
Compiling a High-Level Language for GPUs
(via Language Support for Architectures and Compilers)

Christophe Dubach1,2 Perry Cheng2 Rodric Rabbah2 David F. Bacon2 Stephen J. Fink2

1University of Edinburgh 2IBM Research
christophe.dubach@ed.ac.uk {perry,rabbah,bacon,sjfink}@us.ibm.com

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features

General Terms Design, Languages, Performance

Keywords Heterogeneous, GPU, OpenCL, Java, Streaming, Map
Reduce

Abstract
Languages such as OpenCL and CUDA offer a standard interface
for general-purpose programming of GPUs. However, with these
languages, programmers must explicitly manage numerous low-
level details involving communication and synchronization. This
burden makes programming GPUs difficult and error-prone, ren-
dering these powerful devices inaccessible to most programmers.

We desire a higher-level programming model that makes GPUs
more accessible while also effectively exploiting their computa-
tional power. This paper presents features of Lime, a new Java-
compatible language targeting heterogeneous systems, that allow
an optimizing compiler to generate high quality GPU code. The
key insight is that the language type system enforces isolation and
immutability invariants that allow the compiler to optimize for a
GPU without heroic compiler analysis.

We evaluate the performance of the resulting code, comparing
against an implementation on the Java Virtual Machine (withJIT)
and against hand-tuned native OpenCL code. The compiler attains
GPU speedups relative to JVM/JIT between 12x and 431x, while
achieving between 75% and 140% of the performance of native
OpenCL code.

1. Introduction
In response to increasing challenges with frequency scaling, hard-
ware designers have turned to architectures with increasing degrees
of explicit parallelism. Today’s hardware offerings rangefrom gen-
eral purpose chips with a few cores (e.g., Intel Core i7), to spe-
cialized distributed-memory multiple-SIMD platforms (e.g., IBM
Cell), to graphics processors (GPUs) which support large-scale data
parallel computations. Additionally, several efforts underway at-
tempt to exploit reconfigurable hardware (FPGAs), with massively
bit-parallel execution, for general-purpose computation.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PLDI’12, June 11–16, Beijing, China.
Copyright c© 2012 ACM 978-1-4503-1205-9/12/04. . . $10.00

OpenCL [9] and CUDA [15] have emerged as mainstream lan-
guages for programming GPUs and multicore systems. These pop-
ular languages provide APIs that expose low-level details of the de-
vice architecture. The programmer must manually tune low-level
code for a specific device in order to fully exploit its processing
resources. For example, a sub-optimal mapping of data to a GPU’s
non-uniform memory hierarchy may degrade performance by a fac-
tor of ten or more.

Experience shows that programming in a high-level language
is more productive, portable, and less error-prone. Ideally, a pro-
grammer should express a program using high-level constructs that
are architecture independent, and have the compiler automatically
generate device-specific code that is competitive with low-level
hand-written code. Indeed, programmers have enjoyed thesebene-
fits with general purpose programming languages on general pur-
pose CPUs for several decades. In this paper, we address challenges
in delivering similar benefits for programs running with GPUs.

This paper presents details of a GPU programming model in a
new programming language called Lime. As presented earlier[2],
Lime is a Java-compatible object-oriented language which targets
heterogeneous systems with general purpose processors, FPGAs,
and GPUs. The Lime methodology allows a programmer to gently
refactor a suitable Java program into a pattern amenable forhetero-
geneous parallel devices. We present the design and evaluation of
the Lime compiler and runtime subsystems specific to GPUs.

The Lime language exposes parallelism and computation ex-
plicitly with high level abstractions [2]. Notably, the type system
for these abstractions enforces key invariants regarding isolation
and immutability. The optimizing compiler leverages theseinvari-
ants to generate efficient parallel code for multicores and GPUs,
without relying on deep program analysis.

This paper shows how a Lime programmer can exploit a GPU
without writing complex low-level code required with mainstream
approaches (OpenCL or CUDA). The compiler and runtime system
coordinate to automatically orchestrate communication and com-
putation, map data to the GPU memory hierarchy, and tune the ker-
nel code to deliver robust end-to-end performance.

The contributions of this paper are:

• A design and implementation of an optimizing compiler to gen-
erate high quality GPU code from high-level language abstrac-
tions including isolated parallel tasks, communication opera-
tors, value types to express immutable data structures, andfine-
grained map-and-reduce operations (Sections3-4).

• A set of automatic optimizations for GPU architectures that
may be applied without sophisticated alias analysis or datade-
pendence analysis. These include memory optimizations that
improve locality, reduce bank conflicts, and permit vectoriza-
tion (Section4.2).

• A detailed empirical performance evaluation comparing the
generated code to hand-tuned OpenCL programs. The perfor-
mance of the generated code lies between 75% to 140% of
hand-written and tuned native OpenCL code (Section5).

The performance results show that across a suite of 9 bench-
marks, our compiler delivers a speedup ranging from12x − 430x

for the NVidia GeForce GTX580 architecture (Fermi) and12x −
416x for the AMD Radeon HD5970. Further, using the OpenCL
multicore runtime, we report a performance gain between4.8x −
32.5x for the Intel Core i7 architecture.

2. OpenCL Background
OpenCL and CUDA represent thede factostandards general pur-
pose programming on GPUs. OpenCL, in particular, was designed
to provide an industry-standard API for systems with heteroge-
neous devices.

Although OpenCL provides a portable API, the API presents a
low-level interface to the underlying hardware. The OpenCLpro-
grammer must explicitly manage many low-level details to map
data to appropriate address spaces, enable vectorization,schedule
data transfers between the host and device, and manage synchro-
nization among queues connecting the host and devices.

In this section, we briefly review the structure of a small
OpenCL N-Body application. This example motivates the needfor
high-level abstractions, and also introduces tuning issues germane
to GPU performance.

Figure 1 illustrates an N-Body simulation expressed using a
common OpenCL programming pattern. Lines 1-16 embody a data-
parallel kernel that represents an2 force calculation. The kernel
may run on a GPU or a multicore CPU.

Address Space Qualifiers The kernel declaration (line 1) in-
cludes address space qualifiers that map the respective datato the
GPU memory hierarchy. OpenCL presents a non-uniform mem-
ory hierarchy with five types of memories:private, local,
global, constant andimage. Theprivate memory rep-
resents a fast, small memory private to each computational thread.
Thelocal memory represents a shared memory, used to coher-
ently share data between a small group of related threads called a
work group. Theglobalmemory provides a shared address space
for all threads on a device, with no implicit coherency guarantees
across work groups. Theconstant andimage memories rep-
resent specialized read-only storage. The former, typically a small
space, usually holds constants referenced by a computational ker-
nel. Graphics applications typically store texture objects for ren-
dering a scene in the image memory. We inspected a number of
OpenCL benchmarks and found that the kernels often use private,
const, and global qualifiers in the kernel signatures.

Vectorization The kernel code features the use of the OpenCL
float4 data type (lines 5, 6, 12). The code represents the forces
as an array of tuple elements each consisting of four floating-point
values, even though each force value has only three components.
This decision allows the device to vectorize the memory accesses.
OpenCL 1.0 only supports vectors of size 2, 4, 8, and 16.

Kernel Tuning The force calculation illustrates a typical data
parallel pattern where multiple instances (work items) of the same
kernel operate on disjoint data sets. Lines 2-4 show some man-
ual calculations to determine the working set for a running work
item. The working set depends on the number of concurrent kernel
instances, a user-determined property that is typically determined
through trial and error to suit the computational power of the target
device. For N-Body, each working set represents the subset of par-
ticles for which the work item computes forces. The loop at lines 8-
15 iterates through the kernel working set and computes the forces

for the corresponding particles. Lines 9, 10, and 15 access local
memory and perform synchronizations between kernel instances to
ensure correct access to local memory.

