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Abstract

The microarchitectural design space of a new processor

is too large for an architect to evaluate in its entirety. Even

with the use of statistical simulation, evaluation of a single

configuration can take excessive time due to the need to run

a set of benchmarks with realistic workloads.

This paper proposes a novel machine learning model

that can quickly and accurately predict the performance

and energy consumption of any set of programs on any

microarchitectural configuration. This architecture-centric

approach uses prior knowledge from off-line training and

applies it across benchmarks. This allows our model to pre-

dict the performance of any new program across the entire

microarchitecture configuration space with just 32 further

simulations.

We compare our approach to a state-of-the-art program-

specific predictor and show that we significantly reduce pre-

diction error. We reduce the average error when predicting

performance from 24% to just 7% and increase the cor-

relation coefficient from 0.55 to 0.95. We then show that

this predictor can be used to guide the search of the design

space, selecting the best configuration for energy-delay in

just 3 further simulations, reducing it to 0.85. We also eval-

uate the cost of off-line learning and show that we can still

achieve a high level of accuracy when using just 5 bench-

marks to train. Finally, we analyse our design space and

show how different microarchitectural parameters can af-

fect the cycles, energy and energy-delay of the architectural

configurations.

1. Introduction

Architects use cycle-accurate simulators to explore the

design space of new processors. However, in superscalar

processors the number of different variables and the range

of values they can take makes the design space too large to

be completely evaluated. This is coupled with the fact that

cycle-accurate simulation can be slow due to the need for

detailed modelling of the microarchitecture and the desire

to simulate many benchmarks with realistic workloads.

Recently, several techniques based on statistical sam-

pling have been developed to reduce the time taken for sim-

ulation, such as SimPoint [23] and SMARTS [27]. How-

ever, although these schemes increase the number of simu-

lations possible within a given time frame, given the huge

size of the design space to be explored, a full evaluation

remains unrealistic.

Several studies have proposed the use of machine learn-

ing to help evaluate this massive space [11, 12, 16, 17, 18].

These schemes require a number of simulations of a bench-

mark to be run, the results from which are used to train a

predictor. This can then be used to determine the rest of the

design space without the need for further simulation. How-

ever, existing techniques suffer from several major draw-

backs.

• Whenever a new program is considered, a new predic-

tor must be trained and built, meaning there is a large

overhead even if the designer just wants to compile

with a different optimisation level [26]. Our approach

learns across programs and captures the behaviour of

the architecture rather than the program itself;

• A large number of training simulations are needed to

use these existing predictors, offsetting the benefits

of the schemes. In our approach, having previously

trained off-line on a small number of programs, we

only need a few simulations, called a signature, in or-

der to characterise each new program we want to pre-

dict. We show that, in fact, this can be as low as just

32 simulations to maintain a high level of accuracy;

• Existing works only give the error of their models. No

information is given on how the models are used in
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(a) Program-specific predictor
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(b) Architecture-centric predictor

Figure 1. The design space of applu when considering energy. We show the predictions given by
a program-specific predictor and by our architecture-centric approach. Both models are given the

same 32 simulations from this program, with the architecture-centric predictor having also been
trained off-line on different benchmarks.

practice to select good configurations by searching the

design space. We show how our model can be used

to search for the best configuration in terms of cycles,

energy and energy-delay (ED).

This paper presents a new and different approach to de-

sign space exploration using machine learning. We use ex-

isting knowledge to predict a new program on any given

architecture configuration, something no other research has

successfully attempted. We train our architecture-centric

model off-line (at the factory) on a number of benchmark

programs, then, using a completely new program never seen

before, we run just 32 simulations of the new program. We

can then predict the rest of the design space of 18 billion

configurations. This means that encountering a new pro-

gram, or simply exploring the compiler optimisation space,

can be done efficiently, at the same time as microarchitec-

tural design space exploration, with low overhead. This is

an order of magnitude less than the current state-of-the-art,

program-specific approaches [11, 12, 16, 17, 18] and shows

the ability to learn across programs, using prior knowledge

to predict new programs.

Although absolute error is an important metric to evalu-

ate the accuracy of our predictor, in this setting of design

space exploration, correlation is equally important. This

shows how the model can follow the trend of the space.

