Today's menu:

- pictorial formalism for quantum systems

Today's menu:

- pictorial formalism for quantum systems
- theory for natural language meaning composition

QUANTUM LINGUISTICS Leap forward for artificial intelligence

Video Article: The Quantum Linguist
Bob Coecke has developed a new visual language that could be used to spell out a theory of quantum gravity-and help us understand human speech.
by Sophie Hebden

SCIENTIFIC
AMERICAN ${ }^{\mathrm{m}}$
Sign In / Register

Search ScientificAmerican.com

Today's menu:

- pictorial formalism for quantum systems
- theory for natural language meaning composition
- theory for compositional cognition

J. Bolt, B. Coecke, F. Genovese, M. Lewis, D. Marsden \& R. Piedeleu (2017) Interacting Conceptual Spaces I : Grammatical Composition of Concepts. arXiv:1703.08314
Y. Al-Mehairi, B. Coecke \& M. Lewis (2016) Compositional Distributional Cognition. Ql'16.

Can QM be formulated in pictures?

B. Coecke (2005) Kindergarten quantum mechanics. quant-ph/0510032

YES!

B. Coecke \& A. Kissinger (2017) Picturing Quantum Processes. CUP.

- Ch. 1 - Processes as diagrams -
— Ch. 1 - Processes as diagrams -
- processes as boxes and systems as wires -

- Ch. 1 - Processes as diagrams -
- processes as boxes and systems as wires -

- processes as boxes and systems as wires -

- Ch. 1 - Processes as diagrams -
- composing processes -

- Ch. 1 - Processes as diagrams -
- composing processes -

—Ch. 1 - Processes as diagrams -
- diagram equations -
- Ch. 1 - Processes as diagrams -
- diagram equations -

- Ch. 1 - Processes as diagrams -
- process theory -

- Ch. 1 - Processes as diagrams -
 - process theory -

... consists of:

- collection of systems
- collection of processes
- formalises 'wiring together'

- Ch. 1 - Processes as diagrams -
 - process theory -

... consists of:

- collection of systems
- collection of processes
- formalises 'wiring together'
so in particular:
- closed under forming diagrams.

- Ch. 1 - Processes as diagrams -- process theory -

... consists of:

- collection of systems
- collection of processes
- formalises 'wiring together'
so in particular:
- closed under forming diagrams.
and it tells us:
- when two diagrams are equal.
- Ch. 1 - Processes as diagrams -
- process theory -
$\frac{1}{\mid \text { quicksort }}:=\left\{\begin{array}{l}\text { qs }[]=[] \\ \text { qs }(x:: x s)= \\ q s[y \mid y<-x s ; y<x]++[x]++ \\ q s[y \mid y<-x s ; y>=x]\end{array}\right.$

- Ch. 1 - Processes as diagrams -
- special processes/diagrams -

- Ch. 1 - Processes as diagrams -

- special processes/diagrams -

State :=

Effect/Test :=

Number :=

- Ch. 1 - Processes as diagrams -

- special processes/diagrams -

Born rule :=

—Ch. 2 - String diagrams -

When two systems, of which we know the states by their respective representatives, enter into temporary physical interaction due to known forces between them, and when after a time of mutual influence the systems separate again, then they can no longer be described in the same way as before, viz. by endowing each of them with a representative of its own. I would not call that one but rather the characteristic trait of quantum mechanics, the one that enforces its entire departure from classical lines of thought.
— Erwin Schrödinger, 1935.

—Ch. 2 - String diagrams -

- TFAE -

1. 'Circuits' with cup-state and cup-effect:

which satisfy:

— Ch. 2 - String diagrams -

- TFAE -

- Ch. 2 - String diagrams -

- TFAE -

2. diagrams allowing in-in, out-out and out-in wiring:

— Ch. 2 - String diagrams -

- cyclicity of the trace -

—Ch. 2 - String diagrams -
- transpose -

—Ch. 2 - String diagrams -
- transpose -

— Ch. 2 - String diagrams -

- quantum teleportation -

— Ch. 2 - String diagrams -

- quantum teleportation -

— Ch. 2 - String diagrams -

- quantum teleportation -

Bob's problem now!
... what about natural language meaning?
... there are dictionaries for words
... why no dictionaries for sentences?