Orchestrating Execution The second half of Figure1 shows a
fraction of the host code necessary to orchestrate the execution of
the kernel code. A typical execution pattern applies the following
steps: (1) discover and initialize the device and compile the kernel
code, (2) create a command queue, (3) create the kernel, (4) create
read and write buffers, (5) enqueue commands to transfer theread
buffer, invoke kernel, and transfer the write buffer. The programmer
is responsible for scheduling the data transfers and overlapping
these with kernel computation. This process uses at least a dozen
OpenCL procedures based on our inspection of several hand-tuned
OpenCL programs. We omitted an additional 182 lines of code
which deal with step (1) alone.

3. Lime Programming Language
The previous example shows that OpenCL allows fine-grain control
of the host and kernel code, but the low-level details imposea sig-
nificant burden on the programmer. Similar points hold for CUDA.
In contrast, Lime [2] provides a high-level object-oriented language
offering task, data, and pipeline parallelism. It extends Java with
several constructs designed for programming heterogeneous archi-
tectures with GPU and FPGA accelerators. Here, we briefly review
the Lime constructs which the compiler relies on to efficiently of-
fload computation to a GPU.

Figure2 represents a Lime implementation of the N-Body ex-
ample. Since the language is Java-compatible and interoperable, it
provides a gentle migration path from Java. The figure illustrates
this process with white and black squares: white squares prefix
original Java code and black ones prefix new Lime code.

Line 3 sets up the main computation, as embodied in atask
graph data structure. A task graph is a directed graph of compu-
tations, where values flow between tasks over edges in the graph.
Thenbody task graph from line 3 is illustrated in the figure below.

Particle

Generator

Source

Force

Computation

Filter

Force

Accumulator

Sink
float[[][4]] float[[][3]]

positions forces

A particle generator task emits an initial set of particles,stored
as an array of 4-element tuples: three elements for the position and
one for the mass. A force computation task computes the force
acting on each particle using a simplen2 algorithm. This task
produces an array of 3-element tuples representing the forces acting
on each particle. The force accumulator task consumes theseforces,
and computes a new position for each particle.

The task graph just described represents a single simulation
step. Typically the algorithm runs for a large number of simulation
steps.

Two noteworthy Lime operators appear on line 3. First is the
task operator, which creates a computational unit equivalent ofan
OpenCL kernel. Second is the=> (connect) operator, which rep-
resents the flow of data between tasks. Thefinish on line 4 initi-
ates the computation and forces completion. This is necessary since
Lime decouples the creation of task graphs from their execution.

3.1 Task and Connect

The task operator is used to create tasks (line 3). A task repeat-
edly applies aworkermethod as long as input data is presented to
the task via an input port, and enqueues its output (the result of
the method application) to an output stream. The operator binds
the method specified after the dot to the task worker method. The

1 kerne l vo id c a l c F o r c e K e r n e l (g loba l f l o a t 4 ∗ p o s i t i o n s , g loba l f l o a t 4∗ f o r c e s , l o c a l f l o a t 4 ∗ l o c a l P o s) {
2 i n t g i = g e t g l o b a l i d (0) ; i n t t i = g e t l o c a l i d (0) ;
3 i n t gs = g e t g l o b a l s i z e (0) ; i n t l s = g e t l o c a l s i z e (0) ;
4 i n t b l k s = gs / l s ;
5 f l o a t 4 p i = p o s i t i o n s [g i] ;
6 f l o a t 4 f o r c e = {0 , 0 , 0 , 0} ;
7 i n t base Index = 0 ;
8 f o r (i n t b =0; b<b l k s ; b++) {
9 l o c a l P o s [t i] = p o s i t i o n s [base Index + t i] ;

10 b a r r i e r (CLKLOCAL MEM FENCE) ;
11 f o r (i n t j =0 ; j<l s ; j ++) {
12 f l o a t 4 p j = l o c a l P o s [j] ;
13 . . . upda te f o r c e based on p i and p j . . .}
14 base Index += l s ;
15 b a r r i e r (CLKLOCAL MEM FENCE) ; }
16 f o r c e s [g i] = acc ; }
17
18 vo id r unKerne l (i n t N /∗num p a r t i c l e s∗ / , c l f l o a t 4∗ p o s i t i o n s /∗ i n i t i a l s t a t e∗ /) {
19 c l f l o a t 4∗ f o r c e s = c a l l o c (N, s i z e o f (c lf l o a t 4) ;
20 / / c r e a t e t h e i n p u t and o u t p u t b u f f e r s us ing h e l p e r f u n c t i o ns
21 cl mem i n p u t = c l C r e a t e B u f f e r (con tex t , CLMEM READ ONLY, s i z e o f (c l f l o a t 4)∗N, NULL, NULL) ;
22 cl mem o u t p u t = c l C r e a t e B u f f e r (con tex t , CLMEM WRITE ONLY, s i z e o f (c l f l o a t 4)∗N, NULL, NULL) ;
23 / / lock-step iteration
24 whi le (t rue) {
25 / / send t h e i n p u t data to t h e d e v i c e (non−b l o c k i n g)
26 c lE nqueueW r i teBu f fe r (queue , inpu t , CLFALSE , 0 , s i z e o f (c l f l o a t 4) ∗ N, p o s i t i o n s , 0 , NULL, NULL) ;
27 / / pass t h e arguments to t h e k e r n e l
28 c lSe tKerne l A rg (ca lcFo rceKe r ne l , 0 , s i z e o f (clmem) , &i n p u t) ;
29 c lSe tKerne l A rg (ca lcFo rceKe r ne l , 1 , s i z e o f (clmem) , &o u t p u t) ;
30 c lSe tKerne l A rg (ca lcFo rceKe r ne l , 2 , maxWorkGroupSize∗ s i z e o f (c l f l o a t 4) , NULL) ;
31 / / s t a r t t h e one−d imens iona l k e r n e l w i th N t h r e a d s (force computation)
32 clEnqueueNDRangeKernel (queue , ca lcFo rceKe r ne l , 1 , NULL, &N, NULL, 0 , NULL, NULL) ;
33 / / read back t h e data from t h e d e v i c e (b l o c k i n g)
34 c lEnqueueReadBu f fe r (queue , ou tpu t , CLTRUE , 0 , s i z e o f (c l f l o a t 4) ∗ N, f o r c e s , 0 , NULL, NULL) ;
35 / / update s t a t e based on t h e a c c e l e r a t i o n computed (force accumulator)
36 u p d a t e p o s i t i o n (p o s i t i o n s , f o r c e s) ;} }

Figure 1. Parts of the OpenCL kerneland host code for N-Body

worker method may be static (NBody.computeForces) or an in-
stance method (e.g., NBody().particleGen). In the latter, the
task operator creates an instance of the typeNBody and binds its
instance method to the worker. The distinction between the two
cases is that static worker methods are essentially pure functions
and the instance methods may be stateful. Methods in lime aretask-
agnostic, meaning they may be invoked as conventional static or in-
stance methods and only become worker methods by applying the
task operator.

The language runtime repeatedly invokes the worker method as
long as data items are available on the input port. A special case
is the source task (lines 6-8) that emits data until interrupted by an
Underflow Exception that can be thrown by any task to notify
that the computation is finished.

Tasks in Lime are eitherisolatedor non-isolated. An isolated
task, also known as afilter, has its own address space and may not
access mutable global state (e.g., non-final statics fields in Java).
Lime achieves isolation using a combination oflocal methods, and
valuetypes.

