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OpenCL P] and CUDA [1L5] have emerged as mainstream lan-
guages for programming GPUs and multicore systems. These po
ular languages provide APIs that expose low-level detdilseode-
vice architecture. The programmer must manually tune kvell
code for a specific device in order to fully exploit its prosieg
resources. For example, a sub-optimal mapping of data toldsGP
non-uniform memory hierarchy may degrade performance bg-a f
tor of ten or more.

Experience shows that programming in a high-level language

Languages such as OpenCL and CUDA offer a standard interfaceis more productive, portable, and less error-prone. Igeallpro-

for general-purpose programming of GPUs. However, wittse¢he
languages, programmers must explicitly manage numerous lo
level details involving communication and synchronizatid his
burden makes programming GPUs difficult and error-prone; re
dering these powerful devices inaccessible to most progrens

grammer should express a program using high-level coristtioat
are architecture independent, and have the compiler atitatha
generate device-specific code that is competitive with level
hand-written code. Indeed, programmers have enjoyed trerse
fits with general purpose programming languages on genaral p

We desire a higher-level programming model that makes GPUs pose CPUs for several decades. In this paper, we addre ssngjesd

more accessible while also effectively exploiting theimputa-
tional power. This paper presents features of Lime, a new-Jav
compatible language targeting heterogeneous systenisaltoa
an optimizing compiler to generate high quality GPU codee Th
key insight is that the language type system enforces isaland
immutability invariants that allow the compiler to optireiZor a
GPU without heroic compiler analysis.

We evaluate the performance of the resulting code, comgarin
against an implementation on the Java Virtual Machine (Jifh)
and against hand-tuned native OpenCL code. The compikEnsatt
GPU speedups relative to JVM/JIT between 12x and 431x, while
achieving between 75% and 140% of the performance of native
OpenCL code.

1. Introduction

In response to increasing challenges with frequency sgdtiard-
ware designers have turned to architectures with incrgaiggrees
of explicit parallelism. Today’s hardware offerings rarfigem gen-
eral purpose chips with a few cores.d, Intel Core i7), to spe-
cialized distributed-memory multiple-SIMD platforme.g, IBM
Cell), to graphics processors (GPUs) which support laogéeslata
parallel computations. Additionally, several efforts enday at-
tempt to exploit reconfigurable hardware (FPGAS), with rivedg
bit-parallel execution, for general-purpose computation
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in delivering similar benefits for programs running with GRU

This paper presents details of a GPU programming model in a
new programming language called Lime. As presented edfjer
Lime is a Java-compatible object-oriented language whachets
heterogeneous systems with general purpose processd#\si-P
and GPUs. The Lime methodology allows a programmer to gently
refactor a suitable Java program into a pattern amenableefero-
geneous parallel devices. We present the design and dealudt
the Lime compiler and runtime subsystems specific to GPUs.

The Lime language exposes parallelism and computation ex-
plicitly with high level abstractionsZ]. Notably, the type system
for these abstractions enforces key invariants regardiotation
and immutability. The optimizing compiler leverages thaseri-
ants to generate efficient parallel code for multicores aRJ§
without relying on deep program analysis.

This paper shows how a Lime programmer can exploit a GPU
without writing complex low-level code required with matiream
approaches (OpenCL or CUDA). The compiler and runtime gyste
coordinate to automatically orchestrate communicatioth @m-
putation, map data to the GPU memory hierarchy, and tuneehe k
nel code to deliver robust end-to-end performance.

The contributions of this paper are:

¢ A design and implementation of an optimizing compiler to-gen
erate high quality GPU code from high-level language abstra
tions including isolated parallel tasks, communicatiorerap
tors, value types to express immutable data structuredjraaxd
grained map-and-reduce operations (Sectiik

e A set of automatic optimizations for GPU architectures that
may be applied without sophisticated alias analysis or data
pendence analysis. These include memory optimizatiorts tha
improve locality, reduce bank conflicts, and permit veaati
tion (Sectiord.2).



e A detailed empirical performance evaluation comparing the

generated code to hand-tuned OpenCL programs. The perfor-

mance of the generated code lies between 75% to 140% of
hand-written and tuned native OpenCL code (Secijon

The performance results show that across a suite of 9 bench-

marks, our compiler delivers a speedup ranging fi@m — 430z

for the NVidia GeForce GTX580 architecture (Fermi) ardt —
4162 for the AMD Radeon HD5970. Further, using the OpenCL
multicore runtime, we report a performance gain betwéén —
32.5z for the Intel Core i7 architecture.

2. OpenCL Background

OpenCL and CUDA represent tlile factostandards general pur-
pose programming on GPUs. OpenCL, in particular, was dedign
to provide an industry-standard API for systems with hejero
neous devices.

Although OpenCL provides a portable API, the API presents a
low-level interface to the underlying hardware. The Operngta-
grammer must explicitly manage many low-level details tgpma
data to appropriate address spaces, enable vectorizatibedule
data transfers between the host and device, and manageraynch
nization among queues connecting the host and devices.

In this section, we briefly review the structure of a small
OpenCL N-Body application. This example motivates the rfeed
high-level abstractions, and also introduces tuning sggemane
to GPU performance.

Figure 1 illustrates an N-Body simulation expressed using a
common OpenCL programming pattern. Lines 1-16 embody a data
parallel kernel that representsna force calculation. The kernel
may run on a GPU or a multicore CPU.

Address Space Qualifiers The kernel declaration (line 1) in-
cludes address space qualifiers that map the respectiveoddua
GPU memory hierarchy. OpenCL presents a non-uniform mem-
ory hierarchy with five types of memoriepri vat e, | ocal ,

gl obal , constant andi mage. Thepri vat e memory rep-
resents a fast, small memory private to each computatibnehd.
Thel ocal memory represents a shared memory, used to coher-
ently share data between a small group of related threatisical
work group Thegl obal memory provides a shared address space
for all threads on a device, with no implicit coherency gudeas
across work groups. Theonst ant andi nage memories rep-
resent specialized read-only storage. The former, tylpicasmall
space, usually holds constants referenced by a computhtien

nel. Graphics applications typically store texture olgefctr ren-

for the corresponding patrticles. Lines 9, 10, and 15 accmsH |
memory and perform synchronizations between kernel ics&to
ensure correct access to local memory.