Computing the meaning of a sentence:

- Bottom part: meaning vectors
- Top part: grammar

Mathematics of grammar:

Lambek's Residuated monoids (1950's):

$$
b \leq a \multimap c \Leftrightarrow a \cdot b \leq c \Leftrightarrow a \leq c \circ-b
$$

so in particular,

$$
\begin{aligned}
& a \cdot(a \multimap 1) \leq 1 \leq a \multimap(a \cdot 1) \\
& (1 \circ b) \cdot b \leq 1 \leq(1 \cdot b) \circ b
\end{aligned}
$$

Lambek's Pregroups (2000's):

$$
\begin{aligned}
a \cdot \cdot^{-1} a & \leq 1 \leq{ }^{-1} a \cdot a \\
b^{-1} \cdot b & \leq 1 \leq b \cdot b^{-1}
\end{aligned}
$$

Mathematics of grammar:

For noun type n, verb type is ${ }^{-1} n \cdot s \cdot n^{-1}$, so:

Mathematics of grammar:

For noun type n, verb type is ${ }^{-1} n \cdot s \cdot n^{-1}$, so:

$$
n \cdot{ }^{-1} n \cdot s \cdot n^{-1} \cdot n \leq 1 \cdot s \cdot 1 \leq s
$$

Mathematics of grammar:

For noun type n, verb type is ${ }^{-1} n \cdot s \cdot n^{-1}$, so:

$$
n \cdot{ }^{-1} n \cdot s \cdot n^{-1} \cdot n \leq 1 \cdot s \cdot 1 \leq s
$$

As a diagram:

Mathematics of grammar:

For noun type n, verb type is ${ }^{-1} n \cdot s \cdot n^{-1}$, so:

$$
n \cdot{ }^{-1} n \cdot s \cdot n^{-1} \cdot n \leq 1 \cdot s \cdot 1 \leq s
$$

As a diagram:

Algorithm for NLP-meaning composition:

1. Perform grammatical type reduction:

$$
\text { (word type } 1) \ldots(\text { word type } n) \leadsto \text { sentence type }
$$

2. Interpret diagrammatic type reduction as linear map:

$$
f:: \curvearrowright \mid \curvearrowright\left(\sum_{i}\langle i i|\right) \otimes \mathrm{id} \otimes\left(\sum_{i}\langle i i l)\right.
$$

3. Apply this map to tensor of word meaning vectors:

$$
f\left(\vec{v}_{1} \otimes \ldots \otimes \vec{v}_{n}\right)
$$

Experimental evidence:

Model	ρ with cos	ρ with Eucl.
Verbs only	0.329	0.138
Additive	0.234	0.142
Multiplicative	0.095	0.024
Relational	0.400	0.149
Rank-1 approx. of relational	0.402	0.149
Separable	0.401	0.090
Copy-subject	0.379	0.115
Copy-object	0.381	0.094
Frobenius additive	$\mathbf{0 . 4 0 5}$	0.125
Frobenius multiplicative	0.338	0.034
Frobenius tensored	$\mathbf{0 . 4 1 5}$	0.010
Human agreement	0.60	

D. Kartsaklis \& M. Sadrzadeh (2013) Prior disambiguation of word tensors for constructing sentence vectors. In EMNLP'13.