The worker method of an isolated task must be declaredlocal
(lines 10 and 13). A local method may only call other local meth-
ods, and may not access global mutable fields. The worker methods
input immutable (value types) arguments (if any) and must return
values (if any). This ensures that data exchanged between tasks
does not mutate in flight, and provides the compiler and runtime
greater opportunities for optimizing communication between tasks
without imposing undue burden on the compiler to infer invariants
involving aliasing.

A value type represents a deeply immutable object type (e.g.,
data structure or array) declared using thevaluemodifier on a type.
A value array is indicated using double brackets, so for example
float[[][4]] is a two dimensional array of floats, where the
outer dimension is unbounded, the inner dimension is bounded to
size four, and the entire array is immutable. Value arrays must be
initialized at construction time (lines 8 and 17).

The task operator encapsulates computation whereas the=>
(connect) operator encapsulates communication between tasks
(line 3). This operator is used to connect two tasks when the output
type of the upstream task (left of the operator) matches the input
type of the downstream task (right of the operator). Lime exposes
the communication between tasks explicitly using the connect op-
erator so that the compiler and runtime can optimize the I/O and
synchronization between tasks automatically and without program-
mer intervention, in contrast to OpenCL (see Figure1 lines 20-35).

3.2 Map and Reduce

Lime also offers amap and reducemodel for fine-grained data
parallelism. This model suits the thread-level parallelism available
in GPUs, and also short-vector SIMD instructions availablein
many general purpose ISAs.

A map operation applies a (logical) function to each element
of some aggregate data structure, producing another aggregate data
structure. The reduce operation combines values from an aggregate
data structure using a combinator function. These abstractions are
well-known in traditional functional languages.

1 � pub l i c c l a s s NBody {
2 � pub l i c s t a t i c vo id s i m u l a t e () {
3 � Task nbody = task NBody () . p a r t i c l e G e n => task NBody . computeForces => task NBody () . f o r ceAccum u la to r ;
4 � nbody . f i n i s h () ; }
5
6 � p r i v a t e f l o a t [[] [4]] p a r t i c l e G e n () {
7 � f l o a t [] [4] t h e P a r t i c l e s = . . . ; / / i n i t i a l s t a t e o f t h e p a r t i c l e s
8 � re tu rn new f l o a t [[] [4]] (t h e P a r t i c l e s) ; }
9

10 � p r i v a t e s t a t i c l o c a l f l o a t [[] [3]] computeForces (f l o a t [[] [4]] p a r t i c l e s) {
11 � re tu rn NBody @ c o m p u t e P a r t i c l e F o r c e s (p a r t i c l e s , p a r t i c l e s) ;}
12
13 � p r i v a t e s t a t i c l o c a l f l o a t [[3]] c o m p u t e P a r t i c l e F o r c e s (f l o a t [[4]] p , f l o a t [[] [4]] p a r t i c l e s) {
14 � f l o a t f x = 0 , fy = 0 , f z = 0 ;
15 � f o r (i n t j =0 ; j<p a r t i c l e s . l e n g t h ; j ++){
16 � . . . } / / s c a l a r compu ta t ion to update fx , fy , and f z based on p and p ar t i c l e s [j]
17 � re tu rn new f l o a t [[]] { fx , fy , f z } ; }
18
19 � p r i v a t e vo id f o r ceAccum u la to r (f l o a t [[] [3]] p a r t i c l e s) {
20 � . . . } / / update t h e s t a t e o f t h e p a r t i c l e s f o r n e x t i t e r a t i o n
21 � }

Figure 2. Lime version of force calculation of NBody. The code marked with � is Java.

The map operator is represented by the@ token; see line 11
of Figure2. It applies the functioncomputeParticleForces to
each element of theparticles array, and returns the resultant
array. Each application of the map function computes the force
interactions between a particlep and all otherparticles (lines
13-17). The example omits the core force computation since it is
similar in all implementations (OpenCL, Java and Lime).

A reduction in Lime is expressed using an operator or method
followed by! to indicate the operator or method should be treated
as a combinator. The language permits instance or static methods as
well as certain arithmetic operators to serve as reduction operators
as long as they apply to two arguments of the same type and
produce a result of that type.

4. Compilation Methodology
The explicit separation of computation and communication in Lime
via the task and connect operators relieves the programmer from
the burden of orchestrating the execution of tasks between host
and device. This responsibility now falls onto the Lime compiler
and runtime. Similarly, because Lime programs do not force the
programmer to make an explicit distinction between the kernel
and host codes, the compiler must determine a partitioning of the
program between host (CPU) and device (GPU).

Our compilation methodology is illustrated in Figure3. The
compiler partitions the source code into host and device code, and
compiles each partition to native code. The Lime compiler gener-
ates a mix of Java bytecodes and OpenCL. The bytecodes run in
an unmodified Java virtual machine. The generated OpenCL code
encompasses both the compiler-tuned kernels and the coordina-
tion and scheduling code for managing the buffers, scheduling data
transfers and executing the kernels.

4.1 Kernel Identification

In the N-Body example, the main computation workload lies in
the n

2 force calculation. Thus, a natural partition of the N-Body
example runs theparticleGen andforceAccumulator tasks
on the host and thecomputeForces task on the GPU.

To allow offloading, the compiler requires thecomputeForces
task to be anisolated task, also known as a filter. The language
semantics for a filter guarantee that it does not perform globally
side-effecting operations because it is isolated (i.e., local) and its

Lime codepublic class NBody {

 public Task simulate() {

 }

}

JVM Host
(glue)

Device
(Multicore,GPU)

OpenCLJavaByteCode C

OpenCL API calls
KernelApplication

JNI interface

Force AccuParticle Gen Force Computation

Figure 3. Starting from a Lime program, our compiler produces
the application code that runs in the JVM, the C code that handle
data exchange and the calls to the OpenCL API and finally the
OpenCL kernel code.

arguments are immutable (i.e., values). As a result, our compiler
recognizes filter task creations, and treats each filter as the unit
of computation to offload. Note that the system may freely move
filters between device and host without concern for data-races and
non-determinism.

Within each filter, the compiler scans for map and reduce op-
erations to identify opportunities for kernel-level data-parallelism.
The compiler detects data-parallel maps and generates correspond-
ing parallel implementations without deep dependence analysis. In-
stead, it checks for the following invariants on map expressions: (a)
the map function is static and local, and (b) the map functionargu-
ments are value types (includes primitive types). The type system
guarantees that a static local method does not access globally muta-
ble data, and because the value arguments are immutable, themap
function is pure and side-effect free. In a similar way, the compiler
may infer a parallel reduction.

Following kernel identification, the compiler performs kernel
optimization (Section4.2) with an emphasis on the GPU memory
hierarchy. Lastly, the compiler generates appropriate glue code
to orchestrate both the data transfers and the kernel invocations
(Section4.3). The glue code is implied by the connect operator
which identifies the communication required between the host and
device.

Table 1 summarizes the differences between programming in
OpenCL and compiling Lime code for GPUs. The salient observa-
tion is that Lime provides a much higher level of abstractionand
does not expose low-level architectural details.

Table 1. GPU programming in OpenCL vs. Lime.

OpenCL Lime

offload unit kernel filter
communication API => operator
data parallelism manual map & reduce

memory qualifiers manual compiler
synchronization manual compiler
scheduling manual compiler

4.2 Kernel Optimizations

The mechanics of optimizing and generating an OpenCL kernel
from a Lime filter center on the exploitation of map and reduceop-
erations for thread and SIMD parallelism, and applying a setof lo-
cality enhancing optimizations that take advantage of the OpenCL
memory organization when applicable (e.g., a GPU).

