is a not‑for‑profit schol‑
arly journal archive that has a 5‑year moving window for JASA. 
The ISI Web of Science (isiknowledge.com) journal archive does 
not have a moving window for JASA, but its database only goes 
back to 1988. ISI estimates are generally somewhat higher than 
JSTOR estimates because ISI also searches article keywords.

http://www.jstor.org
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implementation of Bayesian methods requires integration 
over the parameter space. For many problems, the values of 
such integrals are not available as analytic expressions, and 
one has to resort to computer- intensive numerical approxi-
mation methods. The increasing development and feasi-
bility of such computer-intensive methods (i.e., Markov 
chain Monte Carlo [MCMC] methods; Gilks, Richardson, 
& Spiegelhalter, 1996; Robert & Casella, 1999) has greatly 
fueled the Bayesian fire.

I suspect that many psychologists are not aware that the 
Bayesian paradigm is quite popular in the field of statis-
tics, for frequentist statistics is the version that is taught to 
psychology students in undergraduate classes and used by 
experimental psychologists to analyze their data. Figure 3 
suggests that a large gap indeed exists between statistics 
theory, as studied in JASA, and statistical practice, as dis-
played in the standard journals for experimental psychol-
ogy. I estimate that the proportion of articles in, say, the 
Journal of Experimental Psychology: Learning, Memory, 
and Cognition that use Bayesian methods for data analysis 
is approximately 0.

Bayesian Parameter Estimation
For simplicity and consistency, this section continues 

our binomial example. To reiterate, I asked you 12 factual 
true–false questions, and you answered 9 of them correctly. 
We adopt the binomial model, in which the probability of 
9 correct responses out of 12 questions is given by 
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where θ [ [0, 1] indicates the probability of answering 
any one question correctly. Let D denote the observed data 
(i.e., s 5 9 out of n 5 12). Thus, we have already obtained 
Pr(D | θ)—that is, the probability of the data given θ. The 
object of our inference, however, is Pr(θ | D), the posterior 
distribution of θ given the data. 

Probability theory gives the relation between Pr(θ | D) 
and Pr(D | θ):
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This simple equation is known as Bayes’s theorem. The 
initial state of knowledge about θ is indicated by the prior 
distribution Pr(θ). This prior distribution is updated by 
means of the likelihood Pr(D | θ) to yield the posterior dis-
tribution Pr(θ | D). Note that, in contrast to the method of 
p values, the Bayesian method is conditioned on the data 
D that have actually been observed, and does not make 
any reference to imaginary data that could have been ob-
served but were not.

When additional data D2 come in, the posterior distribu-
tion for θ is obtained as in Equation 5, save that all quanti-
ties are conditioned on the presence of the old data D— 
that is, Pr(θ | D2, D) 5 Pr(D2 | θ, D)Pr(θ | D)/Pr(D2 | D). 
When D2 is independent of D, so that Pr(D2 | θ, D) 5 
Pr(D2 | θ), the posterior simplifies to Pr(θ | D2, D) 5 
Pr(D2 | θ)Pr(θ | D)/Pr(D2). Comparison with Equation 5 
shows that sequential updating in the Bayesian paradigm 

takes a particularly simple form: The posterior distribu-
tion Pr(θ | D) after observation of the first batch of data D 
becomes the prior distribution for the next batch of data 
D2, and this “prior” distribution gets updated through the 
likelihood for the new data D2.

In Equation 5, the normalizing constant Pr(D) does not 
depend on θ. In fact, Pr(D) is calculated by integrating 
out θ—that is, Pr(D) 5 ePr(D | θ)Pr(θ) dθ. Pr(D) is also 
known as the marginal probability or the prior predictive 
probability of the data. For many purposes related to pa-
rameter estimation, Pr(D) can safely be ignored, and we 
can write Equation 5 as

 Pr (θ | D) ~ Pr (D | θ)Pr (θ), (6)

where ~ stands for “is proportional to.”
Let’s apply the foregoing to our true–false example. 

First, we need to specify Pr(θ), the prior distribution for 
the binomial parameter that gives the probability of an-
swering any one question correctly. It seems reasonable, 
a priori, to expect at least some knowledge of the topic to 
be present, suggesting a prior with most of its mass on 
θ . 1/2. On the other hand, a closer look at the questions 
reveals that they were probably specially selected to elicit 
an incorrect answer. In this situation, it is reasonable to 
assume as little about θ as possible. A standard choice for 
such an “uninformative” prior distribution is the uniform 
distribution shown in the top panel of Figure 4 (for a more 
principled argument as to why the uniform is an appropri-
ate uninformative distribution, see Jaynes, 2003; Lee & 
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Figure 4. Bayesian parameter estimation for the binomial 
model. See the text for details.
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Wagenmakers, 2005). For this flat prior, θ ~ Uniform(0, 1), 
and it conveniently drops out of subsequent calculations.

The binomial likelihood of the data is
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In this particularly simple problem, it is possible to ob-
tain the marginal probability of the data, Pr(D), in analytic 
form. Appendix A shows that Pr(D) 5 1/(n 1 1). Now we 
have all the information required to calculate Pr(θ | D). 
After plugging in the required information, Equation 5 
yields Pr(θ | s, n) 5 (n 1 1)Pr(s | θ, n). For the hypotheti-
cal data from the true–false example,
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This posterior distribution is shown in the bottom panel 
of Figure 4. After the data have been observed, values of 
θ , .5 are less plausible than they were under the prior 
distribution, and values of θ [ (.5, .9) have become more 
plausible than they were under the prior. Once we have the 
posterior distribution, the estimation problem is solved, and 
we can proceed to report the entire distribution or useful 
summary measures (see Lee & Wagenmakers, 2005). For 
instance, the mean of the distribution is 5/7  .71, and the 
95% Bayesian confidence interval for θ is (.462, .909).

In this particular example, there exists an easier method 
to obtain the posterior distribution. This is how it works: 
The Beta probability density function, Beta(θ | α, β), has 
two parameters that determine the distribution of θ (for 
details, see Appendix A). The uniform distribution hap-
pens to correspond to a Beta distribution with α 5 1 and 
β 5 1. When a Beta prior is updated through a binomial 
likelihood function, the resulting posterior distribution is 
still a Beta distribution, albeit with parameters α 1 s and 
β 1 n 2 s. Thus, the posterior we calculated earlier,
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is in fact a Beta(θ | 10, 4) distribution.

Bayesian Hypothesis Testing
One of the most obvious features of a Bayesian hypoth-

esis test is that it is comparative in nature. A Bayesian hy-
pothesis test always involves at least two different models. 
Consequently, from a Bayesian perspective, the fact that 
the null hypothesis is unlikely is not sufficient reason to 
reject it—the data may be even more unlikely under the 
alternative hypothesis. After observing the data, the pos-
terior odds in favor of the null hypothesis H0 versus the 
alternative hypothesis H1 are given by
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This equation states that the posterior odds are equal to the 
ratio of prior predictive probabilities times the prior odds. 
Often the focus of interest is on the change in odds from 

prior to posterior, brought about by the data. This change 
is indicated by the ratio of prior predictive probabilities, 
Pr(D | H0)/Pr(D | H1), a quantity known as the Bayes fac-
tor (see, e.g., Jeffreys, 1961). The Bayes factor, or the log 
of the Bayes factor, is often interpreted as the weight of 
evidence coming from the data (e.g., Good, 1985). Thus, a 
Bayes-factor hypothesis test prefers the hypothesis under 
which the observed data are most likely (for details, see 
Bernardo & Smith, 1994, chap. 6; Gill, 2002, chap. 7; 
Kass & Raftery, 1995).

