TOWARDS PATTERN-MATCHING BLADING & SUBSTITUTION

STRING DIAGRAMS

ROSS DUNCAN - UNIVERSITY OF STRATHCLYDE

Monoidal Categories

1. Symmetric Monoidal Categories

A monoidal category M is a category with a bifunctor, \otimes or \Box ,

$$\Box: M \times M \to M$$

written for objects a, b of M variously as a "product"

$$(a,b) \rightarrow a \square b, a \otimes b, \text{ or } ab$$

which is associative up to a natural isomorphism

$$\alpha : a(bc) \cong (ab)c \tag{1}$$

and is equipped with an element e, which is unit up to natural isomorphisms

$$\lambda : ea \cong a, \quad \rho : ae \cong e.$$
 (2)

These maps must satisfy certain commutativity requirements; for α , a pentagonal diagram

$$\begin{array}{ccc} a(b(c\,d)) & \xrightarrow{\alpha} & (a\,b)(c\,d) & \xrightarrow{\alpha} & ((a\,b)c)d \\ & & & & & & \\ 1^{\alpha} & & & & & \\ a((b\,c)d) & \xrightarrow{\alpha} & & & & (a(b\,c))d \end{array}, \end{array}$$
(3)

as in §VII.1.(5), and for λ and ρ the two commutativities

$$\begin{array}{cccc} a(e\,c) & \stackrel{\alpha}{\longrightarrow} & (a\,e)c \\ & & & \downarrow \\ \lambda \downarrow & & \downarrow \\ a\,c & = & a\,c \ , \end{array} \end{array} \lambda = \rho : e\,e \to e \ .$$
 (4)

A braiding for a monoidal category M consists of a family of isomorphisms

$$\gamma_{a,b} : a \square b \cong b \square a$$
 (5)

natural in a and $b \in M$, which satisfy for e the commutativity

and which, with the associativity α , make both the following hexagonal diagrams commute (with the symbol \square omitted):

Note that the first diagram replaces each $\gamma_{ab,c}$ which has a product ab as first index by two γ 's with single indices, while the second hexagonal diagram does the same for $\gamma_{a,bc}$ with a product as second index. Note also that the first hexagon of (7) for γ implies the second diagram for γ^{-1} , and conversely. Thus, when γ is a braiding for M, then γ^{-1} is also a braiding for M.

A symmetric monoidal category, as already defined in §VII. 7, is a category with a braiding γ such that every diagram

$$\begin{array}{ccc} ab & \xrightarrow{\gamma_{a,b}} & ba \\ & & \downarrow_{\gamma_{b,a}} \\ & & ab \end{array} \tag{8}$$

commutes. For this case, either one of the hexagons (7) implies the other.

Honoidal Categories (Graphically)

Why Diagrams?

Why Diagrams?

?

$$\begin{array}{c} \frac{1}{2} \left(\left(\begin{array}{c} 1\\1\end{array}\right) \otimes \left(\begin{array}{c} 1&0&0&0\\0&1&0&0\\0&0&1&0\\0&0&0&e^{i\gamma}\end{array}\right) \otimes \left(\begin{array}{c} 0&1\\1&0\end{array}\right) \right) \\ \circ \left(\left(\left(\left(\begin{array}{c} 1&0&0&0\\0&0&0&1\end{array}\right) \otimes \left(\begin{array}{c} 1&1\\1&-1\end{array}\right)\right) \circ \left(\left(\begin{array}{c} 0&1\\1&0\end{array}\right) \otimes \left(\begin{array}{c} 1&0&0&0\\0&0&1&0\\0&0&0&1\end{array}\right) \right) \right) \\ \left(\left(\begin{array}{c} 1&0&0&0\\0&1&0&0\\0&0&0&1\end{array}\right) \otimes \left(\begin{array}{c} 1&0\\0&1\end{array}\right) \right) \right) \otimes \left(\begin{array}{c} 1&0\\0&1\end{array}\right) \right) \\ \otimes \left(\left(\begin{array}{c} 1&0\\0&1\end{array}\right) \right) \\ \circ \left(\left(\begin{array}{c} 1&0&0&0\\0&1&0\\0&0&1&0\end{array}\right) \otimes \left(\begin{array}{c} 1&0\\0&1\end{array}\right) \right) \right) \otimes \left(\begin{array}{c} 1&0\\0&1\end{array}\right) \right) \\ \otimes \left(\begin{array}{c} 1&0&0&0\\0&1\end{array}\right) \\ \circ \left(\left(\begin{array}{c} 1&0&0&0\\0&1&0&0\\0&0&1&0\end{array}\right) \otimes \left(\left(\begin{array}{c} \cos\frac{\pi}{6}\\i\sin\frac{\pi}{6}\end{array}\right) \otimes \left(\begin{array}{c} 1&0\\0&e^{i\beta}\end{array}\right) \right) \right) \\ \otimes \left(\begin{array}{c} 1&0&0&0\\0&1&0\\0&0&0&e^{i\alpha}\end{array}\right) \end{array} \right)$$