Hence we show the rmae and correlation coefficient for our

architecture-centric predictor and prove that it is better than

other, existing approaches. We then use our model to per-

form a search of the architectural design space and compare

it against an existing program-specific predictor [11]. We

show that after training we can find the best point in 3000

randomly selected configurations by performing just 3 fur-

ther simulations per benchmark, compared to the program-

specific predictor needing a further 103 simulations per

benchmark.

One reasonable criticism of our work could be that the

cost of off-line training is too high. We address this by con-

sidering the use of just 5 factory programs and show that

even with exactly the same number of total simulations our

model has an error 1.5 times smaller than program-specific

predictors. We thus show that even if all off-line training

were considered part of the overall training budget, our ap-

proach still outperforms existing techniques.

Finally, we analyse the design space and provide a sta-

tistical characterisation of it. We show how different archi-

tectural parameters affect cycles, energy and ED and char-

acterise good design points.

The rest of this paper is structured as follows. Section 2

provides a simple example showing the accuracy of our pre-

dictor. We describe our design space in section 3 and then

show the use of our model to predict the performance of

an architecture configuration on any new program in sec-

tion 4. Section 5 evaluates the use of our model in searching

the whole space, then section 6 addresses the cost of off-

line training. We characterise our design space in section 7

and describe work related to ours, especially the program-

specific predictor that we compare against throughout this

work, in section 8. Finally, we conclude this paper in sec-

tion 9.

2. Motivation

This section provides a simple motivating example, il-

lustrating the superior accuracy of our scheme in predicting

architecture performance.

Figure 1 shows the energy design space for a typical ap-

plication, applu. We show the resulting prediction for a

program-specific predictor and our scheme. The program-

specific model has been trained with 32 simulations from

this benchmark, whereas our architecture-centric model has



been trained off-line at the factory with other benchmarks

and given the same 32 simulations as a signature for this

new program.

In each graph the different microarchitectural configu-

rations are plotted along the x-axis in order of increasing

energy which is plotted along the y-axis. We show the real

value of energy as a line in each graph and each model then

provides a prediction for that configuration which is plotted

as a point. The closer the point is vertically to the line then

the more accurate the prediction is.

Figure 1(a) shows how the existing program-specific

technique performs when predicting this space and fig-

ure 1(b) shows how our architecture-centric scheme per-

forms. For the same number of simulations from this pro-

gram the program-specific predictor has a high error rate

and cannot determine the trend within the design space. Our

architecture-centricmodel, however, can apply prior knowl-

edge from previously seen benchmarks and has a low er-

ror rate, accurately following the shape of the space. From

these graphs it is clear that our model provides more accu-

rate predictions than the existing scheme and can be used

(as we show in section 5) to effectively search for the best

microarchitectural configuration within this massive space.

3. Experimental Setup

This section describes the design space of microarchitec-

tural configurations that we explore in this paper. We also

present our simulation environment and the metrics used to

evaluate predictor performance in the rest of the paper.

3.1. Microarchitecture Design Space

This paper proposes schemes to quickly and accurately

determine the best microarchitectural configuration within

a large design space. We chose to vary 13 different parame-

ters in a superscalar simulator to give an overall total of 63

billion different configurations of the processor core. With

a design space as large as this it would be impossible to

simulate every configuration.

The parameters we varied, shown in table 1, are simi-

lar to those other researchers have looked at [11, 16] which

allows meaningful comparisons with previous work. The

left-hand column describes the parameter and the middle

column gives the range of values the parameter can take

along with the step size between the minimum and maxi-

mum. The right-hand column gives the number of different

values that this range gives. For example, the reorder buffer

(ROB) has a minimum size of 32 entries and a maximum

size of 160 entries varied in steps of 8, meaning 17 different

design points.

Table 2(a) describes the processor parameters that re-

mained constant in all of our simulations. Table 2(b) de-

Table 1. Microarchitectural design parame-
ters that we varied with their range, steps and

the number of different values they can take.

Parameter Value Range Number

Machine width 2, 4, 6, 8 4

ROB size 32→ 160 : 8+ 17

IQ size 8→ 80 : 8+ 10

LSQ size 8→ 80 : 8+ 10

RF sizes 40→ 160 : 8+ 16

RF read ports 2→ 16 : 2+ 8

RF write ports 1→ 8 : 1+ 8

Gshare size 1K→ 32K : 2∗ 6

BTB size 1K, 2K, 4K 3

Branches allowed 8, 16, 24, 32 4

L1 Icache size 8KB→ 128KB : 2∗ 5

L1 Dcache size 8KB→ 128KB : 2∗ 5

L2 Ucache size 0.25MB→ 4MB : 2∗ 5

Total 6.3 ∗ 1010

scribes the functional units which varied according to the

width of the processor. So, for a 4-way machine we used 4

integer ALUs, 2 integer multipliers, 2 floating point ALUs

and 1 floating point multiplier/divider.