Orchestrating Execution The second half of Figuré shows a
fraction of the host code necessary to orchestrate the tepaf
the kernel code. A typical execution pattern applies thiofdhg
steps: (1) discover and initialize the device and compiéekigrnel
code, (2) create a command queue, (3) create the kernele@tec
read and write buffers, (5) enqueue commands to transfeette
buffer, invoke kernel, and transfer the write buffer. Thegrammer
is responsible for scheduling the data transfers and qugrig
these with kernel computation. This process uses at leagtend
OpenCL procedures based on our inspection of several heneaht
OpenCL programs. We omitted an additional 182 lines of code
which deal with step (1) alone.

3. Lime Programming Language

The previous example shows that OpenCL allows fine-graitrabn
of the host and kernel code, but the low-level details imposiy-
nificant burden on the programmer. Similar points hold forZi2U

In contrast, Lime¥] provides a high-level object-oriented language
offering task, data, and pipeline parallelism. It extendgaJwith
several constructs designed for programming heterogsrehi-
tectures with GPU and FPGA accelerators. Here, we briefigwnev
the Lime constructs which the compiler relies on to effidieof-
fload computation to a GPU.

Figure2 represents a Lime implementation of the N-Body ex-
ample. Since the language is Java-compatible and intexbleerit
provides a gentle migration path from Java. The figure ilaiss
this process with white and black squares: white squarefixpre
original Java code and black ones prefix new Lime code.

Line 3 sets up the main computation, as embodied task
graph data structure. A task graph is a directed graph of compu-
tations, where values flow between tasks over edges in tiphgra
Thenbody task graph from line 3 is illustrated in the figure below.

Source Filter Sink
4 float([1[4]] ! float{1[31] !
Particle Force Force
Generator positions comPUtation forces Accumulator

A particle generator task emits an initial set of particktered
as an array of 4-element tuples: three elements for theiposind
one for the mass. A force computation task computes the force

dering a scene in the image memory. We inspected a number ofacting on each particle using a simplé algorithm. This task

OpenCL benchmarks and found that the kernels often uset@riva
const, and global qualifiers in the kernel signatures.

Vectorization The kernel code features the use of the OpenCL
float 4 data type (lines 5, 6, 12). The code represents the forces
as an array of tuple elements each consisting of four flogiaigt
values, even though each force value has only three commnen
This decision allows the device to vectorize the memory sees
OpenCL 1.0 only supports vectors of size 2, 4, 8, and 16.

Kernel Tuning The force calculation illustrates a typical data
parallel pattern where multiple instancegofk item3 of the same
kernel operate on disjoint data sets. Lines 2-4 show some man
ual calculations to determine the working set for a runniraykw
item. The working set depends on the number of concurremeker
instances, a user-determined property that is typicaltgrdened
through trial and error to suit the computational power eftdrget
device. For N-Body, each working set represents the sulbgetro
ticles for which the work item computes forces. The loopradsi 8-

15 iterates through the kernel working set and computesoitoe$

produces an array of 3-element tuples representing thedating
on each particle. The force accumulator task consumes fiess,
and computes a new position for each particle.

The task graph just described represents a single simulatio
step. Typically the algorithm runs for a large number of dation
steps.

Two noteworthy Lime operators appear on line 3. First is the
t ask operator, which creates a computational unit equivaleanof
OpenCL kernel. Second is the- (connect) operator, which rep-
resents the flow of data between tasks. Thei sh on line 4 initi-
ates the computation and forces completion. This is nepessae
Lime decouples the creation of task graphs from their exacut

3.1 Task and Connect

Thet ask operator is used to create tasks (line 3). A task repeat-
edly applies avorker method as long as input data is presented to
the task via an input port, and enqueues its output (thetresul
the method application) to an output stream. The operatusbi
the method specified after the dot to the task worker methbd. T
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kernel void calcForceKernel ¢lobal
int gi = get_global_id (0); int
int gs = getglobal_size (0); int
int blks = gs / Is;
float4 pi = positions[gi];
float4 force = {0,0,0,0};
int baselndex = O0;
for (int b=0; b<blks; b++) {
localPos [ti] = positions[baselndex+ti];
barrier (CLKLOCAL.MEM_FENCE);
for (int j=0; j<ls; j++) {
float4 pj = localPos[j];
. update force based on pi and pj ..}
baselndex += lIs;
barrier (CLKLOCAL.MEM_FENCE); }
forces[gi] = acc; }

float4x positions , global
ti = get_local_id (0);
Is = getlocal_size (0);

float4x forces, local float4x localPos) {

void runKernel(int N /xnum particles«/, cl_float4+ positions /xinitial
cl_float4x forces = calloc(N, sizeof(clfloatd);
/I create the input and output buffers using helper
cl_mem input = clCreateBuffer (context, QUEM_READONLY,
cl_mem output = clCreateBuffer (context , GUEM_WRITE.ONLY,
/1 lock-step iteration
while (true) {
/Il send the input data to the device (neblocking)
clEnqueueWriteBuffer (queue, input, GEALSE, 0, sizeof(clfloat4) x N,
/I pass the arguments to the kernel
clSetKernelArg (calcForceKernel , 0, sizeof(mlem), &input);
clSetKernelArg (calcForceKernel , 1, sizeof(mlem), &output);
clSetKernelArg (calcForceKernel , 2, maxWorkGroupSize sizeof (cl_-float4), NULL);
/l start the one-dimensional kernel with N threads fofce computation)
clEnqueueNDRangeKernel(queue, calcForceKernel , 1, NURN, NULL, O, NULL, NULL);
/I read back the data from the device (blocking)
clEnqueueReadBuffer (queue, output, TRUE, 0, sizeof(clfloat4) x N,
/l update state based on the acceleration computddrc¢ accumulator)

statex/) {

functson
sizeof (cl_float4)xN, NULL, NULL);
sizeof (cl_float4)xN, NULL, NULL);

positions ,

0, NULL, NULL);

forces, 0O, NULL, NULL );

updateposition(positions , forces);} }

Figure 1. Parts of the OpenCL kernmland host coda for N-Body

worker method may be staticBody. conput eFor ces) or an in-
stance methode(g, NBody() . parti cl eGen). In the latter, the
task operator creates an instance of the typedy and binds its
instance method to the worker. The distinction between W t
cases is that static worker methods are essentially puiciduns
and the instance methods may be stateful. Methods in lim@ske
agnostic, meaning they may be invoked as conventionat staiin-
stance methods and only become worker methods by applyéng th
task operator.

