TOWARDS
PATERN-MATCHING
Bimalara Substitution
STRING DIAGRAMS

Ross Duncan - University of STRATHCLYDE

Pattern matching, binding and substitution

$$
\begin{aligned}
& f[]=[] \\
& f(x:: x s)=(x+1)::(f x s)
\end{aligned}
$$

Pattern matching, binding and substitution

$$
\begin{aligned}
& f[]=[] \\
& f(x:: x s)=(x+1)::(f x s)
\end{aligned}
$$

$$
f(1::(2:: 3::[]))
$$

Pattern matching, binding and substitution

I
 Monoidal Categories

1. Symmetric Monoidal Categories

A monoidal category M is a category with a bifunctor, \otimes or \square

$$
\square: M \times M \rightarrow M
$$

written for objects a, b of M variously as a "product"

$$
(a, b) \rightarrow a \square b, a \otimes b, \text { or } a b
$$

which is associative up to a natural isomorphism

$$
\begin{equation*}
\alpha: a(b c) \cong(a b) c \tag{1}
\end{equation*}
$$

and is equipped with an element e, which is unit up to natural isomorphisms

$$
\begin{equation*}
\lambda: e a \cong a, \quad \rho: a e \cong e \tag{2}
\end{equation*}
$$

These maps must satisfy certain commutativity requirements; for α, a pentagonal diagram

$$
\begin{equation*}
a((b c) d) \longrightarrow(a(b c)) d \tag{3}
\end{equation*}
$$

as in \S VII.1.(5), and for λ and ρ the two commutativities

$$
\begin{aligned}
& a(e c) \xrightarrow{\alpha}(a e) c \\
& \left.1 \lambda\right|_{a c}=\left.\right|_{a c} \quad \lambda=\rho: e e \rightarrow e .
\end{aligned}
$$

A braiding for a monoidal category M consists of a family of isomorphisms

$$
\begin{equation*}
\gamma_{a, b}: a \square b \cong b \square a \tag{5}
\end{equation*}
$$

natural in a and $b \in M$, which satisfy for e the commutativity

and which, with the associativity α, make both the following hexagonal diagrams commute (with the symbol \square omitted):

Note that the first diagram replaces each $\gamma_{a b, c}$ which has a product $a b$ as first index by two γ 's with single indices, while the second hexagonal diagram does the same for $\gamma_{a, b c}$ with a product as second index. Note also that the first hexagon of (7) for γ implies the second diagram for γ^{-1}, and conversely. Thus, when γ is a braiding for M, then γ^{-1} is also a braiding for M.

A symmetric monoidal category, as already defined in §VII. 7, is a category with a braiding γ such that every diagram

commutes. For this case, either one of the hexagons (7) implies the other.

1bis.

Monoidal Categories (Graphically)

Why Diagrams?

Why Diagrams?

$$
\frac{1}{2}\left(\binom{1}{1} \otimes\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0
\end{array}\right) \otimes\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\right)
$$

$\circ\left(\left(\left(\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right) \otimes\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right)\right) \circ\left(\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right) \otimes\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)\right) \circ\right.\right.$
$\left.\left.\left(\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right) \otimes\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)\right)\right) \otimes\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)\right)$
$\circ\left(\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right) \circ\left(\binom{\cos \frac{\pi}{6}}{i \sin \frac{\pi}{6}} \otimes\left(\begin{array}{cc}1 & 0 \\ 0 & e^{i \beta}\end{array}\right)\right)\right) \otimes\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & e^{i \alpha}\end{array}\right)$
?

Why Diagrams?

- Great when we have parallel and sequential composition
- Essential for talking about interacting algebraic and coalgebraic things
- Different kinds of diagram give different kinds of monoidal category

Diagrams

Diagrams

Input Systems
$j: A \otimes B \rightarrow C \otimes D \otimes E$

Diagrams

Input Systems
$j: A \otimes B \rightarrow C \otimes D \otimes E$

Diagrams

Input Systems
$j: A \otimes B \rightarrow C \otimes D \otimes E$

Monoidal Categories

$$
\begin{array}{ccc}
f: A \rightarrow B & g: B \rightarrow C & h: C \rightarrow D \\
A \downarrow & B \downarrow & C \downarrow \\
\hline f & \square g & h \\
B^{\downarrow} & C^{\downarrow} & D^{\downarrow}
\end{array}
$$

