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Directed containers
(and directed polynomials)



Container syntax of datatypes

• Many datatypes can be represented in terms of

• shapes and

• positions in shapes

• Containers provide us with a handy syntax to analyse them

• Examples: lists, streams, colists, trees, zippers, etc.
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Directing containers?

• Containers often exhibit a natural notion of subshape

• Natural questions arise:

• What is the appropriate specialisation of containers?

• Does this admit a nice categorical theory?

• What else is this structure useful for?

X

x1 x2 x3

x4

x5

x6 x8

x7



Directed containers

• A directed container is given by

• S : Set (shapes)

• P : S → Set (positions)

and

• ↓ : Πs : S .P s → S (subshape)

• o : Π{s : S}.P s (root position)

• ⊕ : Π{s : S}.Πp : P s.P (s ↓ p)→ P s (subshape positions)

such that

• s ↓ o = s

• s ↓ (p ⊕ p′) = (s ↓ p) ↓ p′

• p ⊕{s} o = p

• o{s} ⊕ p = p

• (p ⊕{s} p′) ⊕ p′′ = p ⊕ (p′ ⊕ p′′)
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Directed polynomials

• A polynomial (in one variable) is given by

1 P
!oo s // S

! // 1

where

• S : Set (shapes)

• P : Set (total positions)

• Polynomials correspond to containers via P ∼= Σ s :S .P s

• A directed polynomial is given by

• s : P −→ S (a polynomial)

• ↓ : P −→ S

• o : S −→ P s.t. s ◦ o = idS and ↓ ◦ o = idS

• . . .

• def. is remarkably symmetric in s and ↓ (more on this later)
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Examples: non-empty lists and streams

• Non-empty lists are represented as

• S
def
= Nat (shapes)

• P s
def
= [0..s] (positions)

• s ↓ p def
= s − p (subshapes)

• o{s}
def
= 0 (root position)

• p ⊕{s} p′
def
= p + p′ (subshape positions)

• Streams are represented similarly

• S
def
= 1 (shapes)

• P ∗ def
= Nat (positions)

• . . .

• Another example is non-empty lists with cyclic shifts



Examples: non-empty lists with a focus

• Zippers – tree-like data-structures consisting of

• a context and a focal subtree

• Non-empty lists with a focus

• S
def
= Nat× Nat (shapes)

• P (s0, s1)
def
= [−s0..s1] = [−s0..−1] ∪ [0..s1] (positions)

s = (−4, 2) • • • • ◦ • •
−4 −3 −2 −1 0 1 2

• (s0, s1) ↓ p def
= (s0 + p, s1 − p) (subshapes)

• o{s0,s1}
def
= 0 (root)

• p ⊕{s0,s1} p′
def
= p + p′ (subshape positions)



Directed container morphisms

• A directed container morphism

t C q : (S C P , ↓, o,⊕) −→ (S ′ C P ′, ↓′, o′,⊕′)

is given by

• t : S → S ′

• q : Π{s : S}.P ′ (t s)→ P s

such that

• t (s ↓ q p) = t s ↓′ p
• o{s} = q (o′{t s})

• q p ⊕{s} q p′ = q (p ⊕′{t s} p′)

• Identities and composition are defined component-wise

• Directed containers form a category DCont



Directed container morphisms

• A directed container morphism

t C q : (S C P , ↓, o,⊕) −→ (S ′ C P ′, ↓′, o′,⊕′)

is given by

• t : S → S ′

• q : Π{s : S}.P ′ (t s)→ P s

such that

• t (s ↓ q p) = t s ↓′ p
• o{s} = q (o′{t s})

• q p ⊕{s} q p′ = q (p ⊕′{t s} p′)

• Identities and composition are defined component-wise

• Directed containers form a category DCont



Directed containers
=

containers ∩ comonads



Interpretation of directed containers

• Any directed container

(S C P , ↓, o,⊕)

defines a functor���
���/comonad

JS C P , ↓, o,⊕Kdc def
= (D, ε, δ)

where

• D : Set −→ Set

D X
def
= Σs : S . (P s → X )

• εX : D X −→ X

εX (s, v)
def
= v (o{s})

• δX : D X −→ D D X

δX (s, v)
def
=

(
s, λp.