Figure4 shows the code generated by the Lime compiler for the
Lime code snippet shown earlier. The compiler takes advantages of
the semantic information available at the source level to determine
that the map operation (Figure2 line 11) is data-parallel, and
it exploits the immutable and bounded-size nature of individual
particles to perform memory optimizations and vectorization. The
generated kernel code will adapt to any number of threads started
by the Lime runtime or as requested by the user. In Figure4 line
9, the kernel loop iterates over the array of particles with each
thread assigned an elementi at line 10. This generated code is
more robust than the hand-written OpenCL kernels we inspected
because it executes correctly independent of the number of threads.

In addition to the obvious kernel input and output arguments,
the compiler also generates a structure to contain runtime booking
information and data values needed by the kernel code (see Fig-
ure4(b)). Examples of the latter include array length values which
is used explicitly at line 15 and implicitly at line 11. This record is
passed to the kernel as a parameter on line 2.

4.2.1 Memory Optimizations

Once the kernel is identified, a key optimization maps non-scalar
(e.g., array) data to the different memory structures in the device.
This section describes how the compiler optimizes memory ac-
cesses for the OpenCL memory hierarchy (common to GPUs). The
compiler permits for any of the optimizations to be enabled and
disabled so that it is possible to perform an automated exploration
of the memory mapping and layout.

The compiler drives memory optimizations using a relatively
simplepattern matchingalgorithm. It scans the intermediate repre-
sentation for common memory access idioms and applies the corre-
sponding transformation when a pattern is encountered. In contrast
to much previous work, our memory optimizer does not require
sophisticated alias analysis or data dependence analysis.Instead,
our compiler exploits the strong type system in Lime to infernec-
essary invariants without deep analysis. For example, immutable
value types in the source language provide the key invariants that
memory locations are read only and cannot be reassigned.

We claim that enabling a relatively simple memory optimizer
is a strength of our approach, as compared to more unconstrained
input languages that necessitate heroic program analysis.

Figure5 illustrates some of the idioms recognized by the Lime
compiler. In the figure and the text that follows, aparallel loop

1 kerne l vo id computeForces (
2 cons tan t r u n t i m e i n f o t ∗ r i ,
3 g loba l f l o a t 4 ∗ p a r t i c l e s ,
4 g loba l f l o a t ∗ r e s u l t)
5 {
6 i n t g i = g e t g l o b a l i d (0) ;
7 i n t gs = g e t g l o b a l s i z e (0) ;
8 i n t l e n = r i−>p a r t i c l e s l e n g t h ;
9 f o r (i n t i t =0 ; i t <l e n ; i t +=gs) {

10 i n t i = i t +gs ;
11 i f (i<l e n) {
12 f l o a t f x =0;
13 f l o a t f y =0;
14 f l o a t f z =0;
15 f l o a t 4 p i = p a r t i c l e s [g i] ;
16 f o r (i n t j =0 ; j<l e n ; j ++) {
17 f l o a t 4 p j = p a r t i c l e s [j] ;
18 . . . com pu ta t ion to upda te fx , fy
19 . . . and fz based on p i and p j
20 }
21 r e s u l t [g i∗3+0] = fx ;
22 r e s u l t [g i∗3+1] = fy ;
23 r e s u l t [g i∗3+2] = f z ;
24 } } }

(a) Generated OpenCL code

1 t y p e d e f s t r u c t {
2 i n t p a r t i c l e s l e n g t h ;
3 } r u n t i m e i n f o t ;

(b) Generated structure for runtime information

Figure 4. Lime to OpenCL code generation

corresponds to a data-parallel map operator that the compiler has
already inferred.

Global Memory Mapping data to the global memory is the de-
fault behavior of the optimizer when no other mapping is possible.

Private Memory The compiler attempts to map all the arrays that
are not shared across threads to the fast private memory. Dueto
the extremely small capacity of this type of memory, the compiler
only considers arrays whose size can be determined statically and
does not exceed a certain threshold value. An array is not shared
when it is allocated within the inner most parallel loop since each
thread will execute its own instance of the loop body. Figure5(a-b)
show a simple example where an array variablearr is mapped to
the private memory in OpenCL.

Local Memory In most OpenCL application, the local memory is
used as a type of scratch pad for shared data. This memory is the
second fastest type of memory. It is typically used when the data is
reused among several threads running on the same core. A typical
example where this happens is in the case of a double nested loop
as shown in Figures5(c-d). The parallel inner most loop reuses the
valuev. Since this inner loop is parallelized into many threads, itis
possible to store parts of thearg array in the local memory and thus
increase data reuse. The compiler performs a code transformation
similar to loop tiling. When the size of the local memory cannot be
determined statically our system dynamically allocates memory at
runtime depending on the number of parallel threads.

The local memory is typically organized in different banks,with
consecutive words assigned to different banks. Once the optimizer
has decided to map an array into the local memory it determines
whether padding is necessary in order to avoid bank conflicts. This
is a common optimization although often done manually [17] in

1 f l o a t [] doWork (. . .) {
2 P a r a l l e l loop {
3 T [] a r r = new T [1 0] ;
4 } . . .

(a) Private memory candidate (allocation within parallel region)

1 kerne l doWork (. . .) {
2 . . .
3 p r i v a t e i n t a r r [1 0] ;
4 . . .

(b) OpenCL using private array allocation

1 f l o a t [] doWork (f l o a t [] a rg) {
2 . . .
3 P a r a l l e l loop (i) {
4 f l o a t v = arg [i] ;
5 P a r a l l e l loop {
6 v ;
7 } } . . .

(c) Local memory candidate (nested loop with data reuse)

1 kerne l doWork (g loba l f l o a t ∗ arg ,
2 l o c a l f l o a t ∗ local mem) {
3 . . .
4 i f (l o c a l i d (1) == 0)
5 local mem [l o c a l i d (0)] = a rg [g l o b a l i d (0)] ;
6 f l o a t v = local mem [l o c a l i d (0)] ;
7 . . .

(d) OpenCL using local memory (synchronization omitted)

1 f l o a t [] doWork (f l o a t [] [4] a rg) {
2 . . .
3 P a r a l l e l loop {
4 f l o a t [4] v = arg [x] ;
5 v [2] ;
6 } . . .

(e) Image memory candidate (accesses to v static)

1 kerne l doWork (r e a d o n l y im age 2d f a rg) {
2 . . .
3 . . .
4 f l o a t 4 v = r e a d i m a g e f (arg , {x , 0}) ;
5 v . s2 ;
6 . . .

(f) OpenCL using image memory

1 f l o a t [] doWork (f l o a t [] a rg) { . . .
2 P a r a l l e l loop {
3 arg [x] ;
4 } . . .

(g) Constant memory candidate (x invariant in the loop)

1 kerne l doWork (cons tan t f l o a t∗ arg) {
2 . . .
3 a rg [x] ;
4 . . .

(h) OpenCL using constant memory

Figure 5. Example of code patterns that our optimizer is looking for and the corresponding generated OpenCL in pseudo-code. Readers
familiar with writing OpenCL code may recognize here some typical code pattern often encountered in OpenCL kernels.

OpenCL or CUDA kernels. In Lime, it is relatively easier to auto-
matically apply this optimization using the type information avail-
able and the fact that the code is virtually free from pointers as
opposed to lower-level pointer-rich programs. The Lime compiler
detects the size of the array elements and adds padding accordingly.
This ensures that each consecutive thread reads data from a differ-
ent bank, thus increasing memory throughput.