Monoidal Categories

$$
\begin{array}{ccc}
f: A \rightarrow B & g: B \rightarrow C & h: C \rightarrow D \\
A \downarrow & B \downarrow & C \downarrow \\
\hline f & \square g & h \\
B^{\downarrow} & C^{\downarrow} & D^{\downarrow}
\end{array}
$$

$$
g \circ f: A \rightarrow C
$$

Monoidal Categories

$$
\begin{array}{ccc}
f: A \rightarrow B & g: B \rightarrow C & h: C \rightarrow D \\
A \downarrow & B \downarrow & C \downarrow \\
\hline f & \square g & h \\
B^{\downarrow} & C^{\downarrow} & D^{\downarrow}
\end{array}
$$

$$
g \circ f: A \rightarrow C
$$

Monoidal Categories

Monoidal Categories

Monoidal categories have a special unit object called I which is a left and right identity for the tensor:

$$
\begin{gathered}
I \otimes A=A=A \otimes I \\
\operatorname{id}_{I} \otimes f=f=f \otimes \operatorname{id}_{I}
\end{gathered}
$$

No lines are drawn for I in the graphical notation:

$$
\psi: I \rightarrow A \quad \phi^{\dagger}: A \rightarrow I \quad \phi^{\dagger} \circ \psi: I \rightarrow I
$$

Categories

$\operatorname{id}_{A}: A \rightarrow A$
\downarrow

Categories

$$
f \circ \mathrm{id}_{A}: A \rightarrow B
$$

Categories

$$
\operatorname{id}_{B} \circ f: A \rightarrow B
$$

Categories

$$
f: A \rightarrow B
$$

Graphical Calculus Theorem

Thm: one diagram can be deformed to another iff their denotations are equal by the structural equations of the category.

Graphical Calculus Theorem

Thm: one diagram can be deformed to another iff their denotations are equal by the structural equations of the category.

Are wires allowed to cross?

Are wires allowed to cross?

Are wires allowed to cross?

YES : symmetric monoidal - diagrams are DAGs

Grossing the strealms

Are wires allowed to cross?

YES, BUT : braided monoidal - diagrams are framed tangles

Are wires allowed to cross?

Are wires allowed to cross?
No : (planar) monoidal - diagrams are planar DAGs

Monoidal Theories

Syntactic presentation of a diagrammatic theory:

NB : a $P R O(P)$ is a (symmetric) monoidal category where the wires don't have types.

Example: commutative monoids

The PROP of commutative monoids \mathbb{M}

$$
\begin{gathered}
\Sigma=\{\phi, O\} \\
E=\left\{\oint_{\phi}=\oint_{\phi}^{\gamma}, \quad \oint_{\gamma}=\mid=\phi^{9}, \zeta_{\phi}=\gamma_{\gamma}\right\}
\end{gathered}
$$

Example : the ZX-calculus

$\begin{aligned} & 0 \\ & \cdots \\ & \cdots\end{aligned}+0$.

$$
\begin{aligned}
& \text { TOWARDS } \\
& \text { PATERN-MATHING } \\
& \text { In SUBSTITUTION } \\
& \text { In } \\
& \text { STRING DIAGRAMS }
\end{aligned}
$$

Computing Science Group

Geometry of abstraction in quantum computation

Dusko Pavlovic
Oxford University and Kestrel Institute

CS-RR-09-13

Geometry of abstraction in quantum computation
 Pavlovic $(2009,2012)$

Quantum algorithms are sequences of abstract operations, performed on nonexistent computers. They are in obvious need of categorical semantics.

Geometry of abstraction in quantum computation Pavlovic $(2009,2012)$

monoidal category \mathcal{C}

polynomial monoidal category $\mathcal{C}[x: X]$

Geometry of abstraction in quantum computation Pavlovic $(2009,2012)$

monoidal category \mathcal{C}

polynomial monoidal category $\mathcal{C}[x: X]$

"

Geometry of abstraction in quantum computation Pavlovic $(2009,2012)$

monoidal category \mathcal{C} polynomial monoidal category $\mathcal{C}[x: X]$

Theorem 3.4 The category $\mathrm{Abs}_{\mathrm{C}}$ of monoidal abstractions is equivalent with the category C_{\times}of commutative comonoids in C .

Geometry of abstraction in quantum computation Pavlovic $(2009,2012)$

monoidal category \mathcal{C}
 polynomial monoidal category $\mathcal{C}[x: X]$

Theorem 3.4 The category $\mathrm{Abs}_{\mathrm{C}}$ of monoidal abstractions is equivalent with the category C_{\times}of commutative comonoids in C .

Corollary 4.5 The category of dagger-monoidal abstractions $\ddagger-\mathrm{Abs}_{\mathrm{C}}$ is equivalent with the category C_{Δ} of commutative dagger-Frobenius algebras and comonoid homomorphisms in C

ATTERN - MATCHING

$$
\begin{aligned}
& \text { BIADG a SUBSTIT } \\
& \text { in } \\
& \text { STRING DIAGRAM }
\end{aligned}
$$

1. OPERADS

$$
A \xrightarrow{f} B \xrightarrow{g} C \quad\binom{\text { awrows in a }}{\text { category }}
$$

1. OPERADs

$$
A \xrightarrow{f} B \xrightarrow{g} C
$$

$\binom{$ arrows in a }{ category }

(aurous in an)
aka. multicategory.

