Infinite–Dimensional Categorical Quantum Mechanics, Spectra, and Contextuality

Kevin Dunne

University of Strathclyde

April 2017

Categorical Quantum Mechanics

Monoidal Approach \hookrightarrow Topos Approach

Categorical Quantum Mechanics

Monoidal Approach \hookrightarrow Topos Approach

Internal vs. External

Categorical Quantum Mechanics

Monoidal Approach \hookrightarrow Topos Approach

Internal vs. External

- 1. what is the "topos approach"?
- 2. what is " \hookrightarrow "?
- 3. what's the point?

Symmetric Monoidal Categories

Definition

A strict symmetric monoidal category (\mathcal{C},\otimes,I) consists of

- ▶ Objects *A*, *B*, *C*, ...
- Morphisms $f : A \rightarrow B$
- Monoidal product \otimes

$$f: A \to B$$
 $g: C \to D$

$$f \otimes g : A \otimes B \to C \otimes D$$

Symmetric Monoidal Categories

A dagger on $(\mathcal{C}, \otimes, I)$ consists of an involutive symmetric monoidal functor

$$\dagger:\mathcal{C}^{\mathsf{op}}\to\mathcal{C}$$

i.e. every morphism has an adjoint

A *†*-category *has finite †-biproducts* if it has:

- a zero object 0
- For each X and Y, an object X ⊕ Y, which is a product and coproduct such that π = κ[†]

Example

The category Hilb has:

- Objects: Hilbert spaces
- Morphisms $f: H_1 \rightarrow H_2$ bounded linear maps
- Monoidal product: tensor product of Hilbert spaces
- Monoidal unit : $\mathbb C$
- Dagger: Hermitian adjoint
- Biproducts: direct sum of Hilbert spaces

Monoidal/Internal Algebra Approach

Definition

An algebra in $(\mathcal{A}, \otimes, I)$ consists of: an object $\mathcal{A} \in \mathcal{A}$ and

$$\mu: A \otimes A \to A, \qquad \mu = \Theta$$

A coalgebra in $(\mathcal{A}, \otimes, I)$ consists of: an object $\mathcal{A} \in \mathcal{A}$ and

$$\delta: A \to A \otimes A, \qquad \delta = \bigwedge^{I}$$

A †-algebra consists of an algebra coalgebra pair (A, μ , μ^{\dagger})

Monoidal/Internal Algebra Approach

Monoidal/Internal Algebra Approach

Definition A Frobenius algebra is a \dagger -algebra satisfying (A), (C), (S), (F) and (U).

Definition An H^* -algebra is a †-algebra satisfying (A), (C), (S) and (H).

For H in **Hilb**, the set Hom(H, H) is a C^* -algebra

Definition Let **Hilb-Alg**(H) be the poset of commutative subalgebras

 $\mathbf{A} \subset \operatorname{Hom}(H, H)$

considered a category.

Let $\operatorname{Hilb-Alg}_{\vee N}(H) \hookrightarrow \operatorname{Hilb-Alg}(H)$ be the subcategory of commutative von Neumann algebras

Classical Physics

- State of the observed system \rightarrow
- Output on measuring device \rightarrow The value h(m)

- Physics lab \rightarrow Commutative unital k-algebra A
- Measuring device \rightarrow Element of the algebra $m \in A$
 - Algebra homomorphism $h: A \rightarrow k$

Quantum Physics

Physical system represented by non-commutative Hom(H, H)

Hilb-Alg(H) is the collection of classical subsystems

The topos of the "Topos Approach" is the category of presheaves

$$\mathsf{Hilb}\text{-}\mathsf{Alg}(H)^{^{\mathrm{op}}} \xrightarrow{\quad F \quad } \mathsf{Set}$$

For example, the Gelfand spectrum

$$\begin{array}{l} \textbf{Hilb-Alg(H)}^{^{\mathrm{op}}} \xrightarrow{\text{GSpec}} \textbf{Set} \\ \\ \text{GSpec}(\textbf{A}) = \{ \ \rho : \textbf{A} \rightarrow \mathbb{C} \mid \rho \ \text{ a } \ C^*\text{-algebra homomorphism } \} \end{array}$$

or the prime Spectrum

$$\mathsf{PSpec}(\mathsf{A}) = \{ \ J \subset \mathsf{A} \mid J \ \mathsf{a} \text{ prime ideal} \ \}$$

In the monoidal approach we consider $(\mathcal{A}, \otimes, I, \oplus, \dagger)$.

