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Introduction - motivation for this work

We want to do (diagrammatic) CQM in ∞-dimensions, but...

Hilb has no unital †-Frobenius algebras1

NO group algebras
NO Fourier sampling

Hilb is not dagger compact

NO traces, cups or caps
NO operator-state duality

Hilb lacks other useful gadgets

NO plane-waves or delta functions
NO unbounded operators

Can we recover all of this (using non-standard analysis)? YES, WE CAN.

1Although there is a characterisation of orthonormal bases in terms of H?-algebras.
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Introduction - limit constructions, algebraically

Non-standard analysis: an algebraic way to handle limit constructions2.

(a) Natural numbers are unbounded, and hence:

(i) infinite non-standard natural numbers exist
(ii) any sequence has an non-standard extension to infinite natural indices

(b) Algebraic manipulation of series (without taking limits):

(i) consider a sequence of partial sums an :=
∑n

j=1 bj
(ii) extend it to obtain infinite sums

∑ν
j=1 bj , where ν is infinite natural

(c) Some genuinely new finite vectors arise in non-standard Hilbert spaces:

e.g.
1√
ν

ν∑
n=1

|en〉, where

{
|en〉 form an orthonormal basis

ν is an infinite natural

2Regardless of topological convergence. The sceptics out there might prefer to think
directly in terms of the ultraproduct construction: we work in spaces of sequences,
quotiented by a notion of “asymptotic equality”, or “equality almost everywhere”,
determined by some non-principal ultrafilter F on N.
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Introduction - the Transfer Theorem

The heavy lifting in non-standard analysis is done by the following result.

Theorem (Transfer Theorem)

A sentence ϕ holds in the standard model M of some theory—with
quantifiers ranging over standard elements, functions, relations and
subsets—if and only if the sentence ϕ holds in any/all non-standard models
?M of the theory—with quantifiers ranging over internal non-standard
elements, functions, relations and subsets.
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Introduction - the Transfer Theorem

Example (Natural predecessors)

Consider the sentence defining predecessors in the natural numbers:

∀n ∈ N.
[
n 6= 0⇒ [∃m ∈ N. n = m + 1]

]
By TT, the following sentence holds in the non-standard model ?N:

∀n ∈ ?N.
[
n 6= 0⇒ [∃m ∈ ?N. n = m + 1]

]
Hence all non-zero non-standard naturals have predecessors.
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Introduction - the Transfer Theorem

Example (Well-ordering of naturals)

Consider the sentence defining the well-order property for the natural
numbers, i.e. saying that every non-empty subset of N has a minimum:

∀A ⊆ N.
[
A 6= ∅ ⇒

[
∃m ∈ A.∀a ∈ A.m ≤ a

]]
By TT, the following sentence holds in the non-standard model ?N:

∀A ⊆ ?N.
[
?A 6= ∅ ⇒

[
∃m ∈?A.∀a ∈?A.m ≤ a

]]
Hence all non-empty internal subsets A ⊆ ?N have a minimum. (The
requirement that A be internal is key here: e.g. the subset of all infinite
non-standard naturals has no minimum, but it is also not internal.)
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Introduction - the Transfer Theorem

Example (Partial sums)

Consider the sentence defining the sequence s : N→ R of partial sums for
every sequence f : N→ R in the standard model R:

∀f : N→ R.∃s : N→ R.[
s(0) = f (0) ∧ [∀n ∈ N.s(n + 1) = s(n) + f (n + 1)]

]
By TT, the following sentence holds in the non-standard model ?R:

∀f :?N→?R.∃s :?N→?R.[
s(0) = f (0) ∧ [∀n ∈?N.s(n + 1) = s(n) + f (n + 1)]

]
Hence every internal sequence f : ?N→ ?R admits a corresponding internal
sequence of partial sums s : ?N→ ?R, i.e. the notation

∑m
n=0 f (n) is

legitimate for all m ∈ ?N.
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The category ?Hilb - objects