1. OPERADS

$$
\frac{x_{1}: A_{1}, \ldots, x_{n}: A_{n} \vdash f: B_{k} \quad y_{1}: B_{1}, \ldots, y_{k}: B_{n}, \ldots, y_{m}: B_{n} \vdash g: C}{y_{1} B_{1}, \ldots, x_{1}: A_{1}, \ldots, x_{n}: A_{n}, \ldots, y_{m}: B_{m} \vdash g[f / x]: C} \text { CUT }
$$

1. OPERADS

$$
\frac{\frac{x_{1}: A_{1}, \ldots, x_{1}: A_{n}+f: B_{k} \quad y_{i}: B_{1}, \ldots, y_{k}: B_{n}, \ldots, Y_{m}: B_{n} \vdash g: C}{y_{1}: B_{1}, \ldots, \underline{x_{1}: A_{1}, \ldots, x_{n}: A_{n}}, \ldots, y_{m}: B_{m} \vdash g\left[f / g_{k}\right]: C} C^{\top}}{C^{\top}}
$$

2. Making an Operand from a PRO

- Let (Σ, E) be a presentation of a PRO.
- Adjoin "enough" new generators $x: m \rightarrow n$ for ever
- Then $(\Sigma+\operatorname{Var}, E)$ is again a PRO with (term) variables.

2. Making an Operand from a PRO

- Let (Σ, E) be a presentation of a PRO.
- Adjoin "enough" new generators $x: m \rightarrow n$ for every $m, n \in \mathbb{N}$.
- Then $(\Sigma+\operatorname{Var}, E)$ is again a PRO with (term) variables.

$$
x:(3,3), y:(2,1), z:(2,1) \vdash f:(4,5)
$$

$$
y \pi z
$$

충
f

Double Push-Out Rewriting

$$
L=R
$$

Double Push-Out Rewriting

$$
L \Rightarrow R
$$

Double Push-Out Rewriting

$$
\begin{gathered}
L \Rightarrow R \\
L \stackrel{i_{1}}{\longleftrightarrow} \partial \stackrel{i_{2}}{\longleftrightarrow} R
\end{gathered}
$$

Double Push-Out Rewriting

$$
L \Rightarrow R
$$

Double Push-Out Rewriting

$$
L \Rightarrow R
$$

Double Push-Out Rewriting

$$
L \Rightarrow R
$$

compute compute par pushout.

DPO REWRITING

$$
\dot{q} \Rightarrow i
$$

DPO REWRITING

$$
\begin{gathered}
\dot{q} \Rightarrow 中! \\
\dot{q} \stackrel{i}{i_{1}} \cdots c^{i_{2}} \oplus \uparrow
\end{gathered}
$$

DPO REWRITING

$\dot{q} \Rightarrow \varphi$

DPO REWRITING

$$
\dot{q} \Rightarrow \uparrow i
$$

$$
\dot{Q} \stackrel{i_{1}}{\longleftrightarrow} \cdot \stackrel{i_{2}}{\longrightarrow}!q
$$

DPO REWRITING

$$
\dot{q} \Rightarrow i q
$$

DPO REWRITING

$$
q \Rightarrow i!
$$

Substitution via DPO

$$
\frac{[f / x]}{|x|} \xrightarrow{\left.\frac{1}{x} \right\rvert\,} \xrightarrow{\text { nin }}
$$

Plane Substitution via DPO

PLANE SUBSTITUTION VIA DPO

PLANE SUBStITUTION VIA DPO

$$
\frac{1.1}{\frac{[f / x}{x+1}} \xrightarrow{[f / x]}
$$

Plane Substitution via DPO

Plane Substitution via po

$$
\frac{[f / x]}{\longrightarrow}
$$

Plane Substitution via IPo

Plane Substitution

$$
[f / x, g / y]
$$

Logical Rules
$t=$
$s=$
"tensor"

$$
\frac{\bar{x}: \Delta \vdash t: A \bar{y}: r \vdash S: B}{\bar{x}: \Delta, \bar{y}: r \vdash t \otimes S: A \otimes B}
$$

Logical Rules
"tensor"

$$
\frac{\bar{x}: \triangle \vdash t: A \quad \bar{y}: r \vdash S: B}{\bar{x}: \Delta, \bar{y}: r \vdash t \otimes S: A \otimes B}
$$