Consider Hom(I, I), we have:

addition via biproduct convolution

For $s, t: I \rightarrow I$ define the $s + t: I \rightarrow I$

$$I \xrightarrow{\Delta} I \oplus I \xrightarrow{s \oplus t} I \oplus I \xrightarrow{\nabla} I$$

commutative multiplication via morphism composition

S = Hom(I, I) is a commutative semiring

Consider Hom(X, Y), we have:

addition via biproduct convolution

For $f,g:X \to Y$ define the $f+g:X \to Y$

$$X \xrightarrow{\Delta} X \oplus X \xrightarrow{f \oplus g} Y \oplus Y \xrightarrow{\nabla} Y$$

scalar multiplication

$$X \xrightarrow{\sim} X \otimes I \xrightarrow{f \otimes s} Y \otimes I \xrightarrow{\sim} Y$$

Hom(X, Y) is an *S*-semimodule

Consider Hom(X, X), we have:

- addition
- scalar multiplication
- multiplication via morphism composition
- an involution given by †

Hom(X, X) is an involutive S-semialgebra

For X in A, the set Hom(X, X) is a involutive S-semialgebra

Definition Let A-Alg(X) be the poset of commutative S-subsemialgebras A \subset Hom(X, X)

considered a category.

Let \mathcal{A} -Alg_{VN} $(X) \hookrightarrow \mathcal{A}$ -Alg(X) be the subcategory of commutative von Neumann semialgebras

$$A = A''$$

Where for any $B \subset Hom(X, X)$ the *commutant* B' is defined

$$B' = \{ f: X \to X \mid f \circ g = g \circ f \text{ for all } g \in B \}$$

The topos of the "Topos Approach" is the topos is presheaves

$$\mathcal{A}$$
-Alg $(X)^{^{\mathrm{op}}} \longrightarrow$ Set

For example, the generalised Gelfand spectrum

$$\mathcal{A}\text{-}\mathsf{Alg}(X)^{^{\mathrm{op}}} \xrightarrow{\mathsf{GSpec}} \mathsf{Set}$$

 $\mathsf{GSpec}(\mathsf{A}) = \{ \rho : \mathsf{A} \to S \mid \rho \text{ a } S\text{-semialgebra homomorphism } \}$

Or the prime spectrum

 $\mathsf{PSpec}(\mathsf{A}) = \{ \ \mathcal{K} \subset \mathsf{A} | \ \mathcal{K} \text{ a subtractive prime ideal } \}$

Recap

Monoidal Approach \hookrightarrow Topos Approach

Internal vs. External

- 1. what is the "topos approach"?
- 2. what is " \hookrightarrow "?
- 3. what's the point?

From Internal to External

Theorem

Let \mathcal{A} be a \dagger -symmetric monoidal category with finite \dagger -biproducts, and let (X, μ) be an H^* -algebra in \mathcal{A} . Consider the regular representation

The commutant $R(\mu)'$ is a maximal von Neumann endomorphism semialgebra.

From Internal to External

Theorem

Let A be a \dagger -symmetric monoidal category with finite \dagger -biproducts, and let (X, μ) be an H^* -algebra in A. Consider the regular representation

The commutant $R(\mu)'$ is a maximal von Neumann endomorphism semialgebra.

Theorem

Each set-like element α of (X, μ) determines an S^{*}-semialgebra homomorphism $\rho_{\alpha} : \mathbf{A} \to S$

$$\begin{array}{c} \downarrow \\ \hline f \\ \hline \end{array} \qquad \mapsto \qquad \begin{array}{c} \uparrow \\ \hline f \\ \hline \\ \hline \\ \alpha \\ \end{array}$$

Why move to the external point of view?