Some of the details involved can best be illustrated by 
once more turning to our true–false example (see also 
Nickerson, 2000; Wagenmakers & Grünwald, 2006; Was-
serman, 2000). In a Bayesian hypothesis test, the interest 
might center on whether your performance (i.e., 9 correct 
answers out of 12 questions) is consistent with an expla-
nation in terms of random guessing. Thus, H0, the null 
hypothesis of random guessing, posits that the success 
rate parameter in the binomial model is fixed at θ 5 1/2. 
For H1, the alternative hypothesis, θ is a free parameter, 
θ  1/2. As discussed above, in this example a reasonable 
prior is the uninformative uniform prior. The Bayes factor 
is then given by
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BF01 is smaller than 1, indicating that the data are more 
likely under H1 than they are under H0. Specifically, the 
data are 1/0.7  1.4 times more likely under H1 than they 
are under H0. If we believe H0 and H1 to be equally likely 
a priori [i.e., Pr(H0) 5 Pr(H1)], one can calculate the pos-
terior probability of H0 as Pr(H0 | D)  0.7/(1 1 0.7)  
.41. The posterior probability of the alternative hypothesis 
is the complement, Pr(H1 | D) 5 1 2 Pr(H0 | D).

From the foregoing analysis, a Bayesian would happily 
conclude that the data are about 1.4 times as likely to have 
occurred under H1 than under H0, and be done with it. For 
many experimental psychologists, however, such a con-
clusion may be unsatisfactory; these researchers desire to 
see the Bayes factor reduced to a dichotomous decision: 
Either H0 is true or H0 is false. Statistically, this desire is 
entirely unfounded. Just like the ubiquitous .05 criterion 
in NHST, any criterion on the Bayes factor will be some-
what arbitrary. Moreover, any summary of the Bayes fac-
tor will lose information. Nevertheless, people apparently 
find it difficult to deal with continuous levels of evidence. 
It should also be acknowledged that it is useful to be able 
to summarize the quantitative results from a Bayesian hy-
pothesis test in words.

In order to accommodate the need for a verbal descrip-
tion of the Bayes factor, Jeffreys (1961) proposed a divi-
sion into four distinct categories. Raftery (1995) proposed 
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some minor adjustments of these rules of thumb. Table 3 
shows the Raftery (1995) classification scheme. The first 
column shows the Bayes factor, the second column shows 
the associated posterior probability when it is assumed 
that both H0 and H1 are a priori equally plausible, and the 
third column shows the verbal labels for the evidence at 
hand. Consistent with intuition, the result that the data 
from the true–false example are 1.4 times as likely under 
H1 than they are under H0 constitutes only “weak evi-
dence” in favor of H1.

Equation 8 shows that the prior predictive probability 
of the data for H1 is given by the average of the likeli-
hood for the observed data over all possible values of θ. 
Generally, the prior predictive probability is a weighted 
average, the weights being determined by the prior dis-
tribution Pr(θ). In the case of a uniform Beta(1, 1) prior, 
the weighted average reduces to an equally weighted aver-
age. Non-Bayesians cannot average over θ, since they are 
reluctant or unwilling to commit to a prior distribution. 
As a result, non-Bayesians often determine the maximum 
likelihood—that is, Pr(D | θ̂), where θ̂ is the value of θ 
under which the observed results are most likely. One of 
the advantages of averaging instead of maximizing over θ 
is that averaging automatically incorporates a penalty for 
model complexity. That is, a model in which θ is free to 
take on any value in [0, 1] is more complex than the model 
that fixes θ at 1/2. By averaging the likelihood over θ, val-
ues of θ that turn out to be very implausible in light of the 
observed data (e.g., all θs , .4 in our true–false example) 
will lead to a relative decrease of the prior predictive prob-
ability of the data (Myung & Pitt, 1997).

“That Wretched Prior . . .”
This short summary of the Bayesian paradigm would 

be incomplete without a consideration of the prior Pr(θ). 
Priors do not enjoy a good reputation, and some research-
ers apparently believe that by opening a Pandora’s box 
of priors, the Bayesian statistician can bias the results 
at will. This section illustrates how priors are specified 
and why priors help rather than hurt statistical inference. 
More details and references can be found in a second on-
line appendix on my personal Web site (users.fmg.uva 
.nl/ ewagenmakers/). The reader who is eager to know why 
the p postulate is false can safely skip to the next section.

Priors can be determined by two different methods. 
The first method is known as “subjective.” A “subjective 
Bayesian” argues that all inference is necessarily relative 
to a particular state of knowledge. For a subjective Bayes-
ian, the prior simply quantifies a personal degree of belief 

that is to be adjusted by the data (see, e.g., Lindley, 2004). 
The second method is known as “objective” (Kass & Was-
serman, 1996). An “objective Bayesian” specifies priors 
according to certain predetermined rules. Given a specific 
rule, the outcome of statistical inference is independent of 
the person who performs the analysis. Examples of objec-
tive priors include the unit information priors (i.e., priors 
that carry as much information as a single observation; 
Kass & Wasserman, 1995), priors that are invariant under 
transformations (Jeffreys, 1961), and priors that maximize 
entropy (Jaynes, 1968). Objective priors are generally 
vague or uninformative—that is, thinly spread out over the 
range for which they are defined.

From a pragmatic perspective, the discussion of subjec-
tive versus objective priors would be moot if it could be 
shown that the specific shape of the prior did not greatly 
affect inference (see Dickey, 1973). Consider Bayesian 
inference for the mean m of a normal distribution. For 
parameter estimation, one can specify a prior Pr(m) that 
is very uninformative (e.g., spread out across the entire 
real line). The data will quickly overwhelm the prior, and 
parameter estimation is hence relatively robust to the spe-
cific choice of prior. In contrast, the Bayes factor for a 
two-sided hypothesis test is sensitive to the shape of the 
prior (Lindley, 1957; Shafer, 1982). This is not surprising; 
if we increase the interval along which m is allowed to vary 
according to H1, we effectively increase the complexity of 
H1. The inclusion of unlikely values for m decreases the 
average likelihood for the observed data. For a subjective 
Bayesian, this is not really an issue, since Pr(m) reflects a 
prior belief. For an objective Bayesian, hypothesis test-
ing constitutes a bigger challenge: On the one hand, an 
objective prior needs to be vague. On the other hand, a 
prior that is too vague can increase the complexity of H1 
to such an extent that H1 will always have low posterior 
probability, regardless of the observed data. Several ob-
jective Bayesian procedures have been developed that try 
to address this dilemma, such as the local Bayes factor 
(Smith & Spiegelhalter, 1980), the intrinsic Bayes factor 
(Berger & Mortera, 1999; Berger & Pericchi, 1996), the 
partial Bayes factor (O’Hagan, 1997), and the fractional 
Bayes factor (O’Hagan, 1997) (for a summary, see Gill, 
2002, chap. 7).