"composite"
t : s

$$
\frac{\bar{x}: \Delta \vdash t:(n, m) \quad \bar{y}: \Gamma \vdash s:(m, k)}{\bar{x}: \Delta, \bar{y}: r \vdash s \circ t:(n, k)}
$$

Not Allowed

$$
x: A, y: B \vdash t: C
$$

$z: A \otimes B \vdash$ let $z=x \otimes y$ in $t: C$

Not Allowed
$x: A, y: B \vdash t: C$
$z: A \otimes B \vdash$ let $z=x \otimes y$ in $t: C$

Not Allowed
$x: A, y: B \vdash t: C$
$z: A \otimes B \vdash$ let $z=x \otimes y$ in $t: C$

Ditching Linearity

Logical Rules
weakening
t

$$
\frac{\bar{x}: \Delta \vdash t: A}{y: B, \bar{x}: \Delta \vdash t: A}
$$

Logical Rules
weakening
t

$$
\frac{\bar{x}: \Delta \vdash t: A}{y: B, \bar{x}: \Delta \vdash t: A}
$$

$$
\frac{x: A, y: A+t: B}{z: A \vdash t[z / x, z / y]}
$$

Logical Rules
weakening

$$
\frac{\bar{x}: \Delta \vdash t: A}{y: B, \bar{x}: \Delta \vdash t: A}
$$

$$
\frac{x: A, y: A+t: B}{z: A \vdash t[z / x, z / y]}
$$

CONTRACTION"

Summary Pt. 1

1. Substitution and operations In underlying PRO form a "monoidal ++" operad.
2. Variable manipulations give a cocommutative comonoid. But dort allow \otimes.
3. PATTERN - MATCHING.

$$
x:(3,3), y:(2,1), z:(2,1) \vdash f:(4,5)
$$

PATTERN - MATCHING

$$
x:(3,3), y:(2,1), z:(2,1) \vdash f:(4,5)
$$

3. Pattern Matching

$$
\underset{m}{V} \underset{G}{V} \stackrel{i}{\longleftrightarrow} 0
$$

3. Pattern Matching

*

$m \downarrow$
3. Pattern Matching

3. Pattern Matching

3. Pattern Matching

pushout
complemut

3. Pattern Matching

NOTE PRESERVATION OF ROUNDART CURVE IS ESSENTIAL:

3. Pattern Matching

NOTE PRESERVATION OF BOUNDARY CURVE IS ESSENTIAL:

Putting it together

STRING DIAGRAMS $w /$ VARIABLES

Putting IT
TOGETHER

Identities are same in operad and cooperate

$$
x: A \vdash x: A
$$

Putting it Together

Composing like this

"construct"
deconsluct"
makes sense.

Putting it Together

Composing like this

makes sense.

Putting it Together

String diagrams with variables FORM A $\left\{\begin{array}{l}\text { COMPUTED } \\ \text { POLYCATEGORY }\end{array}\right.$

OF MANY - TO-MANY, DIAGRAM TRANSFORMATIONS
(with the MIX rule)
4. Ditching Linearity
$\frac{\Delta \vdash t: A, t^{\prime}: A}{\Delta \vdash t^{\prime \prime}: A}$ contraction
$\frac{\Delta \vdash t: A}{\Delta \vdash t: A, t^{\prime \prime}: B}$ Weakening

4. Ditching Linearity
$\frac{\Delta \vdash t: A, t^{\prime}: A}{\Delta \vdash t^{\prime \prime}: A}$ contraction
with $t=t^{\prime}=t^{\prime \prime}$
$t>-t^{\prime \prime}$
$\frac{\Delta \vdash t: A}{\Delta \vdash t: A, t^{\prime \prime}: B}$ Weakening

4. Ditching Linearity

- $\frac{\Delta \vdash t: A, t^{\prime}: A}{\Delta \vdash t^{\prime \prime}: A}$ contraction

$$
\frac{\Delta \vdash t: A}{\Delta \vdash t: A, t^{\prime \prime}: B} \text { Weakening }
$$

4. Ditching Linearity.

Special!

$$
\operatorname{MaU}(x, x)=x
$$

$$
=
$$

4. Ditching Linearity.

SPECIAL!

$$
\operatorname{Mav}(x, x)=x
$$

$$
=
$$

NOT PROB \because
4. Ditching Lingarity.

SPECIAL!

$$
\operatorname{Mav}(x, x)=x
$$

$$
=
$$

IS BIALGEBRA!
NOT FROB \because

Open Problems

- How to compute MGU for two diagrams?
- Trickier than expected because the category does not ave many push-outs!
- Cut-elimination for the whole computad?
- Can we we express the separation condition for combinatorial planar graphs?