- In order to study the internal algebras
- For its own sake

A Structure Theorem for H^* -algebras

Definition

 \mathcal{A} has \dagger -kernels if for each $f: X \to Y$ the equalizer

$$K \xrightarrow{k} A \xrightarrow{f} B$$

exists and $k^{\dagger} \circ k = \mathrm{id}_{\mathcal{K}}$.

Definition

 \mathcal{A} has *complemented* \dagger -kernels if \mathcal{A} has finite \dagger -biproducts and for each \dagger -kernel $k : K \to A$ there is \overline{K} such that

$$A\cong K\oplus \overline{K}$$

A Structure Theorem for H^* -algebras

For ${\mathcal A}$ is a complemented $\dagger - {\rm kernel}$ category we can prove a version of Ambrose's Theorem

Main idea: find $\{e_i\}$ self-adjoint idempotents s.t. $\sum_i e_i = id_X$

A presheaf category $[\mathcal{C}^{^{\mathrm{op}}}, \textbf{Set}]$ has a terminal object $\,\mathcal{T}: \mathcal{C}^{^{\mathrm{op}}} \to \textbf{Set}$

Definition

A global section (or global element) of a presheaf $F : \mathcal{C}^{^{\mathrm{op}}} \to \mathbf{Set}$ is a natural transformation $x : T \to F$.

Theorem

The Kochen–Specker Theorem is equivalent to the statement that for H with dimension \geq 3

$$\textbf{Hilb-Alg}(H)^{^{\mathrm{op}}} \xrightarrow{\mathsf{GSpec}} \textbf{Set}$$

has no global sections.

Definition

An object X in A is Kochen–Specker contextual if the spectral presheaf

$$\mathcal{A}\text{-}\mathsf{Alg}_{\mathsf{vN}}(X)^{^{\mathrm{op}}} \xrightarrow{\mathsf{GSpec}} \mathsf{Set}$$

has no global sections.

A commutative quantale Q consists of a complete semilattice with commutative monoid operation $\cdot: Q \times Q \to Q$ such that

$$x \cdot (\bigvee y) = \bigvee (x \cdot y)$$

Q is *zero-divisor free* if $x \cdot y = \bot$ implies $x = \bot$ or $y = \bot$.

Definition

Let Q be a commutative ZDF quantale. Rel_Q has sets for objects and Q-valued matrices for morphisms.

Theorem For each set X the spectral presheaf

$$\operatorname{Rel}_{Q}\operatorname{-Alg}_{\operatorname{vN}}(X)^{\operatorname{op}} \xrightarrow{\operatorname{GSpec}} \operatorname{Set}$$

has global sections.

Every set in Rel_Q is non-contextual.

Topologising the State Space

The Spectrum of a C^* -algebra

$$\mathsf{Hilb}\text{-}\mathsf{Alg}_{\mathsf{vN}}(X)^{^{\mathrm{op}}} \xrightarrow{\mathsf{GSpec}} \mathsf{Top}$$

Theorem $GSpec(\mathbf{A})$ is a compact T_2 (Hausdorff) space.

Topologising the State Space

These Spectra can be equipped with the Zariski topology

$$\mathcal{A}\text{-}\mathsf{Alg}_{\mathsf{vN}}(X)^{^{\mathrm{op}}} \xrightarrow{\mathsf{GSpec}} \mathsf{Top}$$

$$\mathcal{A}\text{-}\mathbf{Alg}_{\mathsf{vN}}(X)^{^{\mathrm{op}}} \xrightarrow{\mathsf{PSpec}} \mathbf{Top}$$

Theorem

GSpec(A) is a compact space.

 $PSpec(\mathbf{A})$ is a compact T_0 space.

Theorem

Let (X, μ) be a H^* -algebra and let $\mathbf{X} = R(\mu)'$. The set-like elements form a compact T_1 subspace of $GSpec(\mathbf{X})$.