For many Bayesians, the presence of priors is an asset 
rather than a nuisance. First of all, priors ensure that dif-
ferent sources of information are appropriately combined, 
such as when the posterior after observation of a batch of 
data D1 becomes the prior for the observation of a new 
batch of data D2. In general, inference without priors can 
be shown to be internally inconsistent or incoherent (see, 
e.g., Bernardo & Smith, 1994; Cornfield, 1969; R. T. Cox, 
1946; D’Agostini, 1999; De Finetti, 1974; Jaynes, 2003; 
Jeffreys, 1961; Lindley, 1982). A second advantage of pri-
ors is that they can prevent one from making extreme and 
implausible inferences; priors may “shrink” the extreme 
estimates toward more plausible values (Box & Tiao, 
1973, pp. 19–20; Lindley & Phillips, 1976; Rouder et al., 
2005). A third advantage of specifying priors is that it al-
lows one to focus on parameters of interest by eliminating 
so-called nuisance parameters through the law of total 

Table 3 
Interpretation of the Bayes Factor in Terms of Evidence 

(cf. Raftery, 1995, Table 6)

 Bayes Factor BF01  Pr(H0 | D)  Evidence  

1–3 .50–.75 weak
3–20 .75–.95 positive
20–150 .95–.99 strong
.150 ..99 very strong

Note—Pr(H0 | D) is the posterior probability for H0, given that Pr(H0) 5 
Pr(H1) 5 1/2.
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probability (i.e., integrating out the nuisance parameters). 
A fourth advantage of priors is that they might reveal the 
true uncertainty in an inference problem. For instance, 
Berger (1985, p. 125) argues that “when different reason-
able priors yield substantially different answers, can it be 
right to state that there is a single answer? Would it not be 
better to admit that there is scientific uncertainty, with the 
conclusion depending on prior beliefs?”

These considerations suggest that inferential procedures 
that are incapable of taking prior knowledge into account 
are incoherent (Lindley, 1977), may waste useful informa-
tion, and may lead to implausible estimates. Similar consid-
erations led Jaynes (2003, p. 373) to state that “If one fails 
to specify the prior information, a problem of inference is 
just as ill-posed as if one had failed to specify the data.”

A BAYESIAN TEST OF THE p POSTULATE

We are now in a position to compare the Bayesian hy-
pothesis test to the p value methodology. Such compari-
sons are not uncommon (see, e.g., Berger & Sellke, 1987; 
Dickey, 1977; W. Edwards et al., 1963; Lindley, 1957; 
Nickerson, 2000; Wagenmakers & Grünwald, 2006), but 
their results have far-reaching consequences: Using a 
Bayes-factor approach, one can undermine the p postu-
late by showing that p values overestimate the evidence 
against the null hypothesis.5

For concreteness, assume that Ken participates in an ex-
periment on taste perception. On each trial of the experi-
ment, Ken is presented with two glasses of beer, one glass 
containing Budweiser and the other containing Heineken. 
Ken is instructed to identify the glass that contains Bud-
weiser. Our hypothetical participant enjoys his beer, so 
we can effectively collect an infinite amount of trials. On 
each trial, assuming conditional independence, Ken has 
probability θ of making the right decision. For inference, 
we will again use the binomial model. For both the Bayes-
ian hypothesis tests and the frequentist hypothesis test, the 
null hypothesis is that performance can be explained by 
random guessing—that is, H0 : θ 5 1/2. Both the Bayes-
ian and the frequentist hypothesis tests are two-sided.

In the Bayesian analysis of this particular situation, it 
is assumed that the null hypothesis H0 and the alterna-
tive hypothesis H1 are a priori equally likely. That is, it is 
assumed that Ken is a priori equally likely to be able to 
discriminate Budweiser from Heineken as he is not. Via 
Equation 7, the calculation of the Bayes factor then eas-
ily yields the posterior probability of the null hypothesis: 
Pr(H0 | D) 5 BF01/(1 1 BF01). To calculate the prior pre-
dictive probability of H1: θ  1/2, we need to average the 
likelihood weighted by the prior distribution for θ:
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As mentioned earlier, the prior distribution can be deter-
mined in various ways. Figure 5 shows two possible pri-
ors. The uniform Beta(1, 1) prior is an objective prior that 
is often chosen in order to “let the data speak for them-
selves.” The peaked Beta(6, 3) prior is a subjective prior 
that reflects my personal belief that it is possible for an 

experienced beer drinker to distinguish Budweiser from 
Heineken, although performance probably will not be 
anywhere near perfection.

A third prior is the “oracle point prior.” This is not a 
fair prior, since it is completely determined by the ob-
served data. For instance, if Ken successfully identifies 
Budweiser in s out of n trials, the oracle prior will con-
centrate all its prior mass on the estimate of θ that makes 
the observed data as likely as possible—that is, θ̂5 s/n. 
Because it is determined by the data, and because it is 
a single point instead of a distribution, the oracle prior 
is totally implausible and would never be considered in 
actual practice. The oracle prior is useful here because 
it sets a lower bound for the posterior probability of the 
null hypothesis (W. Edwards et al., 1963). In other words, 
the oracle prior maximizes the posterior probability of the 
alternative hypothesis; thus, whatever prior one decides to 
use, the probability of the null hypothesis has to be at least 
as high as it is under the oracle prior.

To test the p postulate that equal p values indicate equal 
evidence against the null hypothesis, the data were con-
structed as follows. The number of observations n was 
varied from 50 to 10,000 in increments of 50, and for 
each of these ns I determined the number of successful 
decisions s that would result in an NHST p value that is 
barely significant at the .05 level, so that for these data 
p is effectively fixed at .05. For instance, if n 5 400, the 
number of successes has to be s 5 220 to result in a p 
value of about .05. When n 5 10,000, s has to be 5,098. 
Next, for the data that were constructed to have the same 
p value of .05, I calculated the Bayes factor Pr(D | H0)/
Pr(D | H1) using the objective Beta(1, 1) prior, the subjec-
tive Beta(6, 3) prior, and the unrealistic oracle prior. From 
the Bayes factor, I then computed posterior probabilities 
for the null hypothesis.
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Figure 6 shows the results. By construction, the NHST 
p value is a constant .05. The lower bound on the posterior 
probability for H0, obtained by using the oracle prior, is 
a fairly constant .128. This is an important result, for it 
shows that—for data that are just significant at the .05 lev-
el—even the utmost generosity to the alternative hypoth-
esis cannot make it more than about 6.8 times as likely as 
the null hypothesis. Thus, an oracle prior that is maximally 
biased against the null hypothesis will generate “positive 
evidence” for the alternative analysis (see Table 3), but 
this evidence is not as strong as the NHST “1 in 20” that 
p 5 .05 may suggest. The posterior probability for H0 in-
creases when we abandon the oracle prior and consider 
more realistic priors.

Both the uniform “objective” prior and the peaked 
“subjective” prior yield posterior probabilities for H0 that 
are dramatically different from the constant NHST p value 
of .05. The posterior probabilities for H0 are not constant, 
but rather increase with n. For instance, under the uniform 
prior, the Bayes factor in favor of the null hypothesis is 
about 2.17 when s 5 220 and n 5 400, and about 11.69 
when s 5 5,098 and n 5 10,000. In addition, for data that 
would prompt rejection of the null hypothesis by NHST 
methodology, the posterior probability for H0 may be con-
siderably higher than the posterior probability for H1.

Figure 6 also shows the posterior probability for H0 
computed from the BIC approximation to the Bayes fac-
tor. In a later section, I will illustrate how the BIC can be 
calculated easily from SPSS output and how the raw BIC 
values can be transformed to posterior probabilities. For 

now, the only important regularity to note is that all three 
posterior probabilities (i.e., objective, subjective, and 
BIC) show the same general pattern of results.

The results above are not an artifact of the particular 
priors used. You are free to choose any prior you like, as 
long as it is continuous and strictly positive on θ [ [0, 1]. 
For any such prior, the posterior probability of H0 will 
converge to 1 as n increases (Berger & Sellke, 1987), pro-
vided of course that the NHST p value remains constant 
(see also Lindley, 1957; Shafer, 1982). The results from 
Figure 6 therefore have considerable generality.