(
s ↓ p, λp′. v (p ⊕{s} p′)

))
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Interpretation of dir. cont. morphisms

• Any directed container morphism

t C q : (S C P , ↓, o,⊕) −→ (S ′ C P ′, ↓′, o′,⊕′)

defines a natural transformation
((((

(((
((((

/comonad morphism

Jt C qKdc : JS C P , ↓, o,⊕Kdc −→ JS ′ C P ′, ↓′, o′,⊕′Kdc

by

• Jt C qKdcX : Σs : S . (P s → X ) −→ Σs ′ : S ′. (P ′ s ′ → X )

Jt C qKdcX (s, v)
def
= (t s, v ◦ q{s})

• J−Kdc preserves the identities and composition

• J−Kdc is a functor from DCont to [Set,Set]((((
((((

(
/Comonads(Set)
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Interpretation is fully faithful

• Every natural transformation
((((

((((
(((

/comonad morphism

τ : JS C P , ↓, o,⊕Kdc −→ JS ′ C P ′, ↓′, o′,⊕′Kdc

defines a directed container morphism

pτqdc : (S C P , ↓, o,⊕) −→ (S ′ C P ′, ↓′, o′,⊕′)

satisfying

• pJt C qKdcqdc = t C q

• JpτqdcKdc = τ

• J−Kdc is a fully faithful functor
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Directed containers = cons. ∩ cmnds.

• Any comonad (D, ε, δ), such that D = JS C PKc, determines

d(D, ε, δ), S C Pe def
= (S C P , ↓, o,⊕)

• d−e satisfies

Jd(D, ε, δ), S C PeKdc = (D, ε, δ)

dJS C P , ↓, o,⊕Kdc, S C Pe = (S C P , ↓, o,⊕)

• The following is a pullback in CAT:

DCont U //

J−Kdc f.f.

��

Cont

J−Kcf.f.

��
Comonads(Set) U // [Set,Set]



Constructions on directed containers



Constructions on directed containers

• Coproduct of directed containers

• Cofree directed containers

• Focussing of a container

• Strict directed containers and their categorical product

• Distributive laws between directed containers

• Composition of directed containers

• Ongoing: Bidirected containers (dep. typed group structure)

• (−)−1 : Π{s : S}.Πp : P s.P (s ↓ p) + two equations

• Which comonads do these correspond to? Hopf algebra like?



Update monads
(update the state instead of simply overwriting it!)



Cointerpretation of (directed) containers

• In addition to the interpretation functor

J−Kc : Cont −→ [Set,Set]

one can also define a cointerpretation functor

〈〈−〉〉c : Contop −→ [Set,Set]

given by
〈〈S C P〉〉c X def

= Πs : S . (P s × X )

which lifts to 〈〈−〉〉dc, making the following a pullback in CAT

DContop U //

〈〈−〉〉dc

��

Contop

〈〈−〉〉c

��
Monads(Set) U // [Set,Set]



Dependently typed update monads

• In more detail, given a directed container (S C P , ↓, o,⊕)

the corresponding dependently typed update monad is given by

• T : Set −→ Set

T X
def
= 〈〈S C P〉〉c X = Πs : S . (P s × X )

• ηX : X −→ T X

ηX x
def
= λs. (o{s}, x)

• µX : T T X −→ T X

µX f
def
= λs. let (p, g) = f s in

let (p′, x) = g (s ↓ p) in (p ⊕{s} p′, x)

• Intuitively

• S – set of states

• (P, o,⊕) – dependently typed monoid of updates

• Use cases: non-overflowing buffers, non-underflowing stacks



Dependently typed update monads

• The dependently typed update monad

T X
def
= Πs : S . (P s × X )

arises as the free-model monad for a Lawvere theory,

whose models are given by a carrier M : Set and two operations

lkp : (S → M) −→ M upd : (Πs : S .P s)×M −→ M

subject to three natural equations

• lkp (λs. updλs. o{s}(m)) = m

• lkp (λs. updf (lkp (λs ′.m s ′))) = lkp(λs. updf (m (s ↓ (f s))))