Within our design space of 63 billion points, we filtered

out configurations that did not make architectural sense. So,

for example, we did not consider configurations where the

reorder buffer was smaller than the issue queue. This re-

duced the total design space to 18 billion points.

3.2. Simulator And Benchmarks

For our experiments we used the SPEC 2000 benchmark

suite [24] compiled with the highest optimisation level. We

used all programs apart from ammp which would not run

correctly in our environment. We used the reference input

set for each benchmark and ran each simulation for 100mil-

lion instructions.

We simulated representative traces of instructions

through the use of SimPoint [23], to be confident that we

were accurately representing all phases of each benchmark.

SimPoint picked a trace of 100 million instructions for each

program, after profiling, that captures the behaviour of each

whole benchmark. We then fast-forwarded 100 million in-

structions before this point, warmed the cache and branch

predictor and then performed the simulation as usual.

Our simulator is based on Wattch [4] (an extension to

SimpleScalar [1]) and Cacti [25] and contains detailed mod-

els of energy for each structure within the processor. We

accurately modelled the latencies of microarchitecture com-

ponents using the Cacti timing information to make our sim-

ulations as realistic as possible.

In the following sections we use cycles as a metric for



Table 2. Microarchitectural design parameters that were not explicitly varied, either remaining con-
stant or varying according to the width of the machine.

(a) Constant

Parameter Configuration

BTB 4-way

L1 Icache 32B line, 4-way

L1 Dcache 32B line, 4-way

L2 Ucache 64B line, 8-way

FU Latencies IntALU 1, IntMul 3,

(cycles) FPALU 2, FPMulDiv (4/12)

(b) Related to machine width

Parameter Number

Machine width 2 4 6 8

IALU 2 4 5 6

IMul 1 2 2 3

FPALU 1 2 3 4

FPMulDiv 1 1 2 2

program performance and energy consumption (in nJ) as

gained from Cacti and Wattch. We also show the energy-

delay (ED) product to determine the trade-off between per-

formance and energy consumption, or efficiency. This is an

important metric in microarchitecture design because it in-

dicates how efficient the processor is at converting energy

into speed of operation, the lower the value the better [9].

The ED product implies that there is an equal trade-off be-

tween energy consumption and delay.

3.3. Evaluation Methodology

In order to evaluate the accuracy of our predictors, we

use the relative mean absolute error (rmae) defined as

rmae =
∣

∣

∣

predicted value−real value

real value

∣

∣

∣
· 100% This metric

tells us how much error there is between the predicted and

actual values. For example, an rmae of 100% would mean

that the model, on average, would be predicting a value that

was double the real value.

Although the rmae is an important metric, it is not a good

measure of how accurately the model is predicting the shape

or trend of the space. Since we want to use our predictor to

distinguish between good and bad architectures (i.e. low or

high cycles, energy or ED), we need a metric that describes

how accurately the predictor models the shape of the space.

To analyse the quality of our models, we therefore use

the correlation coefficient. The correlation between two

variables is defined as corr = cov(X,Y)
σX ·σY

, where σX and

σY represent the standard deviation of variable X and Y
respectively, and cov(X, Y ) is the covariance of variable
X and Y . The correlation coefficient only takes values be-
tween -1 and 1. At the extreme, a correlation coefficient of

1 means that the predictor perfectly models the shape of the

real space. A correlation coefficient of 0 means there is no

linear relation between the predictions and the actual space.

Unless otherwise stated, all our predictors are validated

using 3000 configurations selected from our total design

space (18 billion configurations) by uniform random sam-

pling.

Figure 2. Our architecture-centric model. We

train N program-specific predictors off-line
with a number T of training simulations. The

results are fed into a linear regressor along
with a signature consisting of R simulations

from a new program P to provide a predic-

tion for any configuration in the microarchi-
tectural design space.

4. Predicting A New Program

This section describes our scheme where we use prior

information about a number of previously seen programs to

quickly and accurately predict the number of cycles, energy

and ED product of any new program within the microar-

chitectural design space. Our model is based on a simple

linear combination of the design space of several individual

programs from the training set. Given this linear combina-

tion we can accurately model the space of any new program.