At this point, the reader may wonder whether it is ap-
propriate to compare NHST p values to posterior prob-
abilities, since these two probabilities refer to different 
concepts. I believe the comparison is insightful for at least 
two reasons. First, it highlights that p values should not be 
misinterpreted as posterior probabilities: A p value smaller 
than .05 does not mean that the alternative hypothesis is 
more likely than the null hypothesis, even if both hypoth-
eses are equally likely a priori. Second, the comparison 
shows that if n increases and the p value remains constant, 
the posterior probability for H0 goes to 1 for any plausible 
prior. In other words, there is no plausible prior for which 
the posterior probability of the null hypothesis is mono-
tonically related to the NHST p value as the number of 
observations increases.

It should be acknowledged that the interpretation of the 
results hinges on the assumption that there exists a prior 
for which the Bayesian analysis will give a proper measure 
of statistical evidence, or at least a measure that is mono-
tonically related to statistical evidence. Thus, it is pos-
sible to dismiss the implications of the previous analysis 
by arguing that a Bayesian analysis cannot yield a proper 
measure of evidence, whatever the shape of the prior. Such 
an argument conflicts with demonstrations that the only 
coherent measure of statistical evidence is Bayesian (see, 
e.g., Jaynes, 2003).

In conclusion, NHST p values may overestimate the 
evidence against the null hypothesis; for instance, a data 
set that does not discredit H0 in comparison with H1 may 
nonetheless be associated with a p value lower than .05, 
thus prompting a rejection of H0. This tendency is com-
pounded when sample size is large (for practical conse-
quences in medicine and public policy, see Diamond & 
Forrester, 1983). I believe these results demonstrate that 
the p postulate is false; equal p values do not provide 
equal evidence against the null hypothesis. Specifically, 
for fixed p values, the data provide more evidence against 
H0 when the number of observations is small than when it 
is large. This means that the NHST p value is not a proper 
measure of statistical evidence.

One important reason for the difference between Bayes-
ian posterior probabilities and frequentist p values is that 
the Bayesian approach is comparative and the NHST pro-
cedure is not. That is, in the NHST paradigm, H0 is re-
jected if the data—and more extreme data that could have 
been observed but were not—are very unlikely under H0. 
Therefore, the NHST procedure is oblivious to the very 
real possibility that although the data may be unlikely 
under H0, they are even less likely under H1.

Five p Values for H0
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Figure 6. Four Bayesian posterior probabilities are contrasted 
with the classical p value, as a function of sample size. Note that 
the data are constructed to be only just significant at the .05 level 
(i.e., p ≈ .05). This means that as n increases, the proportion of 
correct judgments s has to decrease. The upper three posterior 
probabilities illustrate that for realistic priors, the posterior prob‑
ability of the null hypothesis strongly depends on the number of 
observations. As n goes to infinity, the probability of the null hy‑
pothesis goes to 1. This conflicts with the conclusions from NHST 
(i.e., “p 5 .05, reject the null hypothesis”), which is shown by the 
constant lowest line. For most values of n, the fact that p 5 .05 
constitutes evidence in support of the null hypothesis rather than 
against it.
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In the field of cognitive modeling, the advantages of a 
comparative approach are duly recognized. For instance, 
Busemeyer and Stout (2002, p. 260) state that “It is mean-
ingless to evaluate a model in isolation, and the only way 
to build confidence in a model is to compare it with rea-
sonable competitors.” In my opinion, the distinction be-
tween cognitive models and statistical models is one of 
purpose rather than method, so the quotation above would 
apply to statistical inference as well. Many statisticians 
have criticized the selective focus on the null hypothesis 
(e.g., Hacking, 1965). Jeffreys (1961, p. 390) states the 
problem as follows:

Is it of the slightest use to reject a hypothesis until we 
have some idea of what to put in its place? If there is 
no clearly stated alternative, and the null hypothesis 
is rejected, we are simply left without any rule at all, 
whereas the null hypothesis, though not satisfactory, 
may at any rate show some sort of correspondence 
with the facts.

Interim Conclusion
The use of NHST is tainted by statistical and practi-

cal difficulties. The methodology requires knowledge of 
the intentions of the researcher performing the experi-
ment. These intentions refer to hypothetical events, and 
can therefore not be subjected to scientific scrutiny. It is 
my strong personal belief that the wide majority of ex-
periments in the field of psychology violate at least one 
of the major premises of NHST. One common violation of 
NHST logic is to test additional subjects when the effect is 
not significant after a first examination, and then to ana-
lyze the data as if the number of subjects was fixed in ad-
vance. Another common violation is to take sneak peeks 
at the data as they accumulate and to stop the experiment 
when they look convincing. In both cases, the reported p 
value will be biased downward.

This abuse of NHST could be attributed either to dis-
honesty or to ignorance. Personally, I would make a case 
for ignorance. An observation by Ludbrook (2003) sup-
ports this conjecture: “Whenever I chastise experimental-
ists for conducting interim analyses and suggest that they 
are acting unstatistically, if not unethically, they react with 
surprise.” Abuse by ignorance is certainly more sympa-
thetic than abuse by bad intentions. Nevertheless, igno-
rance of NHST is hardly a valid excuse for violating its 
core premises (see Anscombe, 1963). The most positive 
interpretation of the widespread abuse is that researchers 
are guided by the Bayesian intuition that they need not 
concern themselves with subjective intentions and hypo-
thetical events, since only the data that have actually been 
observed are relevant to statistical inference. Although 
this intuition is, in my opinion, correct as a general guide-
line, in the framework of NHST it is completely off.

In sum, NHST imposes upon the user a straitjacket 
of restrictions and requirements. In return, the user may 
obtain an indication of goodness of fit that depends on 
the oftentimes unknown intention of the researcher per-
forming the experiment. Moreover, the p value ignores 

the alternative hypothesis and therefore fails to quantify 
statistical evidence. The same p value also does not always 
carry the same weight; a Bayesian analysis confirmed that 
for a fixed p value, a small study provides more evidence 
against the null hypothesis than does a large study. Fur-
thermore, data exist for which the null hypothesis is re-
jected on the basis of the NHST p value, whereas a Bayes-
ian analysis of the same data finds the null hypothesis to 
be much more plausible than the alternative hypothesis. 
In a fixed-sample-size design, a Bayesian analysis that is 
maximally biased against the null hypothesis does not cast 
as much doubt on the null hypothesis as does the NHST p 
value (see Figure 6).

One may well wonder why p values have been used so 
extensively, given their obvious drawbacks. Several rea-
sons may be identified, but one of the most important ones 
is surely that many of the p value criticisms have not been 
accompanied by a concrete proposal for a feasible and 
easy-to-use alternative procedure. This has perhaps fu-
eled the sentiment that although p values may have their 
drawbacks, alternative procedures are complicated and ar-
bitrary. Nickerson (2000, p. 290) graphically summarized 
the situation as follows: “NHST surely has warts, but so 
do all the alternatives.”