Logical meanings:

- Bottom part: meaning vectors
- Top part: grammar
B. Coecke, M. Sadrzadeh \& S. Clark (2010) Mathematical foundations for a compositional distributional model of meaning. Lambek Festschrift. arXiv:1003.4394

Algorithm for NLP-meaning composition:

1. Perform grammatical type reduction:

$$
\text { (word type } 1) \ldots(\text { word type } n) \leadsto \text { sentence type }
$$

2. Interpret diagrammatic type reduction as NLP-map:

$$
f:: \curvearrowright \mid \curvearrowright\left(\sum_{i}\langle i i|\right) \otimes \mathrm{id} \otimes\left(\sum_{i}\langle i i l)\right.
$$

3. Apply this map to tensor of word NLP-states:

$$
f\left(\vec{v}_{1} \otimes \ldots \otimes \vec{v}_{n}\right)
$$

Algorithm for XYZ-meaning composition:

1. Perform grammatical type reduction:

$$
\text { (word type } 1) \ldots(\text { word type } n) \leadsto \text { sentence type }
$$

2. Interpret diagrammatic type reduction as XYZ-map:

$$
f:: \curvearrowright \mid>{ }^{\prime} \text { 'cap' } \otimes \mathrm{id} \otimes \text { 'cap' }
$$

3. Apply this map to tensor of word XYZ-states:

$$
f\left(v_{1} \otimes \ldots \otimes v_{n}\right)
$$

Examples:

Examples:

1. Boolean matrices \Rightarrow Montague

Examples:

1. Boolean matrices \Rightarrow Montague
2. non-Boolean matrices \Rightarrow logic dies

Examples:

1. Boolean matrices \Rightarrow Montague
2. non-Boolean matrices \Rightarrow logic dies
3. density matrices \Rightarrow 'some’ logic re-emerges

Examples:

1. Boolean matrices \Rightarrow Montague
2. non-Boolean matrices \Rightarrow logic dies
3. density matrices \Rightarrow 'some' logic re-emerges

- ambiguity
- lexical entailment
R. Piedeleu, D. Kartsaklis, B. Coecke \& M. Sadrzadeh (2015) Open system categorical quantum semantics in natural language processing. CalCo. arXiv:1502.00831
D. Bankova, B. Coecke, M. Lewis \& D. Marsden (2016) Graded entailment for compositional distributional semantics. arXiv:1601.04908
... what about cognition?

Algorithm for XYZ-meaning composition:

1. Perform grammatical type reduction:

$$
\text { (word type } 1) \ldots(\text { word type } n) \leadsto \text { sentence type }
$$

2. Interpret diagrammatic type reduction as XYZ-map:

$$
f:: \curvearrowright \mid>{ }^{\prime} \text { 'cap' } \otimes \mathrm{id} \otimes \text { 'cap' }
$$

3. Apply this map to tensor of word meaning XYZ-states:

$$
f\left(v_{1} \otimes \ldots \otimes v_{n}\right)
$$

Algorithm for cog.-meaning composition:

1. Perform grammatical type reduction:

$$
\text { (word type } 1) \ldots(\text { word type } n) \leadsto \text { sentence type }
$$

2. Interpret diagrammatic type reduction as cog.-map:

$$
f:: \curvearrowright \mid>{ }^{\prime} \text { 'cap' } \otimes \mathrm{id} \otimes \text { 'cap' }
$$

3. Apply this map to tensor of word meaning cog.-states:

$$
f\left(v_{1} \otimes \ldots \otimes v_{n}\right)
$$

General recipe:

General recipe:

1. Pick compositional mechanism CM (e.g. grammar)

General recipe:

1. Pick compositional mechanism CM (e.g. grammar)
2. Organise meaning/concept/cognitive spaces \& maps in tensor-category \otimes-Cat that matches CM.

General recipe:

1. Pick compositional mechanism CM (e.g. grammar)
2. Organise meaning/concept/cognitive spaces \& maps in tensor-category \otimes-Cat that matches CM.
3. Carry over compositional reasoning:

$$
\mathbf{C M} \longrightarrow \otimes \text {-Cat }
$$

J. Bolt, B. Coecke, F. Genovese, M. Lewis, D. Marsden \& R. Piedeleu (2017) Interacting Conceptual Spaces I : Grammatical Composition of Concepts. arXiv:1703.08314
Y. Al-Mehairi, B. Coecke \& M. Lewis (2016) Compositional Distributional Cognition. Ql'16.