Figure 2 gives an overview of how our model works. De-

termining the best linear combination of previously trained

models relies on a few simulations (known as the signature)

of the new program and is described in section 4.2.

4.1. Program-Specific Predictors

Our scheme builds on top of program-specific predictors.

We use artificial neural networks [3] to build these predic-
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Figure 3. The rmae and correlation (along with standard deviation) of the program-specific predictors
when using varying numbers of training configurations. We average across all programs and show

results for ED, cycles and energy. This shows that 512 is a good trade-off in terms of correlation and

accuracy against the number of training configurations required.
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Figure 4. The rmae and correlation (with standard deviation) of our architecture-centric predictor

when varying the size of the signature, from the new program. In these graphs we have fixed the

number of training configurations to 512. We average across all programs and show results for ED,
cycles and energy. This shows that beyond a size of 32 we do not get significant further improvement

hence we fix the signature to be 32 simulations.

tors similar to those used in [11], although we could have

used any other related approach [12, 13, 16, 17]. They con-

sist of a multi-layer perceptron with 1 hidden layer of 10

neurons and use the sigmoid activation function for the in-

put and hidden layers and the linear function for the output

layer. We train each predictor off-line on a number of sim-

ulations from the training programs.

Figure 3 shows the rmae and correlation coefficient when

varying the number of training simulations (per training

program) to use for our program-specific predictors to pre-

dict ED, energy and cycles. We selected the training sim-

ulations from the design space of 18 billion configurations

using uniform random sampling. In figure 3(a) we can see

that, as expected, the rmae decreases as the size of the train-

ing set increases. The same is shown in figure 3(b) for the

correlation coefficient, i.e. as you increase the size of the

training data, the error gets smaller and the correlation in-

creases.

From the graphs in figure 3 we can conclude that we

should use 512 configurations per training program as in-

put to our model, since this provides low rmae and high

correlation for ED, cycles and energy. Increasing the num-

ber of configurations per training program gives only minor

improvement.

4.2. Architecture-Centric Predictor

Our technique for predicting a new program using prior

knowledge is based on off-line training of the program-

specific predictors combined with a small number of sim-
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Figure 5. Correlation when varying the number of simulations for both the program-specific model
and our architecture-centric approach. In the program-specific model these simulations are used as

training data; in our model they are used as a signature for the new program. We average across all

programs and show results for cycles, energy and ED.

ulations from the design space of the new program. We call

these small number of simulations the signature.

The architecture-centric model is a simple linear regres-

sor and is shown in figure 2. In effect, the behaviour of the

architecture space on a new program can be modelled as

a linear combination of their behaviour on previously seen

programs. The small number of simulations (signature) are

used to find weights which determine the right combination

of previously seen models that best capture the behaviour

of the new program. This surprisingly simple approach is

actually highly accurate, as we show in this section.

We train a number of program-specific predictors off-

line on a set of training configurations, as in section 4.1. To

predict a new program we combine these predictors with

a linear regressor which we also supply with a signature

from the new program. This can then give us the prediction

for any microarchitectural configuration within the design

space.

Section 4.1 determined the optimum number of training

configurations for the program-specific predictors was 512.

We nowwish to find the optimum size of the new program’s

signature to complete our architecture-centric model. Fig-

ure 4 shows the rmae and correlation coefficient for ED, cy-

cles and energy when varying the size of the signature from

the new programwhen all other benchmarks have been used

as training with 512 configurations.

It is immediately obvious, looking at both figure 4(a) and

figure 4(b) that using a signature size beyond 32 does not

bring further benefits in terms of either rmae or correlation

coefficient. Using a signature size of less than 32, however,

increases the rmae by at least a factor of two for ED. Using

size 32 we can get a correlation coefficient of 0.95 for cy-

cles, energy and ED and an rmae of 7%, 7% and 14% for

cycles, energy and ED respectively. Hence, we fix the size

of the signature to be 32, along with the number of training

configurations which we have already fixed at 512. We thus

show that in our space of 18 billion configurations we only

need 32 simulations from any new program to form a sig-

nature and enable us to accurately predict the entire design

space for the new program.