The language runtime repeatedly invokes the worker method a
long as data items are available on the input port. A specisé c
is the source task (lines 6-8) that emits data until inteedby an
Under f | ow Except i on that can be thrown by any task to notify
that the computation is finished.

Tasks in Lime are eitheisolatedor non-isolated An isolated
task, also known asfdter, has its own address space and may not
access mutable global statd, non-final statics fields in Java).
Lime achieves isolation using a combinatiori@fal methods, and
valuetypes.

The worker method of an isolated task must be declaoechl
(lines 10 and 13). A local method may only call other local met
ods, and may not access global mutable fields. The workeradgth
input immutable (value types) arguments (if any) and musirne
values (if any). This ensures that data exchanged betwests ta
does not mutate in flight, and provides the compiler and muti
greater opportunities for optimizing communication beswéasks
without imposing undue burden on the compiler to infer ireats
involving aliasing.

A value type represents a deeply immutable object type, (
data structure or array) declared usingvwh&iemodifier on a type.
A value array is indicated using double brackets, so for g@tam
float[[][4]] is a two dimensional array of floats, where the
outer dimension is unbounded, the inner dimension is balitale
size four, and the entire array is immutable. Value arraystrbe
initialized at construction time (lines 8 and 17).

The t ask operator encapsulates computation whereas-the
(connect) operator encapsulates communication betwesks ta
(line 3). This operator is used to connect two tasks when tityeud
type of the upstream task (left of the operator) matchesnpati
type of the downstream task (right of the operator). Limeosgs
the communication between tasks explicitly using the conop-
erator so that the compiler and runtime can optimize the H® a
synchronization between tasks automatically and withoegmam-
mer intervention, in contrast to OpenCL (see Figlimes 20-35).

3.2 Map and Reduce

Lime also offers amap and reduce model for fine-grained data
parallelism. This model suits the thread-level paralielevailable
in GPUs, and also short-vector SIMD instructions availaible
many general purpose ISAs.

A map operation applies a (logical) function to each element
of some aggregate data structure, producing another agjgrdgta
structure. The reduce operation combines values from aregatg
data structure using a combinator function. These ab&irecare
well-known in traditional functional languages.
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O public class NBody {

O public static void simulate () {

]

O nbody. finish (); }

| private float [[][4]] particleGen () {

| float[][4] theParticles = ...; [// initial state
[ ] return new float [[][4]](theParticles); }

[ ] private static local float[[][3]] computeForces flo
[ ] return NBody @ computeParticleForces (particles
[ ] private static local float[[3]

| float fx = 0, fy = 0, fz = 0;

O for (int j=0; j<particles.length; j++){

O ... } Il scalar computation to update fx, fy,
| return new float [[]] { fx, fy, fz }; }

[ ] private void forceAccumulator float [[][3]] particle
| ... } Il update the state of the particles for
0}

Task nbody =task NBody (). particleGen = task NBody.computeForces > task NBody (). forceAccumulator

computeParticleForcesfloat [[4]] p,

of the particles

at [[][4]] particles) {
, particles});

float [[]1[4]] particles) {

and fz based on p andrtpales|[j]

s) {

next iteration

Figure 2. Lime version of force calculation of NBody. The code markdthvzl is Java.

The map operator is represented by t@eoken; see line 11
of Figure2. It applies the functiorronput ePar ti cl eFor ces to
each element of thearticl es array, and returns the resultant
array. Each application of the map function computes theefor
interactions between a partigieand all othemarti cl es (lines
13-17). The example omits the core force computation sine i
similar in all implementations (OpenCL, Java and Lime).

A reduction in Lime is expressed using an operator or method
followed by! to indicate the operator or method should be treated
as a combinator. The language permits instance or statfoogegs
well as certain arithmetic operators to serve as reductpanaiors
as long as they apply to two arguments of the same type and
produce a result of that type.

4. Compilation Methodology

The explicit separation of computation and communicationiine
via the task and connect operators relieves the progranmoer f
the burden of orchestrating the execution of tasks betwesth h
and device. This responsibility now falls onto the Lime cdemp
and runtime. Similarly, because Lime programs do not fohee t
programmer to make an explicit distinction between the déern
and host codes, the compiler must determine a partitionirigeo
program between host (CPU) and device (GPU).

Our compilation methodology is illustrated in Figuge The
compiler partitions the source code into host and device cadd
compiles each partition to native code. The Lime compilerege

public class NBody { L|me Code I
simulate() {
Particle Gen orce Computatio
}
u\ g
JVM Host Device
(glue) (Multicore,GPU)
(JNI interface )
[y L] -Kernel
Application OpenCL API calls
JavaByteCode C OpenCL

Figure 3. Starting from a Lime program, our compiler produces
the application code that runs in the JVM, the C code that lleand
data exchange and the calls to the OpenCL API and finally the
OpenCL kernel code.

arguments are immutabléd,, values). As a result, our compiler
recognizes filter task creations, and treats each filter @suttit

of computation to offload. Note that the system may freely enov
filters between device and host without concern for datasand
non-determinism.

Within each filter, the compiler scans for map and reduce op-

erations to identify opportunities for kernel-level dg@arallelism.
The compiler detects data-parallel maps and generatesspomd-

ates a mix of Java bytecodes and OpenCL. The bytecodes run ining parallel implementations without deep dependenceyaisaln-

an unmodified Java virtual machine. The generated OpenCé cod
encompasses both the compiler-tuned kernels and the oaerdi
tion and scheduling code for managing the buffers, schegudata
transfers and executing the kernels.

4.1 Kernel Identification

In the N-Body example, the main computation workload lies in
the n? force calculation. Thus, a natural partition of the N-Body
example runs thearticl eGen andf or ceAccunul at or tasks

on the host and theonput eFor ces task on the GPU.

