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ConvRel

J. Bolt, B. Coecke, F. Genovese, M. Lewis, D. Marsden & R. Piedeleu (2017) Interacting Con-
ceptual Spaces I : Grammatical Composition of Concepts. arXiv:1703.08314

Y. Al-Mehairi, B. Coecke & M. Lewis (2016) Compositional Distributional Cognition. QI’16.



Can QM be formulated in pictures ?

B. Coecke (2005) Kindergarten quantum mechanics. quant-ph/0510032



YES !

B. Coecke & A. Kissinger (2017) Picturing Quantum Processes. CUP.
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... consists of:

• collection of systems

• collection of processes

• formalises ‘wiring together’

so in particular:

• closed under forming diagrams.

and it tells us:

•when two diagrams are equal.
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— Ch. 1 – Processes as diagrams —

– special processes/diagrams –

State :=

Effect / Test :=

Number :=



— Ch. 1 – Processes as diagrams —

– special processes/diagrams –

Born rule :=



— Ch. 2 – String diagrams —

When two systems, of which we know the states by their re-
spective representatives, enter into temporary physical interac-
tion due to known forces between them, and when after a time
of mutual influence the systems separate again, then they can
no longer be described in the same way as before, viz. by en-
dowing each of them with a representative of its own. I would
not call that one but rather the characteristic trait of quan-
tum mechanics, the one that enforces its entire departure from
classical lines of thought.

— Erwin Schrödinger, 1935.



— Ch. 2 – String diagrams —

– TFAE –

1. ‘Circuits’ with cup-state and cup-effect:

which satisfy:
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– TFAE –

2. diagrams allowing in-in, out-out and out-in wiring:
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... what about natural language meaning?



... there are dictionaries for words



... why no dictionaries for sentences?



Computing the meaning of a sentence:

• Bottom part: meaning vectors

• Top part: grammar

B. Coecke, M. Sadrzadeh & S. Clark (2010) Mathematical foundations for a compositional distribu-
tional model of meaning. Lambek Festschrift. arXiv:1003.4394



Mathematics of grammar:

Lambek’s Residuated monoids (1950’s):

b ≤ a( c⇔ a · b ≤ c⇔ a ≤ c � b

so in particular,

a · (a( 1) ≤ 1 ≤ a( (a · 1)

(1 � b) · b ≤ 1 ≤ (1 · b) � b

Lambek’s Pregroups (2000’s):

a · −1a ≤ 1 ≤ −1a · a
b−1 · b ≤ 1 ≤ b · b−1
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Algorithm for NLP-meaning composition:

1. Perform grammatical type reduction:

(word type 1) . . . (word type n) { sentence type

2. Interpret diagrammatic type reduction as linear map:

f :: 7→

(∑
i
〈ii|

)
⊗ id ⊗

(∑
i
〈ii|

)
3. Apply this map to tensor of word meaning vectors:

f
(
−→v 1 ⊗ . . . ⊗

−→v n
)



Experimental evidence:

D. Kartsaklis & M. Sadrzadeh (2013) Prior disambiguation of word tensors for con-
structing sentence vectors. In EMNLP’13.



Logical meanings:

• Bottom part: meaning vectors

• Top part: grammar

B. Coecke, M. Sadrzadeh & S. Clark (2010) Mathematical foundations for a compositional distribu-
tional model of meaning. Lambek Festschrift. arXiv:1003.4394



Algorithm for NLP-meaning composition:

1. Perform grammatical type reduction:

(word type 1) . . . (word type n) { sentence type

2. Interpret diagrammatic type reduction as NLP-map:

f :: 7→

(∑
i
〈ii|

)
⊗ id ⊗

(∑
i
〈ii|

)
3. Apply this map to tensor of word NLP-states:

f
(
−→v 1 ⊗ . . . ⊗

−→v n
)



Algorithm for XYZ-meaning composition:

1. Perform grammatical type reduction:

(word type 1) . . . (word type n) { sentence type

2. Interpret diagrammatic type reduction as XYZ-map:

f :: 7→ ‘cap’ ⊗ id ⊗ ‘cap’

3. Apply this map to tensor of word XYZ-states:

f (v1 ⊗ . . . ⊗ vn)
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Examples:

1. Boolean matrices⇒ Montague

2. non-Boolean matrices⇒ logic dies

3. density matrices⇒ ‘some’ logic re-emerges

• ambiguity

• lexical entailment

R. Piedeleu, D. Kartsaklis, B. Coecke & M. Sadrzadeh (2015) Open system categorical quantum
semantics in natural language processing. CalCo. arXiv:1502.00831

D. Bankova, B. Coecke, M. Lewis & D. Marsden (2016) Graded entailment for compositional distribu-
tional semantics. arXiv:1601.04908



... what about cognition?