4.3. Comparison

Given an equal number of simulations from a new pro-

gram, we are interested to see how our scheme performs

compared with the program-specific predictor proposed by

İpek et al. [11]. Figure 5 shows the correlation for cycles,

energy and ED when varying the number of simulations re-

quired. For the program-specific model the simulations are

used as training data whereas in our model they are used

as the signature for the new program. As it can be seen,

for each metric our scheme is more correlated to the ac-

tual data than the program-specific approach, because our

scheme can apply knowledge from the programs it has pre-

viously been trained on.

Figure 6 shows a detailed comparison between the

program-specific model and our architecture-centric ap-

proach for each of the programs in our benchmark suite

when predicting ED. In our scheme we trained off-line us-

ing all programs apart from the one shown by each bar, then

ran 32 simulations of the new program as a signature. In the

program-specific model we used these same 32 simulations

as training data for the predictor.

As we can see, given the same number of simulations

from the program of interest our model is able to out-

perform the program-specific model for each of the pro-

grams. On average, the rmae of the program-specific model

for ED is 47% whereas for our approach it is only 14%.

With both models, the maximum error is achieved on the

same program (art). For the architecture-centric model,

the maximum error is 50% while for the program-specific

model it is 95%.
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Figure 6. The rmae (with standard devia-
tion) for ED on a per program basis for the

program-specific model and our architecture-
centric approach. Each model uses 32 train-

ing points from the new program which

are used as training data for the program-
specific predictor and as a signature from the

new program for our scheme.

5. Searching The Space

In the section 4 we looked at the accuracy of our pre-

dictor using different metrics such as rmae and correlation

coefficient. While those metrics are important to measure

and compare the efficiency of our models, it is also impor-

tant to keep in mind the reason for creating these models:

exploring the design space. In this section we evaluate how

search is performed using both our architecture-centric pre-

dictor and the program-specific approach.

5.1. Minimising ED

Figure 7 shows how our model performs when searching

the design space for the best microarchitectural configura-

tion in terms of the EDmetric. We chose this metric because

cycles and energy by themselves are intuitively easier to

predict (large structures generally mean good performance,

for example). ED is important to help designers consider

the trade-offs between performance and energy. Of course,

we could also have searched for the best configuration in

terms of cycles or energy just as accurately.

First, we build our architecture-centric predictor. We se-

lected 32 configurations per benchmark from the total de-

sign space using uniform random sampling and simulated

them to extract the signature for our approach.

Ideally, we would like to search the entire space using

this predictor to find the best configuration. However, in

order to validate its prediction, we would then have to sim-

ulate the entire space, which is clearly infeasible, Instead
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Figure 7. Searching the space for minimum
ED using a program-specific model and our

architecture-centric model. An initial 32 eval-

uations are used as training data and a sig-
nature respectively. After just 3 further simu-

lations per benchmark we find the minimum

point for ED in a randomly-selected space
of 3000 configurations which has an ED of

0.85. The program-specific predictor, on the
other hand, takes a further 103 simulations

per benchmark to get to this point.

we selected a further 3000 configurations from the total de-

sign space, again using uniform random sampling, and used

our predictor to rank these configurations in order.

If our predictor were perfect then the highest ranked pre-

diction would be the best configuration. Due to inaccura-

cies in the model, however, the best predicted configuration

is not always the actual best. Instead, our predictor always

finds the best configuration verified by simulation) within

the predicted top 3. Hence we need only 3 further simula-

tions per benchmark to find the best point in this space of

3000 configurations.

We repeated this experiment using the program-specific

predictor and a random search (using the same 3000

randomly-selected configurations). The program-specific

model needs a further 103 simulations per benchmark to

find the best configuration, which we found with only 3 per

benchmark. Knowing how far our models are from random

search is important since it gives another indication about

the quality of the predictions. Indeed random search is di-

rectly associated with the distribution of the space. In our

case, both models outperform random search quickly; ran-

dom actually finds the minimum after approximately 1500

further simulations per benchmark. Figure 7 summarises

these results. In order to calculate the values for ED we se-

lected the best configuration found in the initial 32 signature

simulations as the baseline, (i.e. ED = 1.0).

The performance of the program-specific model, trained

only with 32 simulations, is interesting. As we saw ear-

lier, this predictor exhibits an rmae of 48% which seems

poor compared to the same predictor trained with 512 sim-



Table 3. The microarchitectural configuration
giving the minimum ED and the median con-

figuration in our randomly-selected space of

3000 points.