To allow offloading, the compiler requires thenput eFor ces
task to be arisolatedtask, also known as a filter. The language
semantics for a filter guarantee that it does not performaiipb
side-effecting operations because it is isolatiegl, (ocal) and its

stead, it checks for the following invariants on map expmess (a)
the map function is static and local, and (b) the map funcii@u-
ments are value types (includes primitive types). The tystem
guarantees that a static local method does not accesslylohab-
ble data, and because the value arguments are immutableaihe
function is pure and side-effect free. In a similar way, tbenpiler
may infer a parallel reduction.

Following kernel identification, the compiler performs kel
optimization (Sectiont.2) with an emphasis on the GPU memory
hierarchy. Lastly, the compiler generates appropriates glade
to orchestrate both the data transfers and the kernel itivosa
(Section4.3). The glue code is implied by the connect operator
which identifies the communication required between the &iod
device.



Table 1 summarizes the differences between programming in

OpenCL and compiling Lime code for GPUs. The salient observa | kernel void computeForces (-
tion is that Lime provides a much higher level of abstractonl 2 constant runtime.info_t« ri,
does not expose low-level architectural details. i g:ggg: ;:gztti* rg:{jﬁ'&'“ '
5
Table 1. GPU programming in OpenCL vs. Lime. 6 ¢ int gi = get.global.id (0);
; 7 int gs = getglobal_size (0);

OpenCL Lime 8 int iqen =gri—§particle&|én)gth;
offload unit kernel filter 9 for (int it=0; it<len; it+=gs) {
communication API => operator 10 int i=it+gs;
dataparallelism ~ manual  map & reduce u if ( 'ﬂ<0':’t1 )f;({—O'
memory qualifiers manual compiler 13 float fy=0;
synchronization manual compiler 14 ol iz =0 . o
scheduling manual compiler ig ;:)?’at(‘}ntpl j ;OP?SIIJA?Sj[ﬂ)] |

17 float4 pj = particles][j];
18 ... computation to update fx, fy
4.2 Kernel Optimizations 19 ... and fz based on pi and pj
The mechanics of optimizing and generating an OpenCL keﬁel result[gi«3+0] = fx:
from a Lime filter center on the exploitation of map and redoje 5, result[gix3+1] = fy
erations for thread and SIMD parallelism, and applying aoé&i- o3 result[gi«3+2] = fz;
cality enhancing optimizations that take advantage of thef@L 24 |} } }
memory organization when applicabked, a GPU).
Figure4 shows the code generated by the Lime compiler for the (a) Generated OpenCL code
Lime code snippet shown earlier. The compiler takes adgastaf
the semantic information available at the source level terdgne 1 | typedef struct{
that the map operation (Figur2 line 11) is data-parallel, and?2 int particleslength;
it exploits the immutable and bounded-size nature of imtlil 3 |} runtime.info_t;

particles to perform memory optimizations and vector@atiThe
generated kernel code will adapt to any number of threadtedta
by the Lime runtime or as requested by the user. In Figuiee

9, the kernel loop iterates over the array of particles wilche
thread assigned an elementat line 10. This generated code is
more robust than the hand-written OpenCL kernels we insgect
because it executes correctly independent of the numbhbresdds.

In addition to the obvious kernel input and output arguments
the compiler also generates a structure to contain runtimo&ibg Global Memory Mapping data to the global memory is the de-
information and data values needed by the kernel code (gge Fi fault behavior of the optimizer when no other mapping is fibes
ure4(b)). Examples of the latter include array length valuescivhi
is used explicitly at line 15 and implicitly at line 11. Thisaord is
passed to the kernel as a parameter on line 2.

(b) Generated structure for runtime information

Figure 4. Lime to OpenCL code generation

corresponds to a data-parallel map operator that the cemipéls
already inferred.

Private Memory The compiler attempts to map all the arrays that
are not shared across threads to the fast private memorytdue
the extremely small capacity of this type of memory, the cibenp
4.2.1 Memory Optimizations only considers arrays whose size can be determined shatioal
does not exceed a certain threshold value. An array is noegha
when it is allocated within the inner most parallel loop sirach
thread will execute its own instance of the loop body. Fidi{eeb)
show a simple example where an array variable is mapped to
the private memory in OpenCL.

Once the kernel is identified, a key optimization maps nalasc
(e.g, array) data to the different memory structures in the devic
This section describes how the compiler optimizes memory ac
cesses for the OpenCL memory hierarchy (common to GPUs). The
compiler permits for any of the optimizations to be enabled a
disabled so that it is possible to perform an automated eaitm Local Memory In most OpenCL application, the local memory is
of the memory mapping and layout. used as a type of scratch pad for shared data. This memorg is th
The compiler drives memory optimizations using a relayivel second fastest type of memory. It is typically used when tta &
simplepattern matchinglgorithm. It scans the intermediate repre- reused among several threads running on the same core. daltypi
sentation for common memory access idioms and applies the-co  example where this happens is in the case of a double nested lo

sponding transformation when a pattern is encounterecbritrast as shown in Figure§(c-d). The parallel inner most loop reuses the
to much previous work, our memory optimizer does not require valuev. Since this inner loop is parallelized into many threads, it
sophisticated alias analysis or data dependence analysisad, possible to store parts of the g array in the local memory and thus
our compiler exploits the strong type system in Lime to infec- increase data reuse. The compiler performs a code tranafiom
essary invariants without deep analysis. For example, irabbe similar to loop tiling. When the size of the local memory cahbe
value types in the source language provide the key invariduatt determined statically our system dynamically allocatesnory at
memory locations are read only and cannot be reassigned. runtime depending on the number of parallel threads.