Why Diagrams?

- Great when we have parallel and sequential composition
- Essential for talking about interacting algebraic and coalgebraic things
- Different kinds of diagram give different kinds of monoidal category

Diagrams

$j:A\otimes B\to C\otimes D\otimes E$

 $f \otimes h : A \otimes C \to B \otimes D$ $A \downarrow \downarrow C$ $f \downarrow h$ $B \downarrow \downarrow D$

Monoidal Categories

Monoidal Categories

Monoidal categories have a special *unit* object called *I* which is a left and right identity for the tensor:

$$I \otimes A = A = A \otimes I$$
$$\mathrm{id}_I \otimes f = f = f \otimes \mathrm{id}_I$$

No lines are drawn for *I* in the graphical notation:

 $\mathrm{id}_A: A \to A$

A

 $f \circ \mathrm{id}_A : A \to B$

 $\mathrm{id}_B \circ f : A \to B$

 $f: A \to B$

Graphical Calculus Theorem

<u>**Thm</u>**: one diagram can be deformed to another iff their denotations are equal by the structural equations of the category.</u>

Graphical Calculus Theorem

<u>Thm</u>: one diagram can be deformed to another iff their denotations are equal by the structural equations of the category.

Are wires allowed to cross?

Are wires allowed to cross?

Are wires allowed to cross?

YES : symmetric monoidal — diagrams are DAGs

Are wires allowed to cross?

YES, BUT : braided monoidal — diagrams are framed tangles

Are wires allowed to cross?

Are wires allowed to cross?

No: (planar) monoidal — diagrams are planar DAGs

Monoidal Theories

Syntactic presentation of a diagrammatic theory:

NB : a *PRO(P)* is a (symmetric) monoidal category where the wires don't have types.
Example: commutative monoids

The PROP of commutative monoids $\ensuremath{\mathbb{M}}$

Example : the ZX-calculus

TOWARDS DATTERN-MATCHING BADDING & SUBSTITUTION

In STRING DIAGRAMS

Computing Science Group

Geometry of abstraction in quantum computation

Dusko Pavlovic Oxford University and Kestrel Institute

CS-RR-09-13

Quantum algorithms are sequences of abstract operations, performed on nonexistent computers. They are in obvious need of categorical semantics.

monoidal category Cpolynomial monoidal category C[x : X]

monoidal category Cpolynomial monoidal category C[x : X]

monoidal category Cpolynomial monoidal category C[x : X]

Theorem 3.4 The category Abs_C of monoidal abstractions is equivalent with the category C_x of commutative comonoids in C.

monoidal category Cpolynomial monoidal category C[x : X]

Theorem 3.4 The category Abs_C of monoidal abstractions is equivalent with the category C_x of commutative comonoids in C.

Corollary 4.5 The category of dagger-monoidal abstractions \ddagger -Abs_C is equivalent with the category C_{Δ} of commutative dagger-Frobenius algebras and comonoid homomorphisms in C

TOW MATCHING ATTERN - MATCHING BADDING & SUBSTITI

STRING DIAGRAM

1. OPERADS

A - >B - >C (arrows in a) category)

(arrows in an) operad aka. multicategory.