TOWARD AN ALTERNATIVE TO NHST

Desiderata for Principled and Practical 
Alternatives to p Values

Several methods for inference are able to replace p val-
ues. The list of alternatives includes Bayesian procedures, 
Bayesian–frequentist compromises (see, e.g., Berger, 
2003; Berger, Boukai, & Wang, 1997; Berger, Brown, & 
Wolpert, 1994; Good, 1983), Akaike’s information cri-
terion (AIC; e.g., Akaike, 1974; Burnham & Anderson, 
2002), cross-validation (e.g., Browne, 2000; Geisser, 1975; 
Stone, 1974), bootstrap methods (e.g., Efron & Tibshirani, 
1997), prequential methods (e.g., Dawid, 1984; Wagen-
makers, Grünwald, & Steyvers, 2006), and methods based 
on the principle of minimum description length (MDL; 
e.g., Grünwald, 2000; Grünwald, Myung, & Pitt, 2005; 
Pitt, Myung, & Zhang, 2002; Rissanen, 2001). These al-
ternative methods are all model selection methods, in that 
the explicit or implicit goal is to compare different models 
and select the best one (for applications of model selec-
tion in the field of psychology, see two special issues of 
the Journal of Mathematical Psychology: Myung, Forster, 
& Browne, 2000; Wagenmakers & Waldorp, 2006). Thus, 
model selection methods do not assess the adequacy of H0 
in isolation. Rather, the adequacy of H0 is compared with 
the adequacy of an alternative model, H1, automatically 
avoiding the negative consequences that arise when the 
focus is solely on H0.

All model selection methods require a quantification 
of model adequacy. This concept is well defined. An ideal 
model extracts from a given data set only those features 
that are replicable. This ideal model will therefore yield 
the best prediction for unseen data from the same source. 
When a model has too few parameters, it is unable to de-
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scribe all the replicable features in a data set. Hence, the 
model underfits the data and yields suboptimal predictions. 
When a model has too many parameters, it is too powerful 
and captures not only the replicable features in the data, but 
also captures idiosyncratic random fluctuations. Hence, 
the model overfits the data, and since its parameter esti-
mates are contaminated by noise, predictive performance 
will suffer. Thus, the universal yardstick for selecting be-
tween competing models is predictive performance.

In experimental psychology, model selection proce-
dures are mostly used to adjudicate between nonnested 
complicated nonlinear models of human cognition. There 
is no reason, however, why these procedures could not be 
applied to run-of-the-mill statistical inference problems 
involving nested linear models such as ANOVA. Consider, 
for instance, normally distributed data with a known vari-
ance and unknown mean, D , N(m, s2 5 1). Under the 
null hypothesis, m is fixed at 0, whereas under the alterna-
tive hypothesis, m is a free parameter. It is clear that, on 
account of its extra free parameter, H1 will always pro-
vide a better fit to the data than will H0. Thus, goodness 
of fit alone cannot be used to select between H0 and H1. 
Instead, model selection methods can be used to assess 
whether the decrease in model parsimony is warranted 
by the associated increase in goodness of fit. The trade-
off between parsimony and goodness of fit is quantified 
by the criterion of minimizing prediction error (Myung, 
2000; Myung, Navarro, & Pitt, 2006; Myung & Pitt, 
1997; Wagenmakers et al., 2006). Thus, the problem of 
hypothesis testing can be profitably viewed as a problem 
of model selection (M. D. Lee & Pope, 2006): When the 
prediction error associated with H1 is lower than that as-
sociated with H0, the data support H1 over H0. From now 
on, the terms hypothesis testing and model selection will 
be used interchangeably.

Before choosing among the many attractive model 
selection alternatives to p value hypothesis testing, it is 
useful to consider a number of desirable properties that 
an alternative method for inference should possess. A list 
of theoretical desiderata that address the limitations of 
NHST p values discussed earlier should arguably contain 
at least the following elements:

1. Ideally, a statistical procedure should depend 
only on data that were actually observed. Data 
that could have been observed but were not are 
irrelevant for the situation at hand.

2. Ideally, the results of a statistical procedure 
should not depend on the unknown intentions of 
the researcher.

3. Ideally, a statistical procedure should provide 
a measure of evidence that takes into account 
both the null hypothesis and the alternative 
hypothesis.

A consequence of the third desideratum is that an ideal 
procedure should be able to quantify evidential support in 
favor of the null hypothesis. This requirement may seem 
self-evident, but note that Fisherian p values are not de-
signed to quantify support in favor of the null hypothesis. 

A p value indicates the evidence against the null hypoth-
esis. It is not possible to observe the data and corroborate 
the null hypothesis; one can only fail to reject it. Hence, 
the null hypothesis exists only in a state of suspended dis-
belief. The APA Task Force on Statistical Inference un-
derscored this point by issuing the warning “Never use 
the unfortunate expression ‘accept the null hypothesis’” 
(Wilkinson & the Task Force on Statistical Inference, 
1999, p. 599).

What is unfortunate here is not the expression, but 
rather the fact that Fisherian p values are incapable of pro-
viding support for the null hypothesis. This sets Fisherian 
p values apart from all of the model selection methods 
mentioned above. The practical implications are substan-
tial. For instance, experiments may be designed in order 
to test theories that predict no difference between experi-
mental conditions. A colleague or reviewer may later note 
that such an experiment is flawed from the outset, since 
it hinges on the acceptance of the null hypothesis, some-
thing that is not possible in the Fisherian NHST frame-
work. Such a state of affairs not only impedes theoreti-
cal progress, but also has serious practical ramifications. 
Consider, for instance, the statistical problem of determin-
ing whether the glass found on the coat of a suspect in a 
criminal case is the same as that from a broken window 
(see Shafer, 1982). From the characteristics of the pieces 
of glass (i.e., the refractive index), the prosecution wants 
to claim that the glass on the coat matches that of the win-
dow; that is, the prosecution is interested in supporting the 
null hypothesis that the refractive indices do not differ. Of 
course, within the framework of Fisherian NHST, one may 
calculate all kinds of measures to make the problematic 
conclusion “the null hypothesis is true” more digestible, 
for instance by calculating power, reporting effect sizes, 
and so on, but such calculations do not produce what one 
wants to know—namely, the evidence that the data pro-
vide in favor of the null hypothesis.

To the theoretical desiderata above one might then add 
desiderata of a more pragmatic nature:

4. Ideally, a statistical procedure should be very 
easy to implement.

5. Ideally, a statistical procedure should be “objec-
tive,” in the sense that different researchers, who 
have the same models and are confronted with the 
same data, will draw the same conclusions.

These pragmatic desiderata are motivated by the fact 
that the majority of experimental psychologists have only 
had very limited training in mathematical statistics. This 
is why methods for statistical inference that require much 
computer programming and independent mathematical 
thought are unlikely to gain much popularity in the field.

Selecting a Method for Model Selection
Subjective and objective Bayesian model selection 

methods satisfy theoretical Desiderata 1–3. Consistent 
with Desideratum 1, the Bayesian hypothesis test is con-
ditioned on the observed data only (see Equation 7). Con-
sistent with Desideratum 2, the intention of the researcher 
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performing the experiment (i.e., the stopping rule) is ir-
relevant for Bayesian inference. This is shown mathemati-
cally in the online appendix on my Web site. Finally, from 
Equations 7 and 8 it is evident that the Bayesian hypoth-
esis test compares the plausibility of H0 versus H1 and 
quantifies the result by an odds ratio (see Table 3). This is 
consistent with Desideratum 3.

With respect to other methods of model selection, 
the MDL principle integrates over the sample space and 
therefore violates Desiderata 1 and 2 (see Myung et al., 
2006; Wallace & Dowe, 1999).6 Depending on the imple-
mentation, the prequential methodology is either identical 
to Bayesian model selection or asymptotically equivalent 
to it (see Wagenmakers et al., 2006). Bootstrap and cross-
validation methods are promising alternatives, but do not 
generally quantify evidence in terms of probability. The 
AIC follows the p postulate, in that it assumes that the 
weight of statistical evidence is not influenced by the size 
of the data set. For instance, application of AIC to the data 
from Figure 6 produces a line that is almost horizontally 
straight at .284. A Bayesian analysis showed that for any 
plausible prior, the p postulate is false: For a fixed p value, 
the evidence in favor of H0 increases with the number of 
observations.