We claim that enabling a relatively simple memory optimizer The local memory is typically organized in different bankgth
is a strength of our approach, as compared to more uncamstrai  consecutive words assigned to different banks. Once thmizetr
input languages that necessitate heroic program analysis. has decided to map an array into the local memory it detesnine

Figure5 illustrates some of the idioms recognized by the Lime whether padding is necessary in order to avoid bank conflittis
compiler. In the figure and the text that follows parallel loop is a common optimization although often done manuallyj [in
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float [] doWork (...) { 1 | kernel doWork (...) {
Parallel loop { 2
T[] arr = new T[10]; 3 private int arr[10];
4
(a) Private memory candidate (allocation within paralégion) (b) OpenCL using private array allocation
float [] doWork(float[] arg) { 1 | kernel doWork(global floatx arg,
2 local floatx local_-mem) {
Parallel loop (i) { 3
float v = arg[i]; 4 if (local.id (1) == 0)
Parallel loop { 5 local_mem|[localid (0)] = arg[globalid (0)];
v; 6 float v = local.mem[localid (0)];
F oo 7
(c) Local memory candidate (nested loop with data reuse) (d) OpenCL using local memory (synchronization omitted)
float [] doWork(float[][4] arg) { 1 | kernel doWork(readonly image?2d.f arg) {
2
Parallel loop { 3
float[4] v = arg[x]; 4 float4 v = readimagef(arg, {x,0});
v[2]; 5 V.S2;
6
(e) Image memory candidate (accesses to v static) (f) OpenCL using image memory
float [] doWork(float[] arg) { 1 | kernel doWork(constant floatx arg) {
Parallel loop { 2
arg[x]; 3 arg[x];
4

(g) Constant memory candidate (x invariant in the loop)

(h) OpenCL using constant memory

Figure 5. Example of code patterns that our optimizer is looking fod &me corresponding generated OpenCL in pseudo-code. Reade
familiar with writing OpenCL code may recognize here sonpdsl code pattern often encountered in OpenCL kernels.

OpenCL or CUDA kernels. In Lime, it is relatively easier ta@u
matically apply this optimization using the type infornmatiavail-
able and the fact that the code is virtually free from poiitas
opposed to lower-level pointer-rich programs. The Lime piben
detects the size of the array elements and adds paddinglaugigr
This ensures that each consecutive thread reads data frdfaera d
ent bank, thus increasing memory throughput.

Image Memory When this optimization is enabled, the com-
piler tries to map read-only arrays into the image memormgc&i

4.2.2 \ectorization

Following the memory optimizations, the compiler vectesz
memory accesses for multidimensional arrays. An innermoaly
dimension is a vectorization candidate if it is of length 23 4r 16.
This optimization is only applied for arrays that are reatltand
whose access to the last dimension is known statically.ovizing

the memory accesses usually reduces the total number of memo
accesses and thus improves bandwidth utilization and ipeafiace.
This optimization is applied for data mapped to the glolmdal or

OpenCL 1.0 only supports access to the image memory by groupsconstant memory (the image memory optimization is intciatly
of 4 words, the compiler limits the scope to arrays whose last already vectorized). Once again, the benefit of using a tegbl-

dimension is either 2 or 4. The compiler adopts a packed sepre
tation in the case where the last array dimension is of le@gth
addition, it prevents the optimizer from assigning to imegamory
arrays whose last dimensions elements are not accesseshcont
poraneously, in order to ensure good performance. Fig(e«)
shows a typical candidatar(g) for this optimization. The Lime ar-
ray access expressions are converted into the appropnzeQL
image access functions. Since the OpenCL does not suppam-1D
ages, the compiler maps the indeto the 2D coordinatéx, 0) *.

Constant Memory The constant memory is reserved for values
that arebroadcastio all the threads. That is, all the threads read the
same address. In this case, the compiler identifies arragsaes
within a parallel loop that are accessed using a loop-iavaindex

as shown in Figuré(g-h).

1The compiler implementation is more complex since the ctempnay
perform modulo operations when the index is greater thamtagimum
width supported by the image format.

language that allows for pointer-free programming makestjtpe
of analysis simple.

4.3 Orchestrating Communication

Although the data and code isolation of Lime tasks makes cemp
tation offloading possible, the runtime system must stiltefntly
transfer data to and from the main system memory to the device
Because Lime targets devices that include GPUs and FPGAs, th
runtime implementation adopts a universal “wire” formatttrelies
only on sending a byte stream as shown on Figure

The communication steps between the host JVM and the na-
tive device entail (1) serializing a Lime value to a byte wri@)
crossing the JNI boundary, and (3) converting this byteyaimto
a C-style value. The particular representation of a valueise in
OpenCL is specific to our code generator; the C deserialiaes d
not necessarily convert to a standard C format. The retumipa
mirror image in which we convert the OpenCL data structura to
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2. Comparison to hand-tuned OpenCL.What is the quality of
the OpenCL code generated by the Lime compiler as compared
to hand-tuned native OpenCL implementations?

3. Computation vs. Communication.How much overhead does
the system introduce to communicate between the host and
device?

Table3 reports the set of benchmarks used in this study. The set
includes three benchmarks from Parbdi] §nd two benchmarks
from JavaGrande (JG).f]; we selected the benchmarks that were
easiest to port to Lime. We expect other benchmarks whictbean

Figure 6. Data transfer between Java and the OpenCL device. This €xpressed using task graphs and map and reduce to benefit in th

example shows a task that takes a float array as input andsetar
int array.

byte array, return from the JNI call, and then deserialipenfthe
byte array back into a heap-resident Lime value.

If not optimized, high communication costs can cancel oyt an
performance gains from exploiting a GPU. Our initial impkamta-
tion was simple and used Lime’s internal runtime type infarm
tion to serialize and deserialize. Unfortunately, the perfance

same way. In addition we include two benchmarks, N-Body and
Mosaic, that we wrote from scratch. Previous sections vesie
N-Body in detail. Mosaic features a map-and-reduce algorito
compare tiles from a reference image to tiles from an imdgary

to find the best-matched tiles using a scoring function.

Some of the benchmarks predominantly exercise floatingtpoi
arithmetic. ALUs in modern processors perform floatingapoi
arithmetic in at least double-precision, whereas GPU AL llting
blocks are single-precision. For GPUs, single-precisiperations
run faster than double-precision ones. Because this papasés
on compilation rather than numerical stability issues, vesent re-

was so poor that more than 90% of the time was spent marshalingSults for both single- and double-precision variants iresashere

data to or from a byte array. Performance was greatly imputdye
writing custom serialization routines for the most commypes—
primitives and (nested) arrays of primitives. During thiiatiza-
tion process of migrating a task to a native device, the nuativill
find a custom serializer based on the data type. Becausefendtde
marshaller is written recursively, we modified it to use aciqlezed
marshaller recursively when available. For instance dfdata type
is a tuple of integer arrays, then although there is no sjieaien
at the tuple level, the lowest level integer arrays (wherstrobthe
data actually is) will still be optimized. Finally, becauisiene ar-
rays can express bounds (e.g., sub-rectangular arraysssible),
the runtime system can sometimes determine the exact sibe of
target byte array up-front.