Objects are pairs H := (|H|,PH) specified by the following data:

(i) a non-standard Hilbert space |H| (the underlying Hilbert space);

(ii) an internal non-standard linear map PH : |H| → |H| such that:

PH is a self-adjoint idempotent (the truncating projector);
there are a non-standard natural D ∈ ?N and a family (|ed〉)Dd=1 of
non-standard vectors in |H| (an orthonormal basis for H) such that

PH =
D∑

d=1

|ed〉〈ed |

By Transfer Theorem we have that D is unique, and we define the
dimension of object H to be the non-standard natural dimH := D.
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The category ?Hilb - morphisms

Morphisms F : H → K in ?Hilb are the those internal non-standard linear
maps F : |H| → |K| such that:

PK ◦ F ◦ PH = F

In particular, the identity for an object H is the truncating projector:

idH := PH

This makes ?Hilb a full subcategory of the Karoubi envelope for the
category of non-standard Hilbert spaces and ?C-linear maps.
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The category ?Hilb - †-symmetric monoidal structure

Morphisms F : H → K in ?Hilb can be expressed as matrices with
non-standard dimensions, using orthonormal bases for H and K:

F =
dimK∑
d ′=1

dimH∑
d=1

|e ′d ′〉Fd ′d〈ed |

In particular, the identity on H can be expressed as follows:

idH =
dimH∑
d=1

|ed〉〈ed |

Equipped with Kronecker product, conjugate transpose, and the ?C-linear
structure of matrices, ?Hilb is an enriched †-symmetric monoidal category,
with ?C as its field of scalars.
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The category ?Hilb - some classical structures

If |ed〉dimH
d=1 is an orthonormal basis for H, the following comultiplication

and counit define a unital special commutative †-Frobenius algebra on H:

:=
dimH∑
d=1

〈ed |:=
dimH∑
d=1

|ed〉 ⊗ |ed〉 ⊗ 〈ed |

When |ed〉dimH
d=1 is the non-standard extension of a standard complete

orthonormal basis |ed〉∞d=1, the comultiplication is the non-standard
extension of the standard isometry given by the H*-algebra associated with
|ed〉∞d=1. In that case, the counit is the genuinely non-standard object.
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The category ?Hilb - dagger compact structure

(i) Consider an object H, and a decomposition PH =
∑dimH

d=1 |ed〉〈ed | of
its truncating projector in terms of some orthonormal basis of H.

(ii) Let |ξd〉 be the state in |H|∗ corresponding to the effect 〈ed | in H.

(iii) The dual object is defined by H∗ := (|H|∗,PH∗), where we let3:

PH∗ :=
dimH∑
d=1

|ξd〉〈ξd |

(iv) Cups and caps can then be defined as follows:

dimH∑
n=1
|ξn〉 ⊗ |en〉:= :=

dimH∑
n=1
〈en| ⊗ 〈ξn|

(v) The category-theoretic dimension for H is TrPH = dimH.

3By Transfer Theorem, this definition is independent of the choice of basis.
S Gogioso, F Genovese (Oxford) Infinite-dimensional CQM CLAP Scotland 12 / 24
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Case study - wavefunctions with periodic boundary

Wavefunctions in an n-dimensional box with periodic boundary conditions.

(i) Underlying Hilbert space ? L2[
(
R/Z

)n
].

(ii) Complete orthonormal basis of momentum eigenstates:

|χk〉 := x → e−i2π k·x

(iii) Dimension D := (2ω + 1)n, where ω is some infinite natural.

Classical structure corresponding to the momentum observable:

:=
+ω∑

k1=−ω
...

+ω∑
kn=−ω

〈χk |:=
+ω∑

k1=−ω
...

+ω∑
kn=−ω

|χk〉 ⊗ |χk〉 ⊗ 〈χk |
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Case study - wavefunctions with periodic boundary

The following multiplication and unit define a unital quasi-special
commutative †-Frobenius algebra, with normalisation factor (2ω + 1)n:

:= |χ0〉:=
+ω∑

k1,h1=−ω
...