Config Best Median

Width 4 6

ROB / IQ / LSQ 152 / 32 / 48 96 / 56 / 72

RF / Read / Write 136 / 4 / 1 72 / 4 / 3

Bpred / BTB / Br 16K / 2K / 8 1K / 2K / 24

I/D/U cache 64K / 8K / 4M 16K / 128K / 1M

ulations that achieves around 10%. However, using only

32 training simulations per benchmark allows it to find the

minimum after a total of 135 simulations per benchmark.

If we had considered using the predictor trained with 512

simulations per benchmark, it would have required at least

512 ·25 simulations in total. This clearly shows that it is im-
portant to keep in mind the overall goal of building predic-

tors which is finding good architecture configurations rather

than focusing narrowly on a metric such as rmae.

5.2. Best Configuration Found

The microarchitecture configuration giving the mini-

mum ED in our 3000 points is shown in table 3, along with

the median configuration in this space. The configuration

giving the minimum ED has a larger reorder buffer than the

median, a larger register file, branch predictor and unified

L2 cache. These structures aid performance by enabling the

extraction of ILP. It also has a narrower pipeline width and

fewer read ports because these parameters affect the energy

consumption of the processor: smaller is less power-hungry.

6. Reducing The Training Costs

The training of our architecture-centric model is per-

formed off-line and, as such, is not taken into account when

evaluating new programs. One criticism could be that this

training in the factory does not come for free, so we have

considered the extent to which we can reduce it and its ef-

fect on the accuracy of prediction for new programs.

6.1. Using Only Five Training Programs

Even though off-line training at the factory only has to

take place once for all future users of the simulator, we wish

to consider the view that any training, whether off-line or

not, should be considered part of the overall training budget.

We therefore decided to allow a total budget of simu-

lations available for prediction across all programs in our

benchmark suite. This budget was fixed at 3200 simulations
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Figure 8. The rmae (with standard deviation)
for ED with a fixed total number of simula-

tions (training included) for bothmodels. The
program-specific predictors are trained on-

line using the simulation budget whereas the

architecture-centric approach is trained off-
line with a portion of the simulations and then

on-line with the remainder.

for ease of comparison. In the case of the program-specific

model the budget was evenly spread over each program, i.e.

we used 128 samples for training each of the 25 models

needed to be built (3200/25 = 128). For our architecture-
centric approach we trained using just 5 programs. We then

ran 512 simulations on each of these 5 programs to build our

predictor (5 · 512). Then for each of the remaining 20 pro-
grams we extracted a signature requiring just 32 simulations

(20 · 32), giving a total budget of 5 · 512 + 20 · 32 = 3200
simulations. Figure 8 shows how both models perform for

ED when given this budget of simulations. As it can be

seen, the error of the program-specific model is 36% while

our model achieves 22%.

The cost of off-line training is reduced as we have more

programs to predict. Predicting a new program with our

model requires just 32 additional runs whereas the program-

specific predictor needs 128 or more depending on the re-

quired precision. As we wish to get a more rounded view

of a candidate architecture configuration, running more ex-

tensive benchmark suites with different compiler options,

training many different program-specific models becomes

impossible due to the high training cost. On the other hand,

our model scales well, since it only needs the extraction of

a few simulations per new program to create a signature

6.2. Varying Training Program Numbers

As seen in the previous section, we can reduce the cost of

off-line training needed by our model by using fewer pro-

grams to train with. In this section we show the effect of
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Figure 9. The rmae and correlation for our architecture-centric predictor when varying the number of
off-line training programs. The x-axis shows the number of off-line training programs and the y-axis

shows the results when predicting on the remaining benchmarks. We show results for ED, energy

and cycles. Each training program is run 512 times and the new program to be predicted given a
signature size of 32.

the number of training programs on rmae and correlation

coefficient. Figure 9 shows the accuracy of our model when

varying the number of programs in the training set using a

signature of size 32. As the number of programs increases,

both the rmae and the correlation coefficient tend to im-

prove. With 15 programs, both metrics reach a plateau and

adding more programs makes only a negligible difference.

6.3. Summary

This section has shown that the one-off cost of train-

ing on between 5 and 15 programs results in a highly ac-

curate predictor, capable of predicting the performance of

all architecture configurations on any new program with

just 32 further simulations. If the “factory” cannot afford

the one-off cost of building the predictor, a designer us-

ing our approach can still build a more accurate predic-

tor (with strictly the same training budget) than can be

achieved using program-specific approaches. Furthermore,

this architecture-centric predictor could be used in the fu-

ture for any new program with just a nominal 32 further

simulations.