Marshaling on the C side is similar but more specialized. Be-

precision strongly affects performance.

Table2 lists the hardware platforms evaluated. We measure per-
formance on four platforms. In each case, Lime tasks are idedp
to OpenCL and run natively using the OpenCL runtime, whike th
remaining application code runs in bytecode. The Intel Cosys-
tem runs 64-bit Ubuntu Linux 10.10 with the 2.6.35-28 keriiéle
NVidia cards represent two generations of GPU architestaree-
cent GeForce GTX580 (Fermi) and a 2006 GeForce GTX8800. The
latter is used to compare the Parboil benchmarks since tleey a
specifically hand-optimized for this cardq]. The GeForce archi-
tecture evolved substantially between these generatioisbly,
the Fermi architecture adds caches in addition to the loeahm
ory. The NVidia GPUs use CUDA 4.0.13 with device driver ver-
sion 270.40. The AMD GPU uses driver version 11.9 and AMD

cause our OpenCL backend only handles rectangular arrays ofOPe€nCL SDK 2.5-RC2.

primitives, the data is generally densely packed. The layoust
take alignment and vectorization into consideration, mgkihe
marshaller more specialized though less comprehensivealBe
the serialization is primarily memory-bound, we simply usal-
loc/free rather than implement our own memory manager t@fow
costs.

Our current communication implementation could be further
optimized, since it entails repeated serialization in tame ad-
dress space. However, our current design affords a commorafo
as a starting point for a communication subsystem that stgpo
heterogeneous devices. One might further optimize th@pobby
creating specific communication channels so that the semdkre-
ceiver are aware of the data format the other party desiresgG
even further, one might be able to avoid a low-level memoigyco
by pinning memory pages and managing memory explicitly. How
ever, these changes come at the cost of OS and JVM portability

5. Evaluation

We present an empirical evaluation of the Lime system to answ
three questions:

1. End-to-end Speedup.Can the Lime programmer effectively

5.1 End-to-end Speedup

Figure 7 shows the bottom-line, end-to-end performance results
including all system overheads. The figure represents pedoce
results of the Lime code compiled to OpenCL, running pdytial
bytecode and partially in the native OpenCL runtime for tH&UC
(top) and the GPU (bottom). The figure reports speedup based o
wall-clock execution times, measured after a preliminagymup
phase to ensure JIT optimizations occur. The figure noresliz
speed as compared to Lime code running entirely in bytecode.
The baseline Lime bytecode performance achieves 95-98% of
the performance of the original pure Java implementationdNf
Body, Mosaic and JG-Series. In the worst case, the perfarenah
JG-Crypt is half as fast when running Lime compiled to bytkx,o
as compared to the original Java. This slowdown is an attdac
our methodology in porting from Java, since we only portegl th
dominant computational kernels to Lime. As a result, theaJav
to Lime interoperability introduces some overhead withpess
to array conversion, and further the cost of byte-array
in Lime are more expensive than in Java. However, note tleat th
acceleration gained by compiling the kernels to OpenCL rttwaa
compensates for the slowdown due to this interoperation.
Since the end-to-end measurements include both computatio

exploit a GPU to improve performance? That is, can the system and communication costs, we only show the results for the Gor

deliver high performance, including all communication tsos
and runtime overhead?

the faster NVidia GTX580, and the AMD HD5970. This is because
the overheads are proportionately larger with greaterlet@n.



Table 2. Evaluation platforms. Note, the number of GPU cores repitsgbe number of Streaming Multiprocessors.

Type Model Cores FP units per core Const. mem Local mem L1 caeh L2cache L3cache
CPU Intel Core i7-990X 6 4 single (4 double) 6x64KB 6x256KB MR
GPU NVidia GeForce GTX 8800 16 8 single 64KB 16x16KB
GPU NVidia GeForce GTX 580 16 32 single (16 double)  64KB 16588 16x16KB  768KB
GPU AMD Radeon HD 5970 20 80 single 64KB 20x32KB
Table 3. Benchmarks used in the evaluation.

Name Description Input size Output size Data Type

N-Body N-Body simulation 64KB / 128KB 48KB / 128KB Float / Dble

Mosaic Mosaic image application 600KB 5MB Integer

Parboil-CP Coulombic Potential 62KB 1MB Float

Parboil-MRIQ  Magnetic Resonance Imaging 432KB 256KB Float

Parboil-RPES Rys Polynomial Equation Solver  13MB 4MB Float

JG-Crypt IDEA encryption 3MB 3MB Byte

JG-Series Fourier coefficient analysis 780KB / 1560KB  780KIB60KB  Float/ Double
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Figure 7. End-to-end speedup (includes overhead).

Figure7(a)shows the speedups (higher is better) when running
on 1 or 6 cores. Since the CPU supports hyperthreading, mgnni

431x. The benchmarks which do not use floating-point (JG3Cry
and Mosaic), or which use simple floating-point operatioNs (
Body) see the lowest end-to-end speedups. These benchatsoks
have high communication to computation ratios, as showatgr |
results. The largest performance gains manifest for agidics
using transcendental functions.

The results also show that double-precision computatiothen
GTX580 is approximatelg — 3z slower than single-precision, and
~ 1.5z slower on the HD5970.

Overall, the results demonstrate that the Lime system efsliv
substantial end-to-end speedups as compared to the drigive
programs, for all the benchmarks and platforms considered.

5.2 Comparison to hand-tuned OpenCL

Next, we evaluate the code quality of the generated Open@kg,co
as well as the different memory optimizations describediezar
For this purpose, we wrote and hand-tuned OpenCL versioNs of
Body and Mosaic, and converted three existing Parboil beacks
originally written in CUDA to OpenCL. We made our best effort
to optimize N-Body and Mosaic for the GTX580 GPU. We also
include results for the GTX8800 GPU because the Parboiltienc
marks were optimized specifically for this card by anotheeesch
group [L7].