+ω∑
kn,hn=−ω

|χk+h〉 ⊗ 〈χk | ⊗ 〈χh|

The addition used here is that of the abelian group ?Zn
2ω+1:

from the point of view of ?Zn, it is cyclic on {−ω, ...,+ω}n;

from the point of view of Zn, it cycles “beyond infinity”.

In particular, it contains Zn as a proper subgroup.
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Case study - wavefunctions with periodic boundary

The classical states for are those in the following form, where x takes the
form x = 1

2ω+1q for some q ∈ ?Zn
2ω+1 (i.e. we have x ∈ 1

2ω+1
?Zn

2ω+1):

|δx〉 :=
+ω∑

k1=−ω
...

+ω∑
kn=−ω

χk(x)∗|χk〉

The classical states for behave as Dirac deltas:

〈δx0
|f 〉 ' f (x0), for near-standard smooth f and near-standard x0

We call them the position eigenstates, and the position observable.
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Interlude - approximating tori by periodic lattices

The requirement that x ∈ 1
2ω+1

?Zn
2ω+1 for position eigenstates |δx〉 is

a consequence of the fact that the functions χk are multiplicative
characters of Zn, but not necessarily of ?Zn

2ω+1.

An undesirable extra phase e i2π(2ω+1)s·x (for generic sj ∈ {−1, 0,+1})
appears when equation ◦ |δx〉 = |δx〉 ⊗ |δx〉 is expanded, and this

phase cancels out in general if and only if x ∈ 1
2ω+1

?Zn
2ω+1.

From the non-standard point of view, 1
2ω+1

?Zn
2ω+1 is a periodic lattice

of infinitesimal mesh 1
2ω+1 in the non-standard torus ?(R/Z)n.

From the standard point of view, 1
2ω+1

?Zn
2ω+1 approximates all

elements of the standard torus (R/Z)n up to infinitesimal equivalence.
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Case study - wavefunctions with periodic boundary

The position and momentum observables are strongly complementary, a
manifestation of the Weyl Canonical Commutation Relations.

Position observable defined by the group algebra for boosts Bk .

Momentum observable acts as the group algebra for translations Tx :({
|δx〉

∣∣∣∣ x ∈ 1

2ω + 1
?Zn

2ω+1

}
, ,

)
∼=
( 1

2ω + 1
?Zn

2ω+1,+, 0
)

The Weyl Canonical Commutation Relations in graphical form:

δx χk

=
χk δx

δx χk

Tx TxBk Bk
χ∗
k(x)
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Case study - wavefunctions on lattices

Wavefunctions on an n-dimensional lattice Zn.

(i) Underlying Hilbert space ? L2[Zn].

(ii) Complete orthonormal basis of position eigenstates:

|δk〉 := h 7→

{
1 if k = h

0 otherwise

(iii) Dimension D := (2ω + 1)n, where ω is some infinite natural.

Classical structure corresponding to the position observable:

:=
+ω∑

k1=−ω
...

+ω∑
kn=−ω

〈δk |:=
+ω∑

k1=−ω
...

+ω∑
kn=−ω

|δk〉 ⊗ |δk〉 ⊗ 〈δk |
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Case study - wavefunctions on lattices

The following multiplication and unit define a unital quasi-special
commutative †-Frobenius algebra, with normalisation factor (2ω + 1)n:

:= |δ0〉:=
+ω∑

k1,h1=−ω
...

+ω∑
kn,hn=−ω

|δk+h〉 ⊗ 〈δk | ⊗ 〈δh|

Its classical states are those in the following form, for x ∈ 1
2ω+1

?Zn
2ω+1:

|χx〉 :=
+ω∑

k1=−ω
...