7. Characteristics Of The Space

This section describes characteristics of the design space

we have explored. There are 18 billion design points in

our space which is obviously too many to simulate in total.

Therefore we used uniform random sampling to pick 3000

architectural configurations and simulated these for each

benchmark (3000 configurations · 25 programs = 75000

SimPoint simulations). Using uniform random sampling

means that we have a fair and representative sample of the

total design space.

Figure 10 shows the characteristics of this space on a

per-program basis for cycles, energy and ED. In each graph

we show the maximum of the space for each benchmark,

then the 75% quartile, median, 25% quartile and minimum.

Note that the y-axis in each graph is on a logarithmic scale.

As can be seen in figure 10(a), the number of cycles

taken for each simulation varies considerably between pro-

grams ranging from the longest , 2∗1010 cycles, to the short-

est, 3∗107 cycles. Some programs vary enormously, for ex-

ample art which varies between 7∗107 and 1∗109 cycles.

Other programs, such as parser, vary only slightly (between

2∗108 and 3.5∗108).

Figure 11 shows some of the parameters that we vary and

how they influence the number of cycles required. Each pa-

rameter design point is shown on the x-axis. The y-axis

represents the frequency with which a design point occurs.

These diagrams show how much influence the parameters

have on the cycles and energy of each configuration. Fig-

ures 11(a) to 11(f) show the top 1% for cycles (so best per-

formance) and figures 11(g) to 11(l) show the worst 1%.

From these diagrams we can see that the parameter hav-

ing the greatest impact on performance is the size of the

register file (figures 11(c) and 11(i)). This parameter is

highly correlated with overall performance. In the worst-

performing 1% a small register file is common (in 81% of

them it has just 40 registers). This confirms the widely-

known fact that register files are critical components in the

microarchitecture. However, the best performing 1% of

configurations have register files ranging from mid-sized to

large. This suggests that a small register file is a bottleneck

to performance, but a large register file does not necessarily

mean high performance. The best configurations for cycles

tend to have a wide pipeline (6 or 8 instructions per cy-

cle, figure 11(a)), have a large reorder buffer (figure 11(b)),
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Figure 10. Characteristics of our design space for cycles, energy and ED. ED=1 is the value of the

median configuration in the randomly-selected space. Each graph shows the median, quartiles for
25% and 75%, minimum and maximum values for each benchmark. There is large variation across

different programs (the y-axis is logarithmic) and on average. This makes it difficult to easily pick a
good configuration for all programs, justifying the need for a predictor to aid search.

branch predictor (figure 11(f)) and second level cache (fig-

ure 11(e)). This intuitively makes sense because the first

two allow the extraction of ILP through branch speculation.

In terms of energy (figures 10(b) and 12) the charac-

terisation of the space is more clear cut with large differ-

ences between the minimum and maximum of the space.

The configurations with the highest energy consumption

have a wide pipeline (figure 12(g)), small register file (fig-

ure 12(i)) and large second level cache (figure 12(k)). The

low energy configurations tend to have a pipeline only a

couple of instructions wide (figure 12(a)), only a few regis-

ter file read ports (figure 12(d)) and a small L2 cache (fig-

ure 12(e)). However, they have moderately-sized register

files with only a few read and write ports into them, and

average-to-large sized branch predictors, etc. These config-

urations trade off dynamic energy consumption for static

energy savings. Were the structures smaller then perfor-

mance would drop and static energy consumption would

rise, outweighing the benefits of lower dynamic energy con-

sumption.

Recall that in section 5 we found the microarchitec-

ture configuration with the minimum ED across all pro-

grams. This had width 4 which is good for both energy

(figure 12(a)) and performance (figure 11(a)). It had a large

register file with only 4 read ports to it (good for energy,

figure 12(d)) and large branch predictor. However, it also

had a large L2 cache which should be bad for energy (fig-

ure 12(k)) but in this case it has had to make a trade-off be-

tween higher energy and higher performance (figure 11(e)).

8. Related Work

In order to reduce simulation cost whilst maintaining

enough accuracy for design space exploration, analytic

models have been proposed [14, 19]. Unfortunately these

approaches require a large amount of knowledge about the

microarchitecture they attempt to explore and, furthermore,

they need to be built by hand. When major changes are

made to the microarchitecture design the models need to be

updated [20]. In contrast, our technique builds such a pre-

dictor automatically and can easily accommodate any future

microarchitecture design changes.