OpenCL requires the programmer to select the number of
threads to run and how these threads map to cores. Thesg tunin
parameters can have a strong impact on performance. Tootontr
for these variables, we conducted an exhaustive systeoféliiee
exploration of the tuning parameters and use the best gettor
each experiment. For example, the hand-tuned versiongd?ah
boil benchmarks are optimized for the GTX8800, but thosergsst
are not competitive on the GTX580. A system could perforrs thi

on a single core runs two threads, one each for the JVM and auto-tuning automatically ahead of time or at runtime, huths

OpenCL kernel. The 1-core performance is generally the sesne
the baseline, with a 10% degradation in the worst case beczus
high marshaling costs (see Fig@e The gains for Parboil-MRIQ,
Parboil-RPES, and JG-Series result from a faster impleatient
of the transcendental functions in OpenCL compared to Java.

tuning falls outside the scope of this paper.

To evaluate code quality, we measure only time spent in com-
putational kernels on the GPU, and exclude time spent ondbke h
and time spent in explicit communication between host and GP
Figure8 shows the relative performance of computational kernels

The performance scales as the number of cores is increasedfor compiled Lime code as compared to hand-tuned OpenCL. A

with five benchmarks showing a speedupidaf — 5.7x. The four
remaining benchmarks show super-linear speedups.6f-32.5x
using 6-cores. This is attributed to hyper-threading (petimg two
OpenCL threads to run per core) and cache effects.

Figure 7(b) shows the speedups resulting from co-execution

speedup greater than one indicates performance betteh#mah
tuned code. A speedup less than one indicates a slow dowmand a
opportunity for further improvements in the Lime compiler.

For each benchmark, the Figure shows results using the vari-
ous memory optimizations applied by the Lime compiler idahg

between the JVM and the GPU. The speedups vary significantly vectorization. The Figure shows 8 bars per benchmark, septe

depending on the benchmark and platform, ranging from 12x to

ing each of the memory optimizations covered in Sectib@s
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Figure 8. Lime vs. hand-tuned OpenCL kernel-times and effects
of optimizations.

Overall, the results show that with the best optimizationicés,
the Lime compiler delivers competitive performance, attej be-
tween 75% and 140% of the hand-coded performance. Exceed-
ing hand-coded performance indicates cases where the horman
grammer was imperfect — we discuss specific issues below.

The results show that using the global memory generallygiel
the worst performance, even when using vectorization.gmthrse
cases, the slowdown is up 1@x compared to hand-tuned for the
GTX8800, up to 60% for the HD5970, and 20% for the GTX580.

On the other hand, the compiler can often use the local memo-
ries effectively. Note in particular that the compiled caepris-
ingly outperforms the hand-tuned versions for the Mosaitche
mark. After further investigation, we discovered that toenpiled
code is more effective at reducing memory bank conflicts. The
compiler-generated code for Parboil-MRIQ also slightlytpsu-
forms the hand-tuned kernel, when using constant memorg. Th
Parboil-RPES benchmark benefits significantly from the fisexe
ture memory on the GTX8800 because it is equipped with a hard-
ware cache, and this benchmark exhibits good spatial tgcali

The GTX580 architecture differs from the other GPUs by plac-
ing a cache between the device memory and the cores. As a di-
rect consequence, the performance is less sensitive to mepid-

N-Body (Single)
N-Body (Double)
Mosaic

m Kemel time
B OCL-api overhead
O C marshaling

O Java marshaling

Parboil-CP
Parboil-MRIQ
Parboil-RPES

JG-Crypt
JG-Series (Single)
JG-Series (Double)

||ﬁ|||!||

o
N
o

40 60

©
S
i
o
S

% of total execution time

(a) CPU (Core i7)

N-Body (Single)
N-Body (Double)
Mosaic

Parboil-CP
Parboil-MRIQ
Parboil-RPES
JG-Crypt
JG-Series (Single)
JG-Series (Double)

| Kernel time

@ GPU-Host data transfert
O OCL-api overhead

O C marshaling

O Java i

|

W

60

% of total execution time

(b) GPU (GTX580)

Figure 9. Computation and communication costs.

mizations, as shown in Figu&b). Using global memory delivers
performance relatively close to the hand-tuned versiomeher,
optimizations are necessary to recover the last 10-20% rébrpe
mance in some benchmarks.

We conclude that it is possible for a Lime compiler to achieve
performance competitive with typical hand-tuned codeffierplat-
forms and benchmarks considered. The results also derat:str
the sensitivity of performance to the GPU memory architectu
We claim these results further demonstrate the need tohlt t
level of programming abstraction away from low-level GPU de
tails. Clearly, writing a portable, high-performance Ofé&ncode
for multiple devices imposes a substantial burden on a hyman
grammer.

5.3 Communication vs. Computation

The end-to-end speedups shown earlier include all runtivee-o
head, including communication between host and deviceum o
system, offloading the computation involves moving the data
Java to C and also from C back to Java (refer to Fig)rén addi-
tion, there are costs attributed to the OpenCL API, and P@Glest
fer costs to move data from the host to the device.

Figure 9 shows the breakdown of computation (kernel time)
and communication costs (everything else). When running on
multicore, shared memory obviates the need for memoryfees)s
as a rule, computation dominates the execution time (Fig(a}.
JG-Crypt provides an exception to the rule, since its coatjmrt
ratio per byte is particularly low.

In contrast, the communication costs on a GPU are relatively
greater, due to greater computational power. We show thdtses
for the GTX580 in Figur®(b), the computation to communication
ratios are comparable for the other GPUs.

Most of the overhead (30%) comes from data marshaling (both
Java and C). Marshaling objects in Java suffers from sigmific
overheads due to arrays bounds checking and object athocati
Setting up OpenCL data structures is relatively fast (tibyc5%),
except for JIG-RPES (40%). We are investigating the causeiof t
anomaly.

The raw data transfer from host memory to device memory does
not play a major role in communication costs. We expect tleisa
to continue with PCle3.0 and tighter integration of GPU aflC

Overall, the combined overhead due to all communication-ave
ages 40%. Although this overhead is high, the tremendous com



putational power of the GPU still allows impressive encetat
speedups.