Image Memory When this optimization is enabled, the com-
piler tries to map read-only arrays into the image memory. Since
OpenCL 1.0 only supports access to the image memory by groups
of 4 words, the compiler limits the scope to arrays whose last
dimension is either 2 or 4. The compiler adopts a packed represen-
tation in the case where the last array dimension is of length2. In
addition, it prevents the optimizer from assigning to imagememory
arrays whose last dimensions elements are not accessed contem-
poraneously, in order to ensure good performance. Figure5(e-f)
shows a typical candidate (arg) for this optimization. The Lime ar-
ray access expressions are converted into the appropriate OpenCL
image access functions. Since the OpenCL does not support 1Dim-
ages, the compiler maps the indexx to the 2D coordinate(x,0) 1.

Constant Memory The constant memory is reserved for values
that arebroadcastto all the threads. That is, all the threads read the
same address. In this case, the compiler identifies array accesses
within a parallel loop that are accessed using a loop-invariant index
as shown in Figure5(g-h).

1 The compiler implementation is more complex since the compiler may
perform modulo operations when the index is greater than themaximum
width supported by the image format.

4.2.2 Vectorization

Following the memory optimizations, the compiler vectorizes
memory accesses for multidimensional arrays. An innermostarray
dimension is a vectorization candidate if it is of length 2, 4, 8 or 16.
This optimization is only applied for arrays that are read-only and
whose access to the last dimension is known statically. Vectorizing
the memory accesses usually reduces the total number of memory
accesses and thus improves bandwidth utilization and performance.
This optimization is applied for data mapped to the global, local or
constant memory (the image memory optimization is intrinsically
already vectorized). Once again, the benefit of using a high-level
language that allows for pointer-free programming makes this type
of analysis simple.

4.3 Orchestrating Communication

Although the data and code isolation of Lime tasks makes compu-
tation offloading possible, the runtime system must still efficiently
transfer data to and from the main system memory to the device.
Because Lime targets devices that include GPUs and FPGAs, the
runtime implementation adopts a universal “wire” format that relies
only on sending a byte stream as shown on Figure6.

The communication steps between the host JVM and the na-
tive device entail (1) serializing a Lime value to a byte array, (2)
crossing the JNI boundary, and (3) converting this byte array into
a C-style value. The particular representation of a value for use in
OpenCL is specific to our code generator; the C deserializer does
not necessarily convert to a standard C format. The return path is a
mirror image in which we convert the OpenCL data structure toa

int[]

JV
M

H
o
s
t

G
P

U
 /

M
u

lt
ic

o
r
e

JNI

OpenCL

API

C

unmarshaling

Java

unmarshaling

int[]

int[]

OpenCL

API

C

marshaling

Java

marshaling

JNI

Lime Task

Figure 6. Data transfer between Java and the OpenCL device. This
example shows a task that takes a float array as input and returns an
int array.

byte array, return from the JNI call, and then deserialize from the
byte array back into a heap-resident Lime value.

If not optimized, high communication costs can cancel out any
performance gains from exploiting a GPU. Our initial implementa-
tion was simple and used Lime’s internal runtime type informa-
tion to serialize and deserialize. Unfortunately, the performance
was so poor that more than 90% of the time was spent marshaling
data to or from a byte array. Performance was greatly improved by
writing custom serialization routines for the most common types–
primitives and (nested) arrays of primitives. During the initializa-
tion process of migrating a task to a native device, the runtime will
find a custom serializer based on the data type. Because the default
marshaller is written recursively, we modified it to use a specialized
marshaller recursively when available. For instance, if the data type
is a tuple of integer arrays, then although there is no specialization
at the tuple level, the lowest level integer arrays (where most of the
data actually is) will still be optimized. Finally, becauseLime ar-
rays can express bounds (e.g., sub-rectangular arrays are possible),
the runtime system can sometimes determine the exact size ofthe
target byte array up-front.

Marshaling on the C side is similar but more specialized. Be-
cause our OpenCL backend only handles rectangular arrays of
primitives, the data is generally densely packed. The layout must
take alignment and vectorization into consideration, making the
marshaller more specialized though less comprehensive. Because
the serialization is primarily memory-bound, we simply usemal-
loc/free rather than implement our own memory manager to lower
costs.

Our current communication implementation could be further
optimized, since it entails repeated serialization in the same ad-
dress space. However, our current design affords a common format
as a starting point for a communication subsystem that supports
heterogeneous devices. One might further optimize the protocol by
creating specific communication channels so that the senderand re-
ceiver are aware of the data format the other party desires. Going
even further, one might be able to avoid a low-level memory copy
by pinning memory pages and managing memory explicitly. How-
ever, these changes come at the cost of OS and JVM portability.

5. Evaluation
We present an empirical evaluation of the Lime system to answer
three questions:

1. End-to-end Speedup.Can the Lime programmer effectively
exploit a GPU to improve performance? That is, can the system
deliver high performance, including all communication costs
and runtime overhead?

2. Comparison to hand-tuned OpenCL.What is the quality of
the OpenCL code generated by the Lime compiler as compared
to hand-tuned native OpenCL implementations?

3. Computation vs. Communication.How much overhead does
the system introduce to communicate between the host and
device?

Table3 reports the set of benchmarks used in this study. The set
includes three benchmarks from Parboil [1] and two benchmarks
from JavaGrande (JG) [13]; we selected the benchmarks that were
easiest to port to Lime. We expect other benchmarks which canbe
expressed using task graphs and map and reduce to benefit in the
same way. In addition we include two benchmarks, N-Body and
Mosaic, that we wrote from scratch. Previous sections reviewed
N-Body in detail. Mosaic features a map-and-reduce algorithm to
compare tiles from a reference image to tiles from an image library
to find the best-matched tiles using a scoring function.

Some of the benchmarks predominantly exercise floating-point
arithmetic. ALUs in modern processors perform floating-point
arithmetic in at least double-precision, whereas GPU ALU building
blocks are single-precision. For GPUs, single-precision operations
run faster than double-precision ones. Because this paper focuses
on compilation rather than numerical stability issues, we present re-
sults for both single- and double-precision variants in cases where
precision strongly affects performance.

Table2 lists the hardware platforms evaluated. We measure per-
formance on four platforms. In each case, Lime tasks are compiled
to OpenCL and run natively using the OpenCL runtime, while the
remaining application code runs in bytecode. The Intel Corei7 sys-
tem runs 64-bit Ubuntu Linux 10.10 with the 2.6.35-28 kernel. The
NVidia cards represent two generations of GPU architectures: a re-
cent GeForce GTX580 (Fermi) and a 2006 GeForce GTX8800. The
latter is used to compare the Parboil benchmarks since they are
specifically hand-optimized for this card [17]. The GeForce archi-
tecture evolved substantially between these generations.Notably,
the Fermi architecture adds caches in addition to the local mem-
ory. The NVidia GPUs use CUDA 4.0.13 with device driver ver-
sion 270.40. The AMD GPU uses driver version 11.9 and AMD
OpenCL SDK 2.5-RC2.

5.1 End-to-end Speedup

Figure 7 shows the bottom-line, end-to-end performance results
including all system overheads. The figure represents performance
results of the Lime code compiled to OpenCL, running partially in
bytecode and partially in the native OpenCL runtime for the CPU
(top) and the GPU (bottom). The figure reports speedup based on
wall-clock execution times, measured after a preliminary warmup
phase to ensure JIT optimizations occur. The figure normalizes
speed as compared to Lime code running entirely in bytecode.

