Infinite-dimensional
 Categorical Quantum Mechanics A talk for CLAP Scotland

Stefano Gogioso and Fabrizio Genovese

Quantum Group, University of Oxford

5 Apr 2017
University of Strathclyde, Glasgow

Introduction - motivation for this work

We want to do (diagrammatic) CQM in ∞-dimensions, but...
${ }^{1}$ Although there is a characterisation of orthonormal bases in terms of H^{\star}-algebras.

Introduction - motivation for this work

We want to do (diagrammatic) CQM in ∞-dimensions, but...

- Hilb has no unital \dagger-Frobenius algebras ${ }^{1}$
- NO group algebras
- NO Fourier sampling
${ }^{1}$ Although there is a characterisation of orthonormal bases in terms of H^{\star}-algebras.

Introduction - motivation for this work

We want to do (diagrammatic) CQM in ∞-dimensions, but...

- Hilb has no unital \dagger-Frobenius algebras ${ }^{1}$
- NO group algebras
- NO Fourier sampling
- Hilb is not dagger compact
- NO traces, cups or caps
- NO operator-state duality
${ }^{1}$ Although there is a characterisation of orthonormal bases in terms of H^{\star}-algebras.

Introduction - motivation for this work

We want to do (diagrammatic) CQM in ∞-dimensions, but...

- Hilb has no unital \dagger-Frobenius algebras ${ }^{1}$
- NO group algebras
- NO Fourier sampling
- Hilb is not dagger compact
- NO traces, cups or caps
- NO operator-state duality
- Hilb lacks other useful gadgets
- NO plane-waves or delta functions
- NO unbounded operators
${ }^{1}$ Although there is a characterisation of orthonormal bases in terms of H^{\star}-algebras.

Introduction - motivation for this work

We want to do (diagrammatic) CQM in ∞-dimensions, but...

- Hilb has no unital \dagger-Frobenius algebras ${ }^{1}$
- NO group algebras
- NO Fourier sampling
- Hilb is not dagger compact
- NO traces, cups or caps
- NO operator-state duality
- Hilb lacks other useful gadgets
- NO plane-waves or delta functions
- NO unbounded operators

Can we recover all of this (using non-standard analysis)?
${ }^{1}$ Although there is a characterisation of orthonormal bases in terms of H^{\star}-algebras.

Introduction - motivation for this work

We want to do (diagrammatic) CQM in ∞-dimensions, but...

- Hilb has no unital \dagger-Frobenius algebras ${ }^{1}$
- NO group algebras
- NO Fourier sampling
- Hilb is not dagger compact
- NO traces, cups or caps
- NO operator-state duality
- Hilb lacks other useful gadgets
- NO plane-waves or delta functions
- NO unbounded operators

Can we recover all of this (using non-standard analysis)? YES, WE CAN.
${ }^{1}$ Although there is a characterisation of orthonormal bases in terms of H^{\star}-algebras.

Introduction - limit constructions, algebraically

Non-standard analysis: an algebraic way to handle limit constructions ${ }^{2}$.

[^0]
Introduction - limit constructions, algebraically

Non-standard analysis: an algebraic way to handle limit constructions ${ }^{2}$.
(a) Natural numbers are unbounded, and hence:
(i) infinite non-standard natural numbers exist
(ii) any sequence has an non-standard extension to infinite natural indices

[^1]
Introduction - limit constructions, algebraically

Non-standard analysis: an algebraic way to handle limit constructions ${ }^{2}$.
(a) Natural numbers are unbounded, and hence:
(i) infinite non-standard natural numbers exist
(ii) any sequence has an non-standard extension to infinite natural indices
(b) Algebraic manipulation of series (without taking limits):
(i) consider a sequence of partial sums $a_{n}:=\sum_{j=1}^{n} b_{j}$
(ii) extend it to obtain infinite sums $\sum_{j=1}^{\nu} b_{j}$, where ν is infinite natural