Algorithm for XYZ-meaning composition:

1. Perform grammatical type reduction:

(word type 1) . . . (word type n) { sentence type

2. Interpret diagrammatic type reduction as XYZ-map:

f :: 7→ ‘cap’ ⊗ id ⊗ ‘cap’

3. Apply this map to tensor of word meaning XYZ-states:

f (v1 ⊗ . . . ⊗ vn)



Algorithm for cog.-meaning composition:

1. Perform grammatical type reduction:

(word type 1) . . . (word type n) { sentence type

2. Interpret diagrammatic type reduction as cog.-map:

f :: 7→ ‘cap’ ⊗ id ⊗ ‘cap’

3. Apply this map to tensor of word meaning cog.-states:

f (v1 ⊗ . . . ⊗ vn)
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General recipe:

1. Pick compositional mechanism CM (e.g. grammar)

2. Organise meaning/concept/cognitive spaces & maps in
tensor-category ⊗-Cat that matches CM.

3. Carry over compositional reasoning:

CM −→ ⊗-Cat



ConvRel

J. Bolt, B. Coecke, F. Genovese, M. Lewis, D. Marsden & R. Piedeleu (2017) Interacting Con-
ceptual Spaces I : Grammatical Composition of Concepts. arXiv:1703.08314

Y. Al-Mehairi, B. Coecke & M. Lewis (2016) Compositional Distributional Cognition. QI’16.



A convex algebra is set A and ‘mixing’ function:

α : D(A)→ A

i.e.:
α(|a〉) = a

α
(∑

i, j
piqi, j|ai, j〉

)
= α

(∑
i
pi|α(

∑
j
qi, j|ai, j〉)〉

)

A convex relation of type (A, α)→ (B, β) is relation:

R : A→ B

that ‘commutes with mixtures’:

(∀i.R(ai, bi))⇒ R

∑
i

piai,
∑

i
pibi





Nfood = Ncolour ⊗ Ntaste ⊗ Ntexture





— Ch. 4 – Quantum processes —

– quantum vs. classical –



— Ch. 4 – Quantum processes —

– quantum vs. classical –

Main idea:

classical system
quantum system

=
single wire

double wire



— Ch. 4 – Quantum processes —

– pure quantum box –

... :=



— Ch. 6 – Picturing classical processes —

– classical data diagrammatically –
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– classical data diagrammatically –

spider :=



— Ch. 6 – Picturing classical processes —

– classical data diagrammatically –

Prop. =⇒

(≡ dagger special commutative Frobenius algebra)



— Ch. 6 – Picturing classical processes —

– teleportation diagrammatically –



— Ch. 6 – Picturing classical processes —

– teleportation diagrammatically –
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– teleportation diagrammatically –



... what about language meaning?



Relative pronouns:

M. Sadrzadeh, B. Coecke & S. Clark (2013–2014) The Frobenius anatomy of word
meaning I & II. Journal of Logic and Computation. arXiv:1404.5278



ρshe :=
∑
|Alice〉〈Alice|
|Beth〉〈Beth|
...

ρhates :=
∑
|Alice〉〈Alice| ⊗ ρ′ ⊗ |Bob〉〈Bob|
|Beth〉〈Beth| ⊗ ρ′′ ⊗ |Colin〉〈Colin|
...

ρBob := |Bob〉〈Bob|



ρshe :=
∑
|Alice〉〈Alice|
|Beth〉〈Beth|
...

ρhates :=
∑
|Alice〉〈Alice| ⊗ ρ′ ⊗ |Bob〉〈Bob|
|Beth〉〈Beth| ⊗ ρ′′ ⊗ |Colin〉〈Colin|
...

ρBob := |Bob〉〈Bob|

ρsentence := |Alice〉〈Alice|



... what about cognition?









Fruit which tastes bitter
= (µN × ιS × εN)(Conv(bananas ∪ apples) × taste × bitter)
= (µN × ιS )(Conv(bananas ∪ apples) × (green banana × {(0, 0)}))
= µN(Conv(bananas ∪ apples) × (green banana))
= green banana
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phases := purely quantum decoration of spiders

Prop.
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CNOT :=
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Cor.



— Ch. 7 – Picturing phases & complementarity —

– stronglycomplementary spiders –

Desire.
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... :=



— Ch. 7 – Picturing phases & complementarity —

– strongly complementary spiders –

... :=
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Kang Feng Ng and Quanlong Wang (2017) ... everything+, even better...

E. Jeandel, S. Perdrix & R. Vilmart (51 minutes ago) ... everything, even2 better...

Kang Feng Ng and Quanlong Wang (37 minutes ago) ... everything+, even3 better...

E. Jeandel, S. Perdrix & R. Vilmart (13.7 minutes ago) ... everything, even4 better...

Kang Feng Ng and Quanlong Wang (3.4 seconds ago) ... everything+, even5 better...



Ongoing collaboration with:

•Cambridge Quantum Computing Inc.

towards:

• architecture-independent

• exact-efficient

quantum compiler.



circuit rewriting :=



circuit rewriting :=



measurement based quantum computing :=



How young can one start this business?



XXX

KIDS OUTPERFORM THEIR TEACHERS AND DISCOVER

QUANTUM FEATURES THAT TOOK TOP SCIENTISTS 60y

XXX



EXPERIMENTS THIS SPRING !