The baseline Lime bytecode performance achieves 95-98% of
the performance of the original pure Java implementations for N-
Body, Mosaic and JG-Series. In the worst case, the performance of
JG-Crypt is half as fast when running Lime compiled to bytecode,
as compared to the original Java. This slowdown is an artifact of
our methodology in porting from Java, since we only ported the
dominant computational kernels to Lime. As a result, the Java
to Lime interoperability introduces some overhead with respect
to array conversion, and further the cost of byte-array accesses
in Lime are more expensive than in Java. However, note that the
acceleration gained by compiling the kernels to OpenCL morethan
compensates for the slowdown due to this interoperation.

Since the end-to-end measurements include both computation
and communication costs, we only show the results for the Core i7,
the faster NVidia GTX580, and the AMD HD5970. This is because
the overheads are proportionately larger with greater acceleration.

Table 2. Evaluation platforms. Note, the number of GPU cores represents the number of Streaming Multiprocessors.

Type Model Cores FP units per core Const. mem Local mem L1 cache L2 cache L3 cache

CPU Intel Core i7-990X 6 4 single (4 double) 6x64KB 6x256KB 12MB
GPU NVidia GeForce GTX 8800 16 8 single 64KB 16x16KB
GPU NVidia GeForce GTX 580 16 32 single (16 double) 64KB 16x48KB 16x16KB 768KB
GPU AMD Radeon HD 5970 20 80 single 64KB 20x32KB

Table 3. Benchmarks used in the evaluation.
Name Description Input size Output size Data Type

N-Body N-Body simulation 64KB / 128KB 48KB / 128KB Float / Double
Mosaic Mosaic image application 600KB 5MB Integer
Parboil-CP Coulombic Potential 62KB 1MB Float
Parboil-MRIQ Magnetic Resonance Imaging 432KB 256KB Float
Parboil-RPES Rys Polynomial Equation Solver 13MB 4MB Float
JG-Crypt IDEA encryption 3MB 3MB Byte
JG-Series Fourier coefficient analysis 780KB / 1560KB 780KB/ 1560KB Float / Double

S
pe

ed
up

 r
el

at
iv

e
to

 J
av

a
by

te
co

de
 (

JI
T

)

0
5

10
15

20
25

30
35

S
pe

ed
up

 r
el

at
iv

e
to

 J
av

a
by

te
co

de
 (

JI
T

)

0
5

10
15

20
25

30
35

5.
6x

1x

5.
6x

1x

5.
5x

0.
9x

5.
7x

1x

13
.6

x

2.
4x

27
x

4.
2x 4.
8x

1.
8x

32
.5

x

4x

15
.4

x

2x

N−Body (Single)

N−Body (Double)

Mosaic

Parboil−CP

Parboil−MRIQ

Parboil−RPES

JG−Crypt

JG−Series (Single)

JG−Series (Double)

CPU 1 core
CPU 6 cores

(a) CPU (Core i7)

S
pe

ed
up

 r
el

at
iv

e
to

 J
av

a
by

te
co

de
 (

JI
T

)

0
10

0
20

0
30

0
40

0
50

0

S
pe

ed
up

 r
el

at
iv

e
to

 J
av

a
by

te
co

de
 (

JI
T

)

0
10

0
20

0
30

0
40

0
50

0

45
x68

x

30
x

36
x

13
x30

x

41
6x

24
1x

32
7x34

5x

85
x

18
0x

12
x

12
x

41
1x43

1x

24
8x

13
9x

N−Body (Single)

N−Body (Double)

Mosaic

Parboil−CP

Parboil−MRIQ

Parboil−RPES

JG−Crypt

JG−Series (Single)

JG−Series (Double)

Nvidia GPU (GTX580)
AMD GPU (HD5970)

(b) GPU

Figure 7. End-to-end speedup (includes overhead).

Figure7(a)shows the speedups (higher is better) when running
on 1 or 6 cores. Since the CPU supports hyperthreading, running
on a single core runs two threads, one each for the JVM and
OpenCL kernel. The 1-core performance is generally the sameas
the baseline, with a 10% degradation in the worst case because of
high marshaling costs (see Figure9). The gains for Parboil-MRIQ,
Parboil-RPES, and JG-Series result from a faster implementation
of the transcendental functions in OpenCL compared to Java.

The performance scales as the number of cores is increased,
with five benchmarks showing a speedup of4.8 − 5.7x. The four
remaining benchmarks show super-linear speedups of13.6−32.5x

using 6-cores. This is attributed to hyper-threading (permitting two
OpenCL threads to run per core) and cache effects.

Figure 7(b) shows the speedups resulting from co-execution
between the JVM and the GPU. The speedups vary significantly
depending on the benchmark and platform, ranging from 12x to

431x. The benchmarks which do not use floating-point (JG-Crypt
and Mosaic), or which use simple floating-point operations (N-
Body) see the lowest end-to-end speedups. These benchmarksalso
have high communication to computation ratios, as shown in later
results. The largest performance gains manifest for applications
using transcendental functions.

The results also show that double-precision computation onthe
GTX580 is approximately2−3x slower than single-precision, and
≈ 1.5x slower on the HD5970.

Overall, the results demonstrate that the Lime system delivers
substantial end-to-end speedups as compared to the original Java
programs, for all the benchmarks and platforms considered.

5.2 Comparison to hand-tuned OpenCL

Next, we evaluate the code quality of the generated OpenCL code,
as well as the different memory optimizations described earlier.
For this purpose, we wrote and hand-tuned OpenCL versions ofN-
Body and Mosaic, and converted three existing Parboil benchmarks
originally written in CUDA to OpenCL. We made our best effort
to optimize N-Body and Mosaic for the GTX580 GPU. We also
include results for the GTX8800 GPU because the Parboil bench-
marks were optimized specifically for this card by another research
group [17].

OpenCL requires the programmer to select the number of
threads to run and how these threads map to cores. These tuning
parameters can have a strong impact on performance. To control
for these variables, we conducted an exhaustive systematicoffline
exploration of the tuning parameters and use the best settings for
each experiment. For example, the hand-tuned versions of the Par-
boil benchmarks are optimized for the GTX8800, but those settings
are not competitive on the GTX580. A system could perform this
auto-tuning automatically ahead of time or at runtime, but such
tuning falls outside the scope of this paper.

To evaluate code quality, we measure only time spent in com-
putational kernels on the GPU, and exclude time spent on the host
and time spent in explicit communication between host and GPU.
Figure8 shows the relative performance of computational kernels
for compiled Lime code as compared to hand-tuned OpenCL. A
speedup greater than one indicates performance better thanhand-
tuned code. A speedup less than one indicates a slow down and an
opportunity for further improvements in the Lime compiler.

For each benchmark, the Figure shows results using the vari-
ous memory optimizations applied by the Lime compiler including
vectorization. The Figure shows 8 bars per benchmark, represent-
ing each of the memory optimizations covered in Sections4.2.

S
pe

ed
up

 r
el

at
iv

e
to

 h
an

d−
tu

ne
d

0.
0

0.
5

1.
0

1.
5

S
pe

ed
up

 r
el

at
iv

e
to

 h
an

d−
tu

ne
d

0.
0

0.
5

1.
0

1.
5

N−Body
Mosaic

Parboil−CP
Parboil−MRIQ

Parboil−RPES0.
0

0.
5

1.
0

1.
5

Global
Global+Vector

Local
Local+Conflicts removed
Local+Conflicts removed+Vector

Texture
Constant
Constant+Vector

(a) NVidia GTX8800

S
pe

ed
up

 r
el

at
iv

e
to

 h
an

d−
tu

ne
d

0.
0

0.
5

1.
0

1.
5

S
pe

ed
up

 r
el

at
iv

e
to

 h
an

d−
tu

ne
d

0.
0

0.
5

1.
0

1.
5

N−Body
Mosaic

Parboil−CP
Parboil−MRIQ

Parboil−RPES0.
0

0.
5

1.
0

1.
5

(b) NVidia GTX580 (Fermi)

S
pe

ed
up

 r
el

at
iv

e
to

 h
an

d−
tu

ne
d

0.
0

0.
5

1.
0

1.
5

S
pe

ed
up

 r
el

at
iv

e
to

 h
an

d−
tu

ne
d

0.
0

0.
5

1.
0

1.
5

N−Body
Mosaic

Parboil−CP
Parboil−MRIQ

Parboil−RPES0.
0

0.
5

1.
0

1.
5

(c) AMD Radeon HD5970

Figure 8. Lime vs. hand-tuned OpenCL kernel-times and effects
of optimizations.

