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Categorical Quantum Mechanics

Monoidal Approach ↪→ Topos Approach

Internal vs. External

1. what is the “topos approach”?
2. what is “↪→”?
3. what’s the point?
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Symmetric Monoidal Categories

Definition
A strict symmetric monoidal category (C,⊗, I ) consists of

I Objects A,B,C , ...
I Morphisms f : A→ B
I Monoidal product ⊗

f : A→ B g : C → D

f ⊗ g : A⊗ B → C ⊗ D



Symmetric Monoidal Categories

A dagger on (C,⊗, I ) consists of an involutive symmetric monoidal
functor

† : Cop → C

i.e. every morphism has an adjoint

A B B A
f f †

f †† = f



†-Biproducts

A †-category has finite †-biproducts if it has:
I a zero object 0
I for each X and Y , an object X ⊕ Y , which is a product and

coproduct such that π = κ†



Example

The category Hilb has:
I Objects: Hilbert spaces
I Morphisms f : H1 → H2 bounded linear maps
I Monoidal product: tensor product of Hilbert spaces
I Monoidal unit : C
I Dagger: Hermitian adjoint
I Biproducts: direct sum of Hilbert spaces



Monoidal/Internal Algebra Approach

Definition
An algebra in (A,⊗, I ) consists of: an object A ∈ A and

µ : A⊗ A→ A, µ =

A coalgebra in (A,⊗, I ) consists of: an object A ∈ A and

δ : A→ A⊗ A, δ =

A †–algebra consists of an algebra coalgebra pair (A, µ, µ†)



Monoidal/Internal Algebra Approach

= (A) = = (U)

= (C) = (F) = (S)

for each x there exists unique x̃ s.t
x

=
x̃

(H)



Monoidal/Internal Algebra Approach

Definition
A Frobenius algebra is a †–algebra satisfying (A), (C), (S), (F) and
(U).

Definition
An H∗–algebra is a †–algebra satisfying (A), (C), (S) and (H).

Definition
α is a set–like element for µ if

α

= α α



The Topos/External Algebra Approach

For H in Hilb, the set Hom(H,H) is a C ∗–algebra

Definition
Let Hilb-Alg(H) be the poset of commutative subalgebras

A ⊂ Hom(H,H)

considered a category.

Let Hilb-AlgvN(H) ↪→ Hilb-Alg(H) be the subcategory of
commutative von Neumann algebras



The Topos/External Algebra Approach

Classical Physics

Physics lab → Commutative unital k–algebra A
Measuring device → Element of the algebra m ∈ A

State of the observed system → Algebra homomorphism h : A→ k
Output on measuring device → The value h(m)

Quantum Physics

Physical system represented by non–commutative Hom(H,H)

Hilb-Alg(H) is the collection of classical subsystems



The Topos/External Algebra Approach

The topos of the “Topos Approach” is the category of presheaves

Hilb-Alg(H)
op

Set
F

For example, the Gelfand spectrum

Hilb-Alg(H)
op

Set
GSpec

GSpec(A) = { ρ : A→ C | ρ a C ∗–algebra homomorphism }

or the prime Spectrum

PSpec(A) = { J ⊂ A | J a prime ideal }



The Topos/External Algebra Approach

In the monoidal approach we consider (A,⊗, I ,⊕, †).

Consider Hom(I , I ), we have:

I addition via biproduct convolution

For s, t : I → I define the s + t : I → I

I I ⊕ I I ⊕ I I
∆ s ⊕ t ∇

I commutative multiplication via morphism composition

S = Hom(I , I ) is a commutative semiring



The Topos/External Algebra Approach

Consider Hom(X ,Y ), we have:

I addition via biproduct convolution

For f , g : X → Y define the f + g : X → Y

X X ⊕ X Y ⊕ Y Y
∆ f ⊕ g ∇

I scalar multiplication

X X ⊗ I Y ⊗ I Y
∼ f ⊗ s ∼

Hom(X ,Y ) is an S–semimodule



The Topos/External Algebra Approach

Consider Hom(X ,X ), we have:

I addition
I scalar multiplication
I multiplication via morphism composition
I an involution given by †

Hom(X ,X ) is an involutive S–semialgebra



The Topos/External Algebra Approach

For X in A, the set Hom(X ,X ) is a involutive S–semialgebra

Definition
Let A-Alg(X ) be the poset of commutative S–subsemialgebras

A ⊂ Hom(X ,X )

considered a category.