1. OPERADS

X, A, , ..., X, An Hf:Bk Y. B, ..., Yk: Bk, ..., Ym: Bh Hg: C $Y_{i:B_1,...,X_i:A_1,...,X_n:A_n,...,Y_m:B_m \vdash g[f/x]:CUT$

2. MAKING AN OPERAD FROM * PRO
• Let
$$(\Sigma, E)$$
 be a presentation of a PRO.
• Adjoin "enough" new generators $x: m \rightarrow n$ for every m, n e.N.
• Then $(\Sigma + Var, E)$ is again - PRO with (term) variables.
• $(\Sigma + Var, E)$ is again - PRO with (term) variables.
• (Σ, E) is again - PRO with (term) variables.
• (Σ, E) is (Σ, E)

EMBEDDINGS BIJECTIVE ON THE BOUNDARY

PLANE SUBSTITUTION [r/2, 9/2] i. Diy () drain (F) 200 m, ong >

LOGICAL RULES

LOGICAL RULES

"tensor"

$$\overline{x:} \Delta \vdash t:A \quad \overline{y:} \Gamma \vdash s:B$$

 $\overline{x:} \Delta, \overline{y:} \Gamma \vdash t \otimes s: A \otimes B$

"composite"

$$\overline{x}: \Delta \vdash t: (n,m)$$
 $\overline{y}: \Gamma \vdash s: (m,k)$
 $\overline{x}: \Delta, \overline{y}: \Gamma \vdash sot: (n,k)$

X:A, y:B H t:C

Z: AOB + let Z = xoy in t : C

C

NOT ALLOWED X:A, y:B F t:C Z: AOB + let Z = xoy in t : C f/z. X PROBLEM!

DITCHING LINEARITY

LOGICAL RULES

LOGICAL RULES

X:A, y:A + t : B $z: A \vdash t[\frac{z}{x}, \frac{z}{y}]$

 $X:A, y:A \vdash t:B$ $Z:A \vdash t[\frac{z}{x}, \frac{z}{y}]$

" CONTRACTION "

SUMMARY PT. 1

1. SUBSTITUTION AND OPERATIONS IN UNDERLYING PRO form a "monoidal ++ " operad.

2. Variable manipulations give a cocommutative comonoid. But don't allow .

3. PATTERN-MATCHING.

 $\chi:(3,3), y:(2,1), z:(2,1) \vdash f:(4,5)$

0

3. PATTERN MATCHING i V m

3. PATTERN MATCHING i * m ×900 ← m2

3. PATTERN MATCHING

NOTE PRESERVATION OF BOUNDARY CURVE

3. PATTERN MATCHING

PUTTING IT TOGETHER

PUTTING IT TOGETHER

Composing like this

makes sense.

PUTTING IT TOGETHER

Composing like this

makes sense.

PUTTING IT TOGETHER

4. DITCHING LINEARITY

 $\frac{\Delta \vdash E:A, E':A}{\Delta \vdash E'':A}$ contraction $\frac{\Delta \vdash E'':A}{\Delta \vdash E'':A}$

$$\Delta \vdash t:A$$

 $\Delta \vdash t:A, t'':B$
 $A \vdash t:A, t'':B$

6

4. DITCHING LINEARITY

 $\Delta \vdash t:A, t':A$ $\Delta \vdash t'':A$ contraction $\Delta \vdash t'':A$

$$\Delta \vdash t:A$$
 Weakening
 $\Delta \vdash t:A, t'':B$

6

4. DITCHING LINEARITY $\Delta \vdash t:A, t':A$ $\Delta \vdash t'':A$ Contraction $\Delta \vdash t'':A$ with XEALAN f' = M.C.U.(t,t')Commutative Monoid! $\Delta \vdash t:A$ Weakening $\Delta \vdash t:A, t'':B$ where x is a fresh variable.

4. DITCHING LINEARITY.

4. DITCHING LINEARITY. X SPECIAL MGU(X,X) = XX × mgu(x,y) mgu (x,y) T mqu(x,y) 4 NOT FROB

- 'U 4. DITCHING LINGARITY. X SPECIAL X MGU(X,X) = X× mgu(x,y) mqu (x,y) Mgu (X,y) -X mgu(x,y) mg v (x,y) IS BIALGEBRA! NOT FROB

Open Problems

- How to compute MGU for two diagrams?
 - Trickier than expected because the category does not ave many push-outs!
- Cut-elimination for the whole computad?
- Can we we express the separation condition for combinatorial planar graphs?