Overall, the results show that with the best optimization choices,
the Lime compiler delivers competitive performance, attaining be-
tween 75% and 140% of the hand-coded performance. Exceed-
ing hand-coded performance indicates cases where the humanpro-
grammer was imperfect – we discuss specific issues below.

The results show that using the global memory generally yields
the worst performance, even when using vectorization. In the worse
cases, the slowdown is up to10x compared to hand-tuned for the
GTX8800, up to 60% for the HD5970, and 20% for the GTX580.

On the other hand, the compiler can often use the local memo-
ries effectively. Note in particular that the compiled codesurpris-
ingly outperforms the hand-tuned versions for the Mosaic bench-
mark. After further investigation, we discovered that the compiled
code is more effective at reducing memory bank conflicts. The
compiler-generated code for Parboil-MRIQ also slightly outper-
forms the hand-tuned kernel, when using constant memory. The
Parboil-RPES benchmark benefits significantly from the use of tex-
ture memory on the GTX8800 because it is equipped with a hard-
ware cache, and this benchmark exhibits good spatial locality.

The GTX580 architecture differs from the other GPUs by plac-
ing a cache between the device memory and the cores. As a di-
rect consequence, the performance is less sensitive to memory opti-

JG−Series (Double)
JG−Series (Single)

JG−Crypt
Parboil−RPES
Parboil−MRIQ

Parboil−CP
Mosaic

N−Body (Double)
N−Body (Single)

% of total execution time

0 20 40 60 80 100

Kernel time
OCL−api overhead
C marshaling
Java marshaling

(a) CPU (Core i7)

JG−Series (Double)
JG−Series (Single)

JG−Crypt
Parboil−RPES
Parboil−MRIQ

Parboil−CP
Mosaic

N−Body (Double)
N−Body (Single)

% of total execution time

0 20 40 60 80 100

Kernel time
GPU−Host data transfert
OCL−api overhead
C marshaling
Java marshaling

(b) GPU (GTX580)

Figure 9. Computation and communication costs.

mizations, as shown in Figure8(b). Using global memory delivers
performance relatively close to the hand-tuned version, however,
optimizations are necessary to recover the last 10-20% of perfor-
mance in some benchmarks.

We conclude that it is possible for a Lime compiler to achieve
performance competitive with typical hand-tuned code for the plat-
forms and benchmarks considered. The results also demonstrate
the sensitivity of performance to the GPU memory architecture.
We claim these results further demonstrate the need to lift the
level of programming abstraction away from low-level GPU de-
tails. Clearly, writing a portable, high-performance OpenCL code
for multiple devices imposes a substantial burden on a humanpro-
grammer.

5.3 Communication vs. Computation

The end-to-end speedups shown earlier include all runtime over-
head, including communication between host and device. In our
system, offloading the computation involves moving the datafrom
Java to C and also from C back to Java (refer to Figure6). In addi-
tion, there are costs attributed to the OpenCL API, and PCIe trans-
fer costs to move data from the host to the device.

Figure 9 shows the breakdown of computation (kernel time)
and communication costs (everything else). When running ona
multicore, shared memory obviates the need for memory transfers;
as a rule, computation dominates the execution time (Figure9(a)).
JG-Crypt provides an exception to the rule, since its computation
ratio per byte is particularly low.

In contrast, the communication costs on a GPU are relatively
greater, due to greater computational power. We show the results
for the GTX580 in Figure9(b); the computation to communication
ratios are comparable for the other GPUs.

Most of the overhead (30%) comes from data marshaling (both
Java and C). Marshaling objects in Java suffers from significant
overheads due to arrays bounds checking and object allocation.
Setting up OpenCL data structures is relatively fast (typically 5%),
except for JG-RPES (40%). We are investigating the cause of this
anomaly.

The raw data transfer from host memory to device memory does
not play a major role in communication costs. We expect this trend
to continue with PCIe3.0 and tighter integration of GPU and CPU.

Overall, the combined overhead due to all communication aver-
ages 40%. Although this overhead is high, the tremendous com-

putational power of the GPU still allows impressive end-to-end
speedups.

We conclude that communication costs, while not yet crippling,
leave much room for improvement. In future work, we plan to pur-
sue various strategies to reduce communication overhead. To avoid
extraneous copying, the Java marshaling code should marshal di-
rectly to a format as required for device memory. This would ap-
proximately halve the marshaling overhead. More generally, the
communication costs can be hidden by well-known pipeliningtech-
niques that overlap communication and computation; these tech-
niques lie beyond the scope of this paper.

6. Related Work
Recent years have seen many projects targeting general purpose
languages to exploit multicores and GPUs. The closest related
work is Sponge [7], a compiler which generates CUDA code from
the StreamIt [19] programming language. Udupa et al. [20] also
target StreamIt for GPUs. This work focuses on the problem of
scheduling the tasks to the GPUs. Similar to our work, Sponge
schedules different tasks onto GPUs and optimizes the mapping
to the different type of memory. In contrast to Sponge, our system
generates OpenCL code which can target multicore platformsas
well as GPUs. Sponge supports only coarse-grained parallelism,
whereas Lime includes constructs that support fine-graineddata
parallel as well. Data parallel operations make it easier toexploit
thousands of threads on a GPU. Further, the StreamIt programming
model is much simpler compared to Lime as it does not permit
object allocation or unbounded arrays, requires the task graph to be
fully resolved at compile time, and does not support object-oriented
programming features. Lime on the other hand does not have any
of these limitations. Further, because Lime is Java-compatible, it
permits a gentle migration of existing Java code.

6.1 GPU Programming and Optimization

There are many other task-oriented languages that are suitable
for GPU programming. Cg [12] was among the first languages
to be developed to program GPUs. Then Brook [3] was intro-
duced featuring the use of a streaming programming model. Ac-
celerator [18] was later developed as a C# API library that uses
a data-parallel model based on parallel array to program GPUs.
Today, general purpose computations on GPUs is dominated by
OpenCL [9] and CUDA [15]. Some researchers are investigat-
ing automatically translating OpenMP source code to CUDA [10]
while others apply directives to sequential C code to convert them
into CUDA programs with the hiCUDA [6] framework. Earlier
parts of this paper address the primary differences betweenLime
and OpenCL. These advantages are the same compared to CUDA.

Another related new language is the IBM X10 language. It pro-
vides abstractions for programming distributed memory parallel
computers (e.g., clusters) with a globally shared, partitioned ad-
dress space. X10 considers the GPU as a shared-memory parallel
computer (X10 “place”), where threads (“activities”) communicate
and synchronize through shared memory. Their work [4] to incor-
porate CUDA abstractions does not describe compiler optimiza-
tions to map data structures to the GPU memory hierarchy. Instead
it provides language constructs for the programmer to manage this
mapping explicitly.