A convex algebra is set A and 'mixing' function:

$$
\alpha: D(A) \rightarrow A
$$

i.e.:

$$
\begin{gathered}
\alpha(|a\rangle)=a \\
\left.\alpha\left(\sum_{i, j} p_{i} q_{i, j}\left|a_{i, j}\right\rangle\right)=\alpha\left(\sum_{i} p_{i} \mid \alpha\left(\sum_{j} q_{i, j}\left|a_{i, j}\right\rangle\right)\right\rangle\right)
\end{gathered}
$$

A convex relation of type $(A, \alpha) \rightarrow(B, \beta)$ is relation:

$$
R: A \rightarrow B
$$

that 'commutes with mixtures':

$$
\left(\forall i . R\left(a_{i}, b_{i}\right)\right) \Rightarrow R\left(\sum_{i} p_{i} a_{i}, \sum_{i} p_{i} b_{i}\right)
$$

$N_{\text {food }}=N_{\text {colour }} \otimes N_{\text {taste }} \otimes N_{\text {texture }}$

-Ch. 4 - Quantum processes -

- quantum vs. classical -
-Ch. 4 - Quantum processes -
- quantum vs. classical -

Main idea:
$\frac{\text { classical system }}{\text { quantum system }}=\frac{\text { single wire }}{\text { double wire }}$

- Ch. 4 - Quantum processes -
- pure quantum box -
... :=

—Ch. 6 - Picturing classical processes -
- classical data diagrammatically -

—Ch. 6 - Picturing classical processes -

- classical data diagrammatically -
spider :=

—Ch. 6 - Picturing classical processes -

- classical data diagrammatically -

Prop. \Longrightarrow

(三 dagger special commutative Frobenius algebra)
— Ch. 6 - Picturing classical processes -

- teleportation diagrammatically -

— Ch. 6 - Picturing classical processes -
- teleportation diagrammatically -

—Ch. 6 - Picturing classical processes -

- teleportation diagrammatically -

... what about language meaning?

Relative pronouns:

M. Sadrzadeh, B. Coecke \& S. Clark (2013-2014) The Frobenius anatomy of word meaning I \& II. Journal of Logic and Computation. arXiv:1404.5278

$$
\rho_{\text {she }}:=\sum\left\{\begin{array}{l}
\mid \text { Alice }\rangle\langle\text { Alice }| \\
\mid \text { Beth }\rangle\langle\text { Beth }| \\
\ldots
\end{array}\right.
$$

$$
\rho_{\text {hates }}:=\sum\left\{\begin{array}{l}
\left.\mid \text { Alice }\rangle\langle\text { Alice }| \otimes \rho^{\prime} \otimes \mid \text { Bob }\right\rangle\langle\text { Bob }| \\
\left.\mid \text { Beth }\rangle\langle\text { Beth }| \otimes \rho^{\prime \prime} \otimes \mid \text { Colin }\right\rangle\langle\text { Colin }| \\
\ldots
\end{array}\right.
$$

$$
\rho_{B o b}:=|B o b\rangle\langle B o b|
$$

$\rho_{\text {she }}:=\sum\left\{\begin{array}{l}\mid \text { Alice }\rangle\langle\text { Alice }| \\ \mid \text { Beth }\rangle\langle\text { Beth }| \\ \ldots\end{array}\right.$
$\rho_{\text {hates }}:=\sum\left\{\begin{array}{l}\left.\mid \text { Alice }\rangle\langle\text { Alice }| \otimes \rho^{\prime} \otimes \mid \text { Bob }\right\rangle\langle\text { Bob }| \\ \left.\mid \text { Beth }\rangle\langle\text { Beth }| \otimes \rho^{\prime \prime} \otimes \mid \text { Colin }\right\rangle\langle\text { Colin }| \\ \ldots\end{array}\right.$
$\rho_{B o b}:=|B o b\rangle\langle$ Bob $|$
$\rho_{\text {sentence }}:=\mid$ Alice $\rangle\langle$ Alice $|$
... what about cognition?