We conclude that communication costs, while not yet crigpli
leave much room for improvement. In future work, we plan to-pu
sue various strategies to reduce communication overheeakoid
extraneous copying, the Java marshaling code should matisha
rectly to a format as required for device memory. This would a
proximately halve the marshaling overhead. More genertily
communication costs can be hidden by well-known pipelitéai-
niques that overlap communication and computation; thesk-t
niques lie beyond the scope of this paper.

6. Related Work

Recent years have seen many projects targeting generabgaurp
languages to exploit multicores and GPUs. The closesteclat
work is Sponge {], a compiler which generates CUDA code from
the Streamlt [9) programming language. Udupa et at(] also
target Streamlt for GPUs. This work focuses on the problem of
scheduling the tasks to the GPUs. Similar to our work, Sponge
schedules different tasks onto GPUs and optimizes the mgppi
to the different type of memory. In contrast to Sponge, ostey
generates OpenCL code which can target multicore platf@sns
well as GPUs. Sponge supports only coarse-grained pasailel
whereas Lime includes constructs that support fine-graitegd
parallel as well. Data parallel operations make it easiexjloit
thousands of threads on a GPU. Further, the Streamlt progiragnm
model is much simpler compared to Lime as it does not permit
object allocation or unbounded arrays, requires the tesghigro be
fully resolved at compile time, and does not support obggEnted
programming features. Lime on the other hand does not have an
of these limitations. Further, because Lime is Java-coitlpatit
permits a gentle migration of existing Java code.

6.1 GPU Programming and Optimization

There are many other task-oriented languages that arebkuita
for GPU programming. Cgl’] was among the first languages
to be developed to program GPUs. Then Bro6k |as intro-
duced featuring the use of a streaming programming model. Ac
celerator [8] was later developed as a C# API library that uses
a data-parallel model based on parallel array to program SGPU

code. We demonstrated several techniques whereby the lame ¢
piler exploits high-level information exposed by the tygstem to
realize aggressive parallelization, prove isolation, aptimize the
mapping to the memory hierarchy. It is unclear whether alkvel
approach can in general recover this level of semantic imédion,
due to difficulties inherent to sound whole program statialysis
of object-oriented languages.

6.2 Multicores Programming

Gordon et al. f] developed a compiler that maps the Streamlt
language to multicore architectures. Intel’s array buaiddblock
(ArBB) [14] consists of a virtual machine and a C++ API that
defines new parallel types such as collections. These tiolscare
treated like values and the JIT optimizes these and extnaead
and vector (SIMD) parallelism. Our work differs in that weadt
directly with a streaming computational model, making isiea
to decompose programs for heterogeneous platforms. Irrasint
to ArBB, where the programmer has to deal specifically wittada
transformation between the C data types and the paralleltians
(using the bind function), the programmer simply uses taedzrd
array types provided by Lime. Finally, our system works with
GPUs as well as multicores without changes to the program.

6.3 Runtime for Heterogeneous Platforms

SoCC [L6] is an extension to C that allows the programmer to man-
age distributed memory, express pipeline parallelism aad the
different tasks to resources. EXOCHIZ is an effort from In-

tel that focuses on providing a runtime for integrating de@ors
with general purpose processor. It provides shared menmalgy
namic mapping of tasks to accelerators. The Quilifj fystem is
composed of a C API that is used to write parallel programs and
an adaptable runtime that dynamically maps computatiopsdeo
cessing elements in a CPU+GPU system. Jablin e8gbrpposed

a new runtime management system that frees the programomer fr
explicity managing data movement between the CPU and GPU
on the host side. It determines which data are required by GP
kernel and also copies the data to the GPU memory. The Lime
model intrinsically provides this functionality via thestagraph,
and our compilation methodology leverages the languageusem

Today, general purpose computations on GPUs is dominated bytics and type system to automatically partition the codevbeh

OpenCL P] and CUDA [15]. Some researchers are investigat-
ing automatically translating OpenMP source code to CUDH [
while others apply directives to sequential C code to cdnem
into CUDA programs with the hiCUDA€] framework. Earlier
parts of this paper address the primary differences betweaa

and OpenCL. These advantages are the same compared to CUDA.

Another related new language is the IBM X10 language. It pro-
vides abstractions for programming distributed memoryalbar
computers €.g, clusters) with a globally shared, partitioned ad-
dress space. X10 considers the GPU as a shared-memoryeparall
computer (X10 “place”), where threads (“activities”) comnicate
and synchronize through shared memory. Their wdtkq incor-
porate CUDA abstractions does not describe compiler opéimi
tions to map data structures to the GPU memory hierarchieads
it provides language constructs for the programmer to mattzg
mapping explicitly.

Yang et al. P3] contribute a compiler framework to optimize
GPU code. This compiler takes a simple unoptimized kernel as
input and applies optimizations as discussed fif].[ Similarly,
CUDA-Lite [21] coalesces memory accesses of existing kernels.
A compiler for a high level language (HLL) can apply similgtie
mizations after translating to a low level representatidowever, a
HLL compiler can perform more aggressive transformationexs
ploiting higher-level semantic information embodied ie $ource

host and device, generate the corresponding code, andicaiasl
the overall execution without programmer intervention.

7. Conclusion

This paper reviewed how a compiler for Lime, a high-levelajav
compatible language, can exploit computational resoumes
GPU. Exploiting invariants enforced by the type system,db-
piler and runtime system implement transformations to @xpl
massively parallel GPU devices with non-uniform memoryr-hie
archies. Benefiting from language and compiler co-deshmsys-
tem achieves these goals without ambitious program asalysi
perimental results show that for the cases considered,ygters
delivers impressive speedups as compared to a JVM implement
tion, and generates code quality in the same ballpark as tosed|
code.

Although this paper has focused on GPUs, Lime supports a va-
riety of architectures including specialized multicoresl & PGAs.
The results from this paper indicate that the Lime approantains
promising for GPUs, as part of a larger vision for prograngnin
heterogeneous system. We remain encouraged that thisagagu
based approach may help bring the computational power efdet
geneous architectures to mainstream programmers.
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