Yang et al. [23] contribute a compiler framework to optimize
GPU code. This compiler takes a simple unoptimized kernel as
input and applies optimizations as discussed in [17]. Similarly,
CUDA-Lite [21] coalesces memory accesses of existing kernels.
A compiler for a high level language (HLL) can apply similar opti-
mizations after translating to a low level representation.However, a
HLL compiler can perform more aggressive transformations by ex-
ploiting higher-level semantic information embodied in the source

code. We demonstrated several techniques whereby the Lime com-
piler exploits high-level information exposed by the type system to
realize aggressive parallelization, prove isolation, andoptimize the
mapping to the memory hierarchy. It is unclear whether a low-level
approach can in general recover this level of semantic information,
due to difficulties inherent to sound whole program static analysis
of object-oriented languages.

6.2 Multicores Programming

Gordon et al. [5] developed a compiler that maps the StreamIt
language to multicore architectures. Intel’s array building block
(ArBB) [14] consists of a virtual machine and a C++ API that
defines new parallel types such as collections. These collections are
treated like values and the JIT optimizes these and extract thread
and vector (SIMD) parallelism. Our work differs in that we start
directly with a streaming computational model, making it easier
to decompose programs for heterogeneous platforms. In contrast
to ArBB, where the programmer has to deal specifically with data
transformation between the C data types and the parallel collections
(using the bind function), the programmer simply uses the standard
array types provided by Lime. Finally, our system works with
GPUs as well as multicores without changes to the program.

6.3 Runtime for Heterogeneous Platforms

SoCC [16] is an extension to C that allows the programmer to man-
age distributed memory, express pipeline parallelism and map the
different tasks to resources. EXOCHI [22] is an effort from In-
tel that focuses on providing a runtime for integrating accelerators
with general purpose processor. It provides shared memory and dy-
namic mapping of tasks to accelerators. The Quilin [11] system is
composed of a C API that is used to write parallel programs and
an adaptable runtime that dynamically maps computations topro-
cessing elements in a CPU+GPU system. Jablin et al. [8] proposed
a new runtime management system that frees the programmer from
explicitly managing data movement between the CPU and GPU
on the host side. It determines which data are required by a GPU
kernel and also copies the data to the GPU memory. The Lime
model intrinsically provides this functionality via the task graph,
and our compilation methodology leverages the language seman-
tics and type system to automatically partition the code between
host and device, generate the corresponding code, and coordinates
the overall execution without programmer intervention.

7. Conclusion
This paper reviewed how a compiler for Lime, a high-level Java-
compatible language, can exploit computational resourceson a
GPU. Exploiting invariants enforced by the type system, thecom-
piler and runtime system implement transformations to exploit
massively parallel GPU devices with non-uniform memory hier-
archies. Benefiting from language and compiler co-design, the sys-
tem achieves these goals without ambitious program analysis. Ex-
perimental results show that for the cases considered, the system
delivers impressive speedups as compared to a JVM implementa-
tion, and generates code quality in the same ballpark as hand-tuned
code.

Although this paper has focused on GPUs, Lime supports a va-
riety of architectures including specialized multicores and FPGAs.
The results from this paper indicate that the Lime approach remains
promising for GPUs, as part of a larger vision for programming
heterogeneous system. We remain encouraged that this language-
based approach may help bring the computational power of hetero-
geneous architectures to mainstream programmers.

Acknowledgments
Christophe Dubach was partially supported by the Royal Academy
of Engineering and EPSRC.

References
[1] Parboil Benchmark Suite. http://impact.crhc.illinois.edu/parboil.php,

2011.

[2] J. Auerbach, D. F. Bacon, P. Cheng, and R. Rabbah. Lime: a Java-
compatible and synthesizable language for heterogeneous architec-
tures. InOOPSLA, 2010.

[3] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M.Houston,
and P. Hanrahan. Brook for GPUs: stream computing on graphics
hardware. InSIGGRAPH, 2004.

[4] D. Cunningham, R. Bordewekar, and V. Saraswat. GPU Programming
in a High Level Language: Compiling X10 to CUDA. InX10 Worksop,
2011.

[5] M. I. Gordon, W. Thies, and S. Amarasinghe. Exploiting Coarse-
Grained Task, Data, and Pipeline Parallelism in Stream Programs. In
ASPLOS, 2006.

[6] T. D. Han and T. S. Abdelrahman. hiCUDA: High-Level GPGPU
Programming.IEEE Trans. Parallel Distrib. Syst., 22, Jan 2011.

[7] A. H. Hormati, M. Samadi, M. Woh, T. Mudge, and S. Mahlke.
Sponge: portable stream programming on graphics engines. In AS-
PLOS, 2011.

[8] T. B. Jablin, P. Prabhu, J. A. Jablin, N. P. Johnson, S. R. Beard, and
D. I. August. Automatic CPU-GPU communication management and
optimization. InPLDI, 2011.

[9] Khronos OpenCL Working Group.The OpenCL Specification.

[10] S. Lee, S.-J. Min, and R. Eigenmann. OpenMP to GPGPU: a compiler
framework for automatic translation and optimization. InPPoPP,
2009.

[11] C.-K. Luk, S. Hong, and H. Kim. Qilin: exploiting parallelism on
heterogeneous multiprocessors with adaptive mapping. InMICRO,
2009.

[12] W. R. Mark, R. S. Glanville, K. Akeley, and M. J. Kilgard.Cg: a
system for programming graphics hardware in a C-like language. In
SIGGRAPH, 2003.

[13] J. A. Mathew, P. D. Coddington, and K. A. Hawick. Analysis and
development of Java Grande benchmarks. InProceedings of the ACM
1999 conference on Java Grande, JAVA ’99, pp. 72–80, New York,
NY, USA, 1999. ACM.

[14] C. Newburn, B. So, Z. Liu, M. McCool, A. Ghuloum, S. Toit,Z. G.
Wang, Z. H. Du, Y. Chen, G. Wu, P. Guo, Z. Liu, and D. Zhang.
Intel’s Array Building Blocks: A retargetable, dynamic compiler and
embedded language. InCGO, 2011.

[15] NVIDIA Corporation. The CUDA Specification.

[16] A. D. Reid, K. Flautner, E. Grimley-Evans, and Y. Lin. SoC-C: effi-
cient programming abstractions for heterogeneous multicore systems
on chip. InCASES, 2008.

[17] S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone, D. B. Kirk, and
W.-m. W. Hwu. Optimization principles and application performance
evaluation of a multithreaded GPU using CUDA. InPPoPP, 2008.

[18] D. Tarditi, S. Puri, and J. Oglesby. Accelerator: usingdata parallelism
to program GPUs for general-purpose uses. InASPLOS, 2006.

[19] W. Thies, M. Karczmarek, and S. P. Amarasinghe. StreamIt: A Lan-
guage for Streaming Applications. InCC, 2002.

[20] A. Udupa, R. Govindarajan, and M. J. Thazhuthaveetil. Software
Pipelined Execution of Stream Programs on GPUs. InCGO, 2009.

[21] S.-Z. Ueng, M. Lathara, S. S. Baghsorkhi, and W.-M. W. Hwu. Lan-
guages and compilers for parallel computing. InLCPC, 2008.

[22] P. H. Wang, J. D. Collins, G. N. Chinya, H. Jiang, X. Tian,M. Girkar,
N. Y. Yang, G.-Y. Lueh, and H. Wang. EXOCHI: architecture andpro-
gramming environment for a heterogeneous multi-core multithreaded
system. InPLDI, 2007.

[23] Y. Yang, P. Xiang, J. Kong, and H. Zhou. A GPGPU compiler for
memory optimization and parallelism management. InPLDI, 2010.