The Topos/External Algebra Approach

Let A-AlgvN(X ) ↪→ A-Alg(X ) be the subcategory of commutative
von Neumann semialgebras

A = A′′

Where for any B ⊂ Hom(X ,X ) the commutant B ′ is defined

B ′ = { f : X → X | f ◦ g = g ◦ f for all g ∈ B }



The Topos/External Algebra Approach
The topos of the “Topos Approach” is the topos is presheaves

A-Alg(X )
op

Set
F

For example, the generalised Gelfand spectrum

A-Alg(X )
op

Set
GSpec

GSpec(A) = { ρ : A→ S | ρ a S–semialgebra homomorphism }

Or the prime spectrum

PSpec(A) = { K ⊂ A| K a subtractive prime ideal }



Recap

Monoidal Approach ↪→ Topos Approach

Internal vs. External

1. what is the “topos approach”?
2. what is “↪→”?
3. what’s the point?



From Internal to External
Theorem
Let A be a †–symmetric monoidal category with finite †–biproducts,
and let (X , µ) be an H∗–algebra in A. Consider the regular
representation

R(µ) = {
x

| for all points
x
}

The commutant R(µ)′ is a maximal von Neumann endomorphism
semialgebra.

Theorem
Each set–like element α of (X , µ) determines an S∗–semialgebra
homomorphism ρα : A→ S

f 7→
α

α

f
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What’s the Point?

Why move to the external point of view?

I In order to study the internal algebras
I For its own sake



A Structure Theorem for H∗–algebras

Definition
A has †–kernels if for each f : X → Y the equalizer

A B
f

0
K

k

exists and k† ◦ k = idK .

Definition
A has complemented †–kernels if A has finite †–biproducts and for
each †–kernel k : K → A there is K such that

A ∼= K ⊕ K



A Structure Theorem for H∗–algebras

For A is a complemented †–kernel category we can prove a version
of Ambrose’s Theorem

µ : X ⊗ X → X
⊕̂
i
µi : Xi ⊗ Xi → Xi

X = R(µ)′ X ↪→
∏
i

ei X

Internal

External

Main idea: find {ei} self–adjoint idempotents s.t.
∑
i
ei = idX



Kochen–Specker Contextuality

A presheaf category [Cop
,Set] has a terminal object T : Cop → Set

Definition
A global section (or global element) of a presheaf F : Cop → Set is a
natural transformation x : T → F .

Theorem
The Kochen–Specker Theorem is equivalent to the statement that
for H with dimension ≥ 3

Hilb-Alg(H)
op

Set
GSpec

has no global sections.



Kochen–Specker Contextuality

Definition
An object X in A is Kochen–Specker contextual if the spectral
presheaf

A-AlgvN(X )
op

Set
GSpec

has no global sections.



Kochen–Specker Contextuality

A commutative quantale Q consists of a complete semilattice with
commutative monoid operation · : Q × Q → Q such that

x · (
∨

y) =
∨

(x · y)

Q is zero–divisor free if x · y = ⊥ implies x = ⊥ or y = ⊥.

Definition
Let Q be a commutative ZDF quantale. RelQ has sets for objects
and Q–valued matrices for morphisms.



Kochen–Specker Contextuality

Theorem
For each set X the spectral presheaf

RelQ -AlgvN(X )
op

Set
GSpec

has global sections.

Every set in RelQ is non–contextual.



Topologising the State Space

The Spectrum of a C ∗–algebra

Hilb-AlgvN(X )
op Top

GSpec

Theorem
GSpec(A) is a compact T2 (Hausdorff) space.



Topologising the State Space

These Spectra can be equipped with the Zariski topology

A-AlgvN(X )
op Top

GSpec

A-AlgvN(X )
op Top

PSpec

Theorem
GSpec(A) is a compact space.

PSpec(A) is a compact T0 space.

Theorem
Let (X , µ) be a H∗–algebra and let X = R(µ)′. The set–like
elements form a compact T1 subspace of GSpec(X).
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