Unfortunately, subjective and objective Bayesian meth-
ods do not satisfy pragmatic Desideratum 4 (i.e., ease of 
application), and only the objective Bayesian method satis-
fies Desideratum 5 (i.e., objectivity). The true–false exam-
ple discussed earlier is easy enough, but it is one of a lim-
ited set of hypothesis testing problems for which analytic 
expressions have been worked out. For other problems, 
integration over the parameter space has to be achieved 
using MCMC methods (see Kass & Raftery, 1995; Raf-
tery, 1996). For someone with limited quantitative train-
ing, mastering a method such as Bayesian hypothesis 
testing using MCMC may take years. Contrast this with 
the “point-and-click” NHST approach implemented in 
computer packages such as SPSS. These programs have 
completely automatized the inference process, requiring 
nothing of the user except the input of the data and the very 
general specification of a model. Using the point-and-click 
approach, most experimental psychologists are able to ar-
rive at a statistical conclusion in a matter of minutes.

Thus, we are faced with a dilemma. On the one hand, 
the Bayesian methodology successfully addresses the lim-
itations of the p value methodology (see Desiderata 1–3, 
and the earlier discussion on Bayesian methodology). On 
the other hand, a commitment to the Bayesian hypothesis 
tests requires an investment of time and energy that most 
experimental psychologists are unwilling to make. The so-
lution to the dilemma is to forgo the full-fledged objective 
Bayesian hypothesis test and settle instead for an accurate 
and easy-to-calculate approximation to the Bayesian hy-
pothesis test.

BAYESIAN HYPOTHESIS TESTING USING 
THE BIC APPROXIMATION

Some experimental psychologists are already familiar 
with the BIC (for foundations, see, e.g., Hannan, 1980; 

Kass, 1993; Kass & Raftery, 1995; Kass & Wasserman, 
1995; Pauler, 1998; Raftery, 1995; Schwarz, 1978; Smith 
& Spiegelhalter, 1980; Wasserman, 2000; for applications 
in structural equation modeling, see Raftery, 1993; for 
critical discussion, see, e.g., Burnham & Anderson, 2002, 
as well as Firth & Kuha, 1999 [a special issue of Sociolog-
ical Methods & Research]; Gelman & Rubin, 1999; Raf-
tery, 1999; Weakliem, 1999; Winship, 1999; Xie, 1999). 
However, most experimental psychologists use the BIC 
only to compare nonnested models, and then carry out 
the comparison in a very rough qualitative fashion. That 
is, when Model A has a lower BIC value than Model B, 
Model A is simply preferred over Model B. Unfortunately, 
the extent of this preference is almost never quantified on 
a scale that researchers can easily intuit (see Wagenmak-
ers & Farrell, 2004).

What is often not realized is that the difference between 
BIC values transforms to an approximation of the Bayes 
factor; hence, the BIC can be used for nested and non-
nested models alike. The latter feature is nicely illustrated 
by Vickers, Lee, Dry, and Hughes (2003), who conducted 
BIC-style statistical inference to approximate the Bayes 
factor for a set of six nested and nonnested models. Fur-
thermore, assuming the models under consideration are 
equally plausible a priori, a comparison of their BIC 
values easily yields an approximation of their posterior 
probabilities. For instance, in the case of comparing a null 
hypothesis (e.g., m 5 0) to an alternative hypothesis (e.g., 
m  0), one option is to report that, say, BIC(H0) 5 343.46 
and BIC(H1) 5 341.58, and conclude that H1 is “better” 
than H0. Another option is to transform these values to 
posterior probabilities and to report that PrBIC(H0 | D)  
.28, and consequently that PrBIC(H1 | D)  .72. The latter 
method of presenting the statistical conclusions is much 
more insightful.

Appendix B shows how the BIC approximation may 
be derived (for more details, see two excellent articles 
by Raftery: 1995, 1999). Here, only the end result of this 
derivation is given. The BIC for model Hi is defined as

 BIC(Hi) 5 ]2log Li 1 kilog n, (9)

where n is the number of observations, ki is the number of 
free parameters of model Hi, and Li is the maximum likeli-
hood for model Hi—that is, Li 5 cPr(D | ̂θ, Hi), with c an 
arbitrary constant (A. W. F. Edwards, 1992). The BIC ap-
proximation to the prior predictive probability Pr(D | Hi) 
may then be obtained by the following simple transforma-
tion: PrBIC(D | Hi) 5 exp[]BIC(Hi)/2]. In the case of two 
models, H0 and H1, the Bayes factor is defined as the ratio 
of the prior predictive probabilities; hence, the BIC ap-
proximation of the Bayes factor is given by
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where DBIC10 5 BIC(H1) 2 BIC(H0). For instance, if 
data from an experiment yielded BIC(H0) 5 1,211.0 and 
BIC(H1) 5 1,216.4, the Bayes factor in favor of H0 would 
be exp(5.4/2)  14.9. With equal priors on the models, 
this would amount to a posterior probability of H0 of 
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14.9/15.9  .94. According to Table 3, this would consti-
tute “positive” evidence for H0. Note that in the Fisherian 
tradition of p value hypothesis testing, one can never reach 
this conclusion: One can fail to reject the null hypothesis, 
but the null hypothesis can never be accepted.

Now consider a similar experiment that finds BIC(H0) 5 
1,532.4 and BIC(H1) 5 1,534.2. For this experiment, the 
Bayes factor in favor of H0 equals exp(1.8/2)  2.5. The 
Bayes factors from these two experiments can be com-
bined into an overall Bayes factor by simple multiplica-
tion: BF01(total) 5 14.9 3 2.5 5 37.25. This corresponds 
to a posterior probability of H0 of 37.25/38.25  .97, 
which according to Table 3 constitutes “strong” evidence 
for H0.

In the case of k models, each of which is a priori equally 
plausible, the posterior probability of a particular model 
Hi is obtained by the following transformation (see, e.g., 
Wasserman, 2000):
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In the case of two models, H0 and H1, the posterior prob-
ability of H0 is given by
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This means that the posterior probability of a null hypoth-
esis is a logistic or sigmoid function of half the BIC dif-
ference between the null hypothesis H0 and the alternative 
hypothesis H1.

The sigmoid function is shown in Figure 7, from which it 
is apparent that BIC differences in excess of 12 or ]12 con-
stitute very strong evidence. For instance, when DBIC10 5 
12, the posterior probability for H0 is close to 1—that is, 
PrBIC(H0 | DBIC10 5 12) 5 1/[1 1 exp(]6)]  .998. Note 
that the absolute values of the BIC are irrelevant—only 
the differences in BICs carry evidential weight. Recall 
also that the function shown in Figure 7 incorporates the 
effects of sample size and the number of free parameters, 
and that it holds regardless of whether H0 is nested within 
H1 or not.

As discussed previously, the Bayes factor is sensitive 
to the shape of the prior distribution. The equations that 
involve BIC do not, however, appear to specify any prior, 
and this may lead one to wonder how the BIC can then 
be used to approximate the Bayes factor. As is explained 
in Appendix B, one prior that is consistent with the BIC 
approximation is the “unit information prior.” This prior 
contains as much information as does a single observa-
tion (Raftery, 1999). In the following discussion, I assume 
that the prior that the BIC implicitly assumes is the unit 
information prior.