+ω∑
kn=−ω

e−i2π k·x |δk〉

We call them the momentum eigenstates (they are self-evidently
plane-waves), and the momentum observable. Once again, position and
momentum observables are strongly complementary.
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Interlude - approximating real space by lattices

A common trick in non-standard analysis sees standard real space
approximated by non-standard lattices of infinitesimal mesh.

(i) Fix two odd4 infinite naturals ωuv , ωir ∈ ?N.

(ii) Write ωuvωir = 2ω + 1 for some (unique) infinite natural ω ∈ ?N.

(iii) Consider the periodic lattice 1
ωuv

?Zn
2ω+1 of infinitesimal mesh in the

non-standard torus ( ?R/ωir
?Z)n.

(iv) The standard reals R are recovered by restricting to the (aperiodic)
sub-lattice of finite elements 1

ωuv

?Zn
2ω+1 ∩ ( ?R0/ωir

?Z)n, and then
quotienting by infinitesimal equivalence ':

R ∼=
( 1

ωuv

?Zn
2ω+1 ∩ ( ?R0/ωir

?Z)n
)/
'

4For the sceptics out there: an odd non-standard natural κ ∈ ?N is an equivalence
class κ = [(ki )i∈N] of sequences the elements of which are “asymptotically odd”, or “odd
almost everywhere”, according to the chosen non-principal ultrafilter F on N.
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Case study - wavefunctions in real space

Wavefunctions in n-dimensional real space Rn.

(i) Underlying Hilbert space ? L2[Rn].

(ii) Orthonormal set of non-standard momentum eigenstates:

|χp〉 := x 7→ 1
√
ωuv

e−i2π (p·x), for all p ∈ 1

ωuv

?Zn
2ω+1

(iii) Dimension D := (2ω + 1)n, where 2ω + 1 = ωuvωir .

Classical structure corresponding to the momentum observable:

:=
+ωir∑

p1=−ωir

...
+ωir∑

pn=−ωir

〈χp|:=
+ωir∑

p1=−ωir

...
+ωir∑

pn=−ωir

|χp〉 ⊗ |χp〉 ⊗ 〈χp|
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Case study - wavefunctions in real space

The following multiplication and unit define a unital quasi-special
commutative †-Frobenius algebra, with normalisation factor (2ω + 1)n:

:= |χ0〉:=
+ωir∑

p1,q1=−ωir

...
+ωir∑

pn,qn=−ωir

|χp+q〉 ⊗ 〈χp| ⊗ 〈χq|

Its classical states are those in the following form, for x ∈ 1
ωir

?Zn
2ω+1:

|δx〉 :=

+ωir∑
p1=−ωir

...

+ωir∑
pn=−ωir

χp(x)∗|χp〉

Once again, the classical states for behave as Dirac deltas, so we call
them the position eigenstates, and the position observable. And once
again the position and momentum observables are strongly complementary.
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More stuff out there, and a lot more to come

The framework already covers a lot more material:

quantum fields on infinite lattices (non-separable);

quantum fields in real spaces (non-separable);

quantum algorithm for the Hidden Subgroup Problem on Zn;

Mermin-type non-locality arguments for infinite-dimensional systems.

And even more material is currently being worked out:

position/momentum duality, quantum symmetries and dynamics;

applications to other quantum protocols (e.g. RFI quantum teleport’n);

wavefunctions/fields over general locally compact abelian Lie groups;

wavefunctions/fields over Minkowski space;

connections with Feynman diagrams.
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Thank You!

Thanks for Your Attention!

Any Questions?

S Gogioso, F Genovese. Infinite-dimensional CQM. arXiv:1605.04305
S Gogioso, F Genovese. Towards Quantum Field Theory in CQM5. arXiv:1703.09594v2
S Abramsky, C Heunen. H*-algebras and nonunital FAs. arXiv:1011.6123
A Robinson. Non-standard analysis. Princeton University Press, 1974

CQM := “Categorical Quantum Mechanics”
FA := “Frobenius algebra”

5This is a revised and extended version, and will be out by the end of the week.
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