Fruit which tastes bitter
$=\left(\mu_{N} \times \iota_{S} \times \epsilon_{N}\right)(\operatorname{Conv}($ bananas \cup apples $) \times$ taste \times bitter $)$
$=\left(\mu_{N} \times \iota_{S}\right)(\operatorname{Conv}($ bananas \cup apples $) \times($ green banana $\times\{(0,0)\}))$
$=\mu_{N}(\operatorname{Conv}($ bananas \cup apples $) \times($ green banana $))$
= green banana

Bolt et al.

- 1. (a) Choose a compositional structure
- (b) Interpret this structure as a category, the grammar category
- 2. (a) Choose or craft appropriate meaning or concept spaces
- (b) Organize these spaces into a semantics category, with the same abstract structure as the grammar category
- 3. Interpret the compositional structure of the grammar category in the semantics category
- 4. Bingo! This functor maps type reductions in the grammar category onto algorithms for composing meanings in the semantics category
- 1. (a) Choose or craft appropriate meaning or concept spaces
- (b) Organize these spaces into a semantics category
- 2. (a) Go to a workshop in Glasgow where you meet people who can help you with 1 b and the following step
- (b) Use this category to generate a compositional structure, e.g. a Lambek grammar
- 3. Bingo! No interpretation of the grammar category is needed
- 1. (a) Choose a composi structure
- (b) Interpret this structu (hoose or craft ap g or concept spa
fanize these space
tics category, with
wicture as the

. . at. (icture as
—Ch. 7 - Picturing phases \& complementarity — phases := purely quantum decoration of spiders
— Ch. 7 - Picturing phases \& complementarity phases := purely quantum decoration of spiders

— Ch. 7 - Picturing phases \& complementarity phases := purely quantum decoration of spiders Prop.

—Ch. 7 - Picturing phases \& complementarity —
- complementary spiders -
—Ch. 7 - Picturing phases \& complementarity -- complementary spiders -

—Ch. 7 - Picturing phases \& complementarity -
- complementary spiders -

— Ch. 7 - Picturing phases \& complementarity -- complementary spiders -

CNOT :=

— Ch. 7 - Picturing phases \& complementarity -

- complementary spiders -

Cor.

—Ch. 7 - Picturing phases \& complementarity — - complementary spiders -

Desire.

—Ch. 7 - Picturing phases \& complementarity — - strongly complementary spiders ... :=

— Ch. 7 - Picturing phases \& complementarity -

- strongly complementary spiders -
... :=

$\stackrel{\diamond}{=}$

—Ch. 7 - Picturing phases \& complementarity —

- ZX-calculus -

quantum theory
—Ch. 7 - Picturing phases \& complementarity —
- completeness -

—Ch. 7 - Picturing phases \& complementarity —

- completeness -
M. Backens (2012) Any equational statement is provable in the stabiliser restriction of $\mathbf{Z X}$-calculus if and only if it is provable for Hilbert spaces and linear maps.

—Ch. 7 - Picturing phases \& complementarity —

- completeness -
M. Backens (2012) Any equational statement is provable in the stabiliser restriction of ZX-calculus if and only if it is provable for Hilbert spaces and linear maps.
A. Hadzihasanovic (2015) ... Z/W (with some restriction)...

—Ch. 7 - Picturing phases \& complementarity —

- completeness -
M. Backens (2012) Any equational statement is provable in the stabiliser restriction of $\mathbf{Z X}$-calculus if and only if it is provable for Hilbert spaces and linear maps.
A. Hadzihasanovic (2015) ... Z/W (with some restriction)...
E. Jeandel, S. Perdrix \& R. Vilmart (2017) ... Clifford +T...