Advantages and Disadvantages 
of the BIC Approximation

The BIC approximation of the Bayesian hypothesis test 
is attractive for two reasons. First, the BIC approximation 

does not require the researcher to specify his or her own 
prior distribution. This ensures that the BIC is “objective,” 
in the sense that different researchers, confronted with the 
same data, will draw the same statistical inference from 
the same set of models. The objectivity inherent in the 
BIC is especially appealing to those who feel that the 
specification of priors is subjective and therefore inher-
ently unscientific. However, as pointed out by Xie (1999, 
p. 429), the “drawbacks of the BIC are precisely where 
its virtues lie,” and it has been argued that the unit infor-
mation prior that the BIC implicitly assumes is often too 
wide. A prior that is too wide decreases the prior predic-
tive probability of the alternative hypothesis, and there-
fore makes the null hypothesis appear more plausible than 
it actually is. In other words, it has been argued that more 
information needs to be injected in the prior distribution. 
In response, Raftery (1999) pointed out that when the 
BIC does not support H1, whereas subjective Bayesian 
methods do support H1, the difference must be due to the 
specific prior that is assumed. The BIC can therefore be 
viewed as providing an objective baseline reference for 
automatic Bayesian hypothesis testing. In sum, the draw-
back of the BIC is that it does not incorporate substantive 
information into its implicit prior distribution; the virtue 
of the BIC is that the specification of the prior distribution 
is completely automatic.

A second advantage of the BIC approximation is that it 
is particularly easy to compute. For some models, popu-
lar statistical computer programs already provide the raw 
BIC numbers, so that in order to perform an approximate 
Bayesian hypothesis test, one only needs to transform these 
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numbers to posterior probabilities (see Equation 12). For 
other models, such as the ones used in standard ANOVA, 
the BIC can be readily computed from the sums of squared 
errors (see Glover & Dixon, 2004; Raftery, 1995); this 
transformation will be illustrated in Example 9.

The BIC also has a few important limitations. One such 
limitation is that its approximation ignores the functional 
form of the model parameters, focusing exclusively on the 
number of free parameters. Jay Myung, Mark Pitt, and co-
workers have shown on multiple occasions that models with 
the same number of parameters may differ in complexity 
(see, e.g., M. D. Lee, 2002; Myung, 2000; Myung & Pitt, 
1997; Pitt et al., 2002; see also Djurić, 1998; Wagenmakers, 
2003; Wagenmakers, Ratcliff, Gomez, & Iverson, 2004). 
For example, Stevens’s law of psychophysics can handle 
both decelerating and accelerating functions, whereas 
Fechner’s law can only account for decelerating functions 
(see Pitt et al., 2002). Thus, Stevens’s law is a priori more 
flexible, despite the fact that it has just as many parameters 
as Fechner’s law. A full-fledged Bayesian analysis is sensi-
tive to the functional form of the parameters because it aver-
ages the likelihood across the entire parameter space. Thus, 
when the data follow a decelerating function, the prior pre-
dictive probability of Stevens’s law suffers from the fact 
that part of its parameter space is dedicated to accelerating 
functions; therefore, in that part of parameter space, the ob-
served data are very unlikely indeed. Although the issue of 
functional form is important, it is much more important in 
complicated nonlinear models than it is in standard linear 
statistical models such as linear regression and ANOVA.

A final note of caution concerns the number of observa-
tions n in Equation 9. In some situations, this number may 
be difficult to determine (for a discussion and examples, 
see Raftery, 1995, p. 135). For instance, consider an ex-
periment that has 10 subjects, each of whom contributes 
20 observations to each of two conditions. In such a hier-
archical or multilevel design, it is not quite clear what n 
should be. In this case, the standard choice is to take n to 
be the number of subjects.

The Relation Between BIC and ANOVA
The wide majority of statistical analyses in experimen-

tal psychology concern the normal linear model. In the 
case of linear regression with normal errors, the BIC for 
model Hi can be written (Raftery, 1995) as

 BIC(Hi) 5 nlog(1 2 Ri
2) 1 kilog n, (13)

where 1 2 Ri
2 is the proportion of the variance that model 

Hi fails to explain. Because ANOVA is a special case of 
regression, the same equation also holds for ANOVA. The 
proportion of unexplained variance is readily obtained 
from tables of sums of squares, as 1 2 Ri

2 5 SSEi/SStotal, 
where SSEi is the sum of squared errors for model Hi.

When comparing a null hypothesis H0 with an alternative 
hypothesis H1, the common SStotal factor cancels in the like-
lihood ratio, and the difference in BIC values is given by
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Example 9. How to calculate the BIC from SPSS 
output (Glover & Dixon, 2004). In a recent article, Glover 
and Dixon demonstrated with several examples how the 
output of standard statistical software packages such as 
SPSS may be used to compare the maximum- likelihood 
fit of H0 against that of H1. To illustrate how easily SPSS 
output can be transformed to BIC-based estimation of 
posterior probabilities, I will discuss just one example 
from the Glover and Dixon article.

Consider a hypothetical recall experiment that has 40 
participants in a 2 3 2 design. The two manipulations con-
cern the amount of previous study (“few” versus “many” 
study trials) and the concreteness of the word stimuli that 
need to be recalled (“abstract” versus “concrete”). The 
hypothesis of interest concerns a possible interaction be-
tween the two factors. For instance, it may be expected 
that recall for both abstract and concrete words increases 
with additional study trials, but that this increase is more 
pronounced for abstract words. This hypothesis would be 
contrasted with a null hypothesis in which the two factors 
do not interact.

Figure 8 shows the means for the synthesized data, as 
well as the fits of the interaction model ( left panel) and 
the additive model (right panel). The error bars reflect 
the standard errors calculated from the residual variation. 
The interaction model fits the means of the data exactly, 
whereas the additive model does not. However, the ad-
ditive model is simpler than the interaction model, and 
the key question is whether the simplicity of the additive 
model can compensate for its lack of fit.

Table 4 shows an ANOVA table for the synthesized data 
set. The sum of squares that are not explained by the in-
teraction model is the error sum of squares (i.e., 470.1). 
The sum of squares that are not explained by the additive 
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Figure 8. Comparison of an interaction model (left panel) and 
an additive model (right panel) in accounting for the effects of 
word type in a hypothetical data set (see Glover & Dixon, 2004, 
p. 798, Figure 3).
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model is the error sum of squares plus the sum of squares 
associated with the interaction effect (i.e., 470.1 1 
104.1 5 574.2). Thus, SSE1 5 470.1, SSE0 5 574.2, n 5 
40, and k1 2 k0 5 1, since the interaction model has one 
parameter more than the additive model. Plugging this 
information into Equation 14 yields

 ∆ = ( ) + ≈ −BIC10 40 470 1
574 2

40 4 31log .
.

log . .

The fact that this number is negative indicates that the 
BIC is higher for H0 than it is for H1; hence, according 
to the BIC, the interaction model is to be preferred over 
the additive model. The extent of the preference can be 
quantified precisely by plugging in the ]4.31 number 
into Equation 12. Assuming equal prior plausibility of the 
interaction model and the additive model, Equation 12 
yields PrBIC(H0 | D) 5 1/[1 1 exp(2.16)]  .10. This 
means that the posterior probability for the interaction 
model is about .90, which according to Table 3 constitutes 
“positive” evidence.