Sampling techniques [23, 27] approach the problem

from a different angle by reducing the number of instruc-

tions needing to be simulated. This dramatically decreases

the time required for simulation. A statistical analysis of the

program’s trace is performed to combine results from the in-

structions actually run. This approach is orthogonal to our

technique and, in fact, we do use SimPoint [23] to speed up

the simulations we perform both to train our predictor and

to verify it.

Statistical simulation [6, 21, 22] is based on the same

idea as sampling but goes a step further. The simulator is

modified so that it symbolically executes the instructions

based on a statistical model. This technique requires the

extraction of program characteristics that are related to the

microarchitecture under consideration. Thus, if any ma-

jor changes occur, new features could be needed to con-

tinue to characterise the program. Eyerman et al. [7] focus

their two-phase search using statistical simulation. Search

techniques such as this can be used seamlessly with our ap-

proach.

There have been many recently proposed schemes for

microarchitecture design space exploration based on linear

regressors [12], artificial neural networks [10, 11], radial ba-

sis functions [13] and spline functions [16, 17]. The linear

regressor approach [12] is, in fact, simply used to identify

the key parameters in the design space. No measurements

are given as to its accuracy and as such it can only be used

to give hints to the designer. This is similar to the character-
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Figure 11. The frequency each parameter design point occurs in the 1% of configurations for each

benchmark having the best (a-f) and worst (g-l) number of cycles.
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Figure 12. The frequency each parameter design point occurs in the 1% of configurations for each

benchmark having the best (a-f) and worst (g-l) energy.

isation of the space that we conduct in section 7. The other

schemes are similar in terms of accuracy [18, 26]. How-

ever, none of these papers characterise the space that they

are exploring by showing the correlation of microarchitec-

tural parameters to the best configurations. Furthermore,

none of these papers show how to use their predictors to find

good microarchitectural configurations by searching the de-

sign space, so we do not know how useful they are.

A fundamental difference between our scheme and

these performance predictors resides in the fact that our

model characterises the architecture space independently of

the programs being simulated, rather than modelling the

program-specific architectural space. This enables our ap-

proach to predict new programs with low overhead and high

accuracy.

An interesting approach taken by Hoste et al. [8] uses

a linear model to combine program design spaces, clus-

tering benchmarks based on program features. We do not

use features in our approach because they can be difficult to

identify and might vary depending on the architecture under

consideration. Hence our scheme is more versatile since it

can be applied to any program and architecture.

Close to our work is using the cross-program learning

approach to predict the performance of a new program on

an unseen architecture [15]. Their model, however, has to

be retrained when a new program is considered and no com-

parison is made with existing approaches. In addition, their

predictor only achieves a 2% improvement over simply pre-

dicting the average of the training data, thus showing little

cross-program learning. Other work has applied this type

of learning to the software optimisation space for learning

across programs [5].

Finally, Bird et al. [2] characterise the SPEC CPU 2006

benchmark suite in terms of how the programs stress the

branch predictor, caches and features specific to the proces-

sor they use. Our design space characterisation in section 7

differs from theirs in that we vary the microarchitectural pa-

rameters and evaluate the effect on different microarchitec-

tural structures.

9. Conclusions

This paper has proposed a novel approach to design

space exploration using prior knowledge to predict energy,

cycles or ED. We showed, when predicting performance, in

terms of cycles, our architecture-centric model has a rela-



tive mean absolute error of just 7% and a correlation coef-

ficient of 0.95, significantly out-performing a recently pro-

posed program-specific predictor which has an rmae of 24%

and correlation coefficient of 0.55. Using ourmodel, we can

also accurately predict the best microarchitectural configu-

ration for ED across a range of programs in our randomly-

selected space after only a further 3 simulations per bench-

mark, compared to a further 103 simulations per benchmark

for the program-specific predictor. We address the cost of

the off-line training our model requires and show that given

the exact same training budget our predictor still has a better

rmae than the program-specific predictor. Finally, we char-

acterise the design space we have considered, showing how

the varyingmicroarchitectural parameters impact on cycles,

energy and ED.

In conclusion, our architecture-centric approach can ac-

curately predict the performance, energy or ED of a range of

programs within a massive microarchitectural design space,

requiring just 32 simulations as a signature from any new

program and out-performing all other approaches.
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