—Ch. 7 - Picturing phases \& complementarity —

- completeness -
M. Backens (2012) Any equational statement is provable in the stabiliser restriction of $\mathbf{Z X}$-calculus if and only if it is provable for Hilbert spaces and linear maps.
A. Hadzihasanovic (2015) ... Z/W (with some restriction)...
E. Jeandel, S. Perdrix \& R. Vilmart (2017) ... Clifford +T...
A. Hadzihasanovic (2017) ... Z/W (no restriction)...

—Ch. 7 - Picturing phases \& complementarity —

- completeness -
M. Backens (2012) Any equational statement is provable in the stabiliser restriction of $\mathbf{Z X}$-calculus if and only if it is provable for Hilbert spaces and linear maps.
A. Hadzihasanovic (2015) ... Z/W (with some restriction)...
E. Jeandel, S. Perdrix \& R. Vilmart (2017) ... Clifford +T...
A. Hadzihasanovic (2017) ... Z/W (no restriction)...

Kang Feng Ng and Quanlong Wang (2017) ... everything...

—Ch. 7 - Picturing phases \& complementarity —

- completeness -
M. Backens (2012) Any equational statement is provable in the stabiliser restriction of $\mathbf{Z X}$-calculus if and only if it is provable for Hilbert spaces and linear maps.
A. Hadzihasanovic (2015) ... Z/W (with some restriction)...
E. Jeandel, S. Perdrix \& R. Vilmart (2017) ... Clifford +T...
A. Hadzihasanovic (2017) ... Z/W (no restriction)...

Kang Feng Ng and Quanlong Wang (2017) ... everything...
E. Jeandel, S. Perdrix \& R. Vilmart (2017) ... everything, better...

—Ch. 7 - Picturing phases \& complementarity —

- completeness -
M. Backens (2012) Any equational statement is provable in the stabiliser restriction of ZX-calculus if and only if it is provable for Hilbert spaces and linear maps.
A. Hadzihasanovic (2015) ... Z/W (with some restriction)...
E. Jeandel, S. Perdrix \& R. Vilmart (2017) ... Clifford +T...
A. Hadzihasanovic (2017) ... Z/W (no restriction)...

Kang Feng Ng and Quanlong Wang (2017) ... everything...
E. Jeandel, S. Perdrix \& R. Vilmart (2017) ... everything, better...

Kang Feng Ng and Quanlong Wang (2017) ... everything ${ }^{+}$, even better...

— Ch. 7 - Picturing phases \& complementarity -

- completeness -
M. Backens (2012) Any equational statement is provable in the stabiliser restriction of $\mathbf{Z X}$-calculus if and only if it is provable for Hilbert spaces and linear maps.
A. Hadzihasanovic (2015) ... Z/W (with some restriction)...
E. Jeandel, S. Perdrix \& R. Vilmart (2017) ... Clifford +T...
A. Hadzihasanovic (2017) ... Z/W (no restriction)...

Kang Feng Ng and Quanlong Wang (2017) ... everything...
E. Jeandel, S. Perdrix \& R. Vilmart (2017) ... everything, better...

Kang Feng Ng and Quanlong Wang (2017) ... everything ${ }^{+}$, even better...
E. Jeandel, S. Perdrix \& R. Vilmart (51 minutes ago) ... everything, even ${ }^{2}$ better...

Kang Feng Ng and Quanlong Wang (37 minutes ago) ... everything ${ }^{+}$, even ${ }^{3}$ better...
E. Jeandel, S. Perdrix \& R. Vilmart (13.7 minutes ago) ... everything, even ${ }^{4}$ better...

Kang Feng Ng and Quanlong Wang (3.4 seconds ago) ... everything ${ }^{+}$, even ${ }^{5}$ better...

Ongoing collaboration with:

- Cambridge Quantum Computing Inc.
towards:
- architecture-independent
- exact-efficient
quantum compiler.

circuit rewriting :=

circuit rewriting :=

measurement based quantum computing :=

How young can one start this business?

KIDS OUTPERFORM THEIR TEACHERS AND DISCOVER QUANTUM FEATURES THAT TOOK TOP SCIENTISTS 60y

EXPERIMENTS THIS SPRING !