CONCLUDING COMMENTS

The field of experimental psychology uses p values as 
the main vehicle for statistical inference. The statistical 
literature, however, reveals a number of fundamental prob-
lems with p values. The primary goal of this article was to 
review three such problems with p values: The p value is 
calculated from imaginary data, is based on subjective in-
tentions, and does not quantify statistical evidence. Many 
researchers are not aware of these problems, and the many 
examples in this article demonstrate how such ignorance 
can have serious practical consequences.

The solution to the problem of statistical inference in 
psychology is to switch from the p value methodology to 
a model selection methodology. Model selection methods 
assess which of several models, for instance H0 and H1, 
provides the best explanation of the data. In psychology, 
model selection methods are generally employed only for 
nonlinear and nonnested models, but there is no reason 
why these methods should not be applied to nested mod-
els. Unfortunately, model selection methods are gener-
ally somewhat more involved than p values, and for many 
experimental psychologists this will take away some of 
their initial attraction. Fortunately, it is possible to have 
one’s inferential cake and eat it too. Although the objective 
Bayesian hypothesis test is not trivial to implement, its 
BIC approximation can be easily calculated from standard 
output (e.g., SPSS output; see Glover & Dixon, 2004). 

Under equal priors, a simple transformation then yields 
the posterior probability of H0 (see Equation 12). Most 
importantly, in contrast to p values, the Bayesian hypoth-
esis test does not depend on imaginary data, is insensi-
tive to subjective intentions, and does quantify statistical 
evidence. It should also be noted that it is straightforward 
to equip Bayesian models with utility functions (see, 
e.g., Berger, 1985; Bernardo & Smith, 1994) so that—if 
 desired—one can make the discrete decision that has the 
highest expected utility (see Killeen, 2006).

In the psychological literature on visual perception, 
memory, reasoning, and categorization, Bayesian methods 
are often used because they provide an optimal standard 
against which to compare human performance. I suggest 
that in addition to modeling an optimal decision maker 
through the laws of probability calculus, one can actually 
become an optimal decision maker and apply probability 
calculus to problems of statistical inference. Instead of 
reporting what nobody wants to know, namely “the prob-
ability of encountering a value of a test statistic that is as 
least as extreme as the one that is actually observed, given 
that the null hypothesis is true,” psychologists can easily 
report what everybody wants to know: the strength of the 
evidence that the observed data provide for and against the 
hypotheses under consideration.
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NOTES

1. A list of 402 articles and books criticizing the use of NHST can be 
found at biology.uark.edu/coop/Courses/thompson5.html.

2. For related critiques, see Jeffreys (1961), Pratt (1961, p. 166), and 
Royall (1997, p. 22).

3. Despite its intuitive appeal, the conditionality principle is not uni-
versally accepted; see Helland (1995) and the ensuing discussion.

4. NHST generally deals with conditioning by invoking “relevant sub-
sets” or “ancillary statistics,” concepts whose statistical problems are 
discussed in Basu (1964), Cornfield (1969, p. 619), D. R. Cox (1971), 
and A. W. F. Edwards (1992, p. 175).

5. This overestimation occurs for the sampling plan with fixed sample 
size. For the sequential sampling plan, p values underestimate the evi-
dence against the null hypothesis (Berger & Berry, 1988a, p. 70).

6. Specifically, the normalized maximum likelihood instantiation of 
MDL divides the maximum likelihood for the observed data by the sum 
of the maximum likelihoods for all data sets that were not observed but 
that could have been observed in replicate experiments.
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APPENDIX A 
Some Bayesian Results for the Binomial Distribution

1. Before proceeding, recall the following extremely useful result:
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where G(⋅) is the gamma function, which is a generalization of the factorial function. For positive integers, 
G(x) 5 (x 2 1)!. More generally, the gamma function is given by
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Thus, G(4) 5 3! 5 6.
Using Equation A1 above, we can easily calculate the marginal probability of the data, Pr(D), for a binomial 

model with uniform prior distribution θ ~ Uniform(0, 1). Note that the prior distribution immediately drops out 
of the equation, so we have
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The derivation then goes
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2. The Beta distribution is given by
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When the prior is any Beta distribution Beta(θ | α, β), its updating through the binomial likelihood will result in 
a posterior distribution that is still of the Beta form, albeit with different parameters: Pr(θ | D) 5 Beta(θ | α 1 s, 
β 1 n 2 s). Priors that are of the same form as posteriors are said to be conjugate.

3. Now assume that we have two models: H0 that assigns all probability mass to a single value of θ (i.e., θ0), 
and H1 that allows θ to vary freely. Under H1, we again assume a uniform prior θ ~ Uniform(0, 1). The Bayes 
factor BF01 that gives the ratio of averaged likelihoods in favor of H0 is then given by
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APPENDIX B 
The BIC Approximation to the Bayes Factor

The prior predictive probability of a given model or hypothesis i is given by

 Pr(D | Hi) 5 ePr(D | θi, Hi)Pr(θi | Hi)  dθi, (B1)

where D denotes the observed data and θi denotes the parameter vector associated with model Hi. Using a Taylor 
series expansion about the posterior mode for θi and the Laplace method for integrals, one can derive the follow-
ing approximation (see Raftery, 1995, pp. 130–133):

 log Pr(D | Hi) 5 log Pr(D | ̂θi, Hi) 2 (ki/2)log n 1 O(1). (B2)

In this equation, θ̂i denotes the maximum-likelihood estimate for θi, ki denotes the number of parameters in 
model Hi, and n is the number of observations. The O(1) term indicates that the error of approximation does not 
go to 0 as n  `. However, the error of approximation will go to 0 as a proportion of log Pr(D | Hi).

For certain classes of priors, the error of approximation reduces to O(n]1/2). One such prior is the popular “Jef-
frey’s prior,” with a specific choice for the arbitrary constant that precedes it (Wasserman, 2000, p. 99). Another 
prior that leads to approximation of order O(n]1/2) is the unit information prior. This prior contains the same 
amount of information, on average, as does a single observation. Consider the case of xn 5 (x1, x2, . . . , xn) ~ 
N(m, 1) and a test of H0 : m 5 m0 versus H1 : m  m0. The unit information prior for m is then normal, with the 
mean given by the mean of the data, and the standard deviation equal to 1 (Raftery, 1999, pp. 415–416). Thus, 
for certain reasonable “noninformative” priors, the prior predictive probability of the data is

 log Pr(D | Hi) 5 log Pr(D | ̂θi, Hi) 2 (ki/2)log n 1 O(n]1/2), (B3)

which means that the error of approximation goes to 0 as n  `. As is evident from Equation B3, the approxi-
mation to the prior predictive probability is based on a component that quantifies the goodness of fit [i.e., the 
maximum likelihood Pr(D | θ̂)] and a component that penalizes for model complexity [i.e., (k/2)log n]. The 
penalty term depends not only on the number of free parameters, but also on the sample size n.

The BIC is obtained by multiplying Equation B3 by ]2, yielding

 BIC(Hi) 5 ]2log Li 1 kilog n, (B4)

where Li is the maximum likelihood for model Hi —that is, Li 5 cPr(D | θ̂, Hi), with c an arbitrary constant 
(A. W. F. Edwards, 1992). The BIC approximation to the prior predictive probability Pr(D | Hi) is obtained by 
the reverse transformation: PrBIC(D | Hi) 5 exp[]BIC(Hi)/2].

Recall from the discussion following Equation 7 that the Bayes factor is the ratio of prior predictive 
 probabilities—that is, the probability of the data under H0 divided by the probability of the data under H1. It 
follows that in the case of two models H0 and H1, the BIC approximation of the Bayes factor is given by
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where DBIC10 5 BIC(H1) 2 BIC(H0).  
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revision accepted for publication February 13, 2007.)