• updf (updg (m)) = updλs. (f s)⊕ (g (s ↓ f s)) (m)



Simply typed update monads

• If P : Set, then we get a simply typed update monad

T X
def
= S → (P × X )

• In this case,

• (P, o,⊕) is a monoid in the standard sense

• ↓ : S × P −→ S is an action of (P, o,⊕) on S

• This monad is the compatible composition of the monads

Treader X
def
= S → X Twriter X

def
= P × X

• There is a one-to-one correspondence between

• monoid actions ↓ : S × P −→ S

• distributive laws θ : Twriter ◦ Treader −→ Treader ◦ Twriter



Update lenses
(the dual of update monads)



Update lenses

• A dependently typed update lens is a coalgebra for the comonad

D X
def
= JS C P , ↓, o,⊕Kdc X = Σs : S . (P s → X )

that is, a carrier M : Set and operations

lkp : M −→ S upd : (Πs : S .P s)×M −→ M

satisfying natural equations relating lkp and upd

• Equivalently, they are comodels for the Law. th. shown earlier

• Intuitively

• M – set of sources, i.e., the database

• S – set of views

• (P, o,⊕) – dependently typed monoid of source updates



Directed containers as (small) categories



Directed containers as (small) categories

• Given a directed container (S C P , ↓, o,⊕) we get

a corresponding small category C(SCP,↓,o,⊕) as follows

• ob(C)
def
= S

• C(s, s ′)
def
= Σp : P s. (s ↓ p = s ′)

• identities are given using o

• composition is given using ⊕

• And vice versa, every small category C gives us

a corresponding directed container (SC C PC, ↓C, oC,⊕C)

• But then, is it simply the case that Cat ∼= DCont?
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Directed container morphisms as cofunctors

• Given a directed container morphism

t C q : (S C P , ↓, o,⊕) −→ (S ′ C P ′, ↓′, o′,⊕′)

we do not get a functor, but instead a cofunctor [Aguiar’97]

FtCq : C(SCP,↓,o,⊕) −→ D(S ′CP′,↓′,o′,⊕′)

given by a mapping of objects

(FtCq)0
def
= t : ob(C) −→ ob(D)

and a lifting operation on morphisms

s
(FtCq)1(s,p)

def
= q{s} p

// ~ in C

(FtCq)0(s) p
//

_

OO

s ′ in D



Constructions on dir. containers revisited

• On the one hand, we can relate existing constructions on

directed containers to constructions (small) categories, e.g.,

• the symmetry of the definition of directed polynomials in

s : P −→ S and ↓ : P −→ S

manifests as every category having an opposite category

• bidirected containers with (−)−1 correspond to groupoids

• On the other hand, the (small) categories view also provides

new constructions on directed containers and comonads, e.g.,

• factorisation of directed container/comonad morphisms



Factorisation of morphisms

• Given a directed container morphism

t C q : (S C P , ↓, o,⊕) −→ (S ′ C P ′, ↓′, o′,⊕′)

we can factorise (t C q) as (t C λs. idP′(t s)) ◦ (idS C q) where

in Cont

(S C P)

idSCλ .?

,,

tCq

&&idSCq // (S C P ′ ◦ t)
tCλs.idP′(t s) //

idSCλ .?

��

(S ′ C P ′)

idS′Cλ .?

��

pb.

(S C λ . 0)
tCλ .id0

// (S ′ C λ . 0)

inspired by the full image factorisation of ordinary functors

• Notably, this works for all comonads that preserve pullbacks!



Conclusion

• So, directed containers, what are they good for?

• Well, directed containers and their morphisms

• describe datastructures with a notion of subshape

• characterise containers that carry a comonad structure

• admit a variety of natural constructions

• give a natural updates-based refinement of the state monad

• give a natural updates-based refinement of asymmetric lenses

• provide a type-theoretic syntax for categories and cofunctors