[^2]
Introduction - limit constructions, algebraically

Non-standard analysis: an algebraic way to handle limit constructions ${ }^{2}$.
(a) Natural numbers are unbounded, and hence:
(i) infinite non-standard natural numbers exist
(ii) any sequence has an non-standard extension to infinite natural indices
(b) Algebraic manipulation of series (without taking limits):
(i) consider a sequence of partial sums $a_{n}:=\sum_{j=1}^{n} b_{j}$
(ii) extend it to obtain infinite sums $\sum_{j=1}^{\nu} b_{j}$, where ν is infinite natural
(c) Some genuinely new finite vectors arise in non-standard Hilbert spaces:
e.g. $\frac{1}{\sqrt{\nu}} \sum_{n=1}^{\nu}\left|e_{n}\right\rangle$, where $\left\{\begin{array}{cl}\left|e_{n}\right\rangle & \text { form an orthonormal basis } \\ \nu & \text { is an infinite natural }\end{array}\right.$

[^3]
Introduction - the Transfer Theorem

The heavy lifting in non-standard analysis is done by the following result.

Theorem (Transfer Theorem)

A sentence φ holds in the standard model M of some theory-with quantifiers ranging over standard elements, functions, relations and subsets-if and only if the sentence φ holds in any/all non-standard models * M of the theory-with quantifiers ranging over internal non-standard elements, functions, relations and subsets.

Introduction - the Transfer Theorem

Example (Natural predecessors)

Consider the sentence defining predecessors in the natural numbers:

$$
\forall n \in \mathbb{N} .[n \neq 0 \Rightarrow[\exists m \in \mathbb{N} . n=m+1]]
$$

By TT, the following sentence holds in the non-standard model *N:

$$
\forall n \in{ }^{\star} \mathbb{N} .\left[n \neq 0 \Rightarrow\left[\exists m \in{ }^{\star} \mathbb{N} . n=m+1\right]\right]
$$

Hence all non-zero non-standard naturals have predecessors.

Introduction - the Transfer Theorem

Example (Well-ordering of naturals)

Consider the sentence defining the well-order property for the natural numbers, i.e. saying that every non-empty subset of \mathbb{N} has a minimum:

$$
\forall A \subseteq \mathbb{N} .[A \neq \emptyset \Rightarrow[\exists m \in A . \forall a \in A . m \leq a]]
$$

By TT, the following sentence holds in the non-standard model $* \mathbb{N}$:

$$
\forall A \subseteq{ }^{\star} \mathbb{N} \cdot\left[{ }^{\star} A \neq \emptyset \Rightarrow\left[\exists m \in^{\star} A \cdot \forall a \in^{\star} A \cdot m \leq a\right]\right]
$$

Hence all non-empty internal subsets $A \subseteq{ }^{*} \mathbb{N}$ have a minimum. (The requirement that A be internal is key here: e.g. the subset of all infinite non-standard naturals has no minimum, but it is also not internal.)

Introduction - the Transfer Theorem

Example (Partial sums)

Consider the sentence defining the sequence $s: \mathbb{N} \rightarrow \mathbb{R}$ of partial sums for every sequence $f: \mathbb{N} \rightarrow \mathbb{R}$ in the standard model \mathbb{R} :

$$
\begin{aligned}
& \forall f: \mathbb{N} \rightarrow \mathbb{R} . \exists s: \mathbb{N} \rightarrow \mathbb{R} . \\
& {[s(0)=f(0) \wedge[\forall n \in \mathbb{N} . s(n+1)=s(n)+f(n+1)]] }
\end{aligned}
$$

By TT, the following sentence holds in the non-standard model $* \mathbb{R}$:

$$
\begin{aligned}
& \forall f::^{\star} \mathbb{N} \rightarrow^{\star} \mathbb{R} \cdot \exists s:{ }^{\star} \mathbb{N} \rightarrow^{\star} \mathbb{R} . \\
& \quad\left[s(0)=f(0) \wedge\left[\forall n \in^{\star} \mathbb{N} \cdot s(n+1)=s(n)+f(n+1)\right]\right]
\end{aligned}
$$

Hence every internal sequence $f:{ }^{*} \mathbb{N} \rightarrow{ }^{*} \mathbb{R}$ admits a corresponding internal sequence of partial sums $s:{ }^{*} \mathbb{N} \rightarrow{ }^{*} \mathbb{R}$, i.e. the notation $\sum_{n=0}^{m} f(n)$ is legitimate for all $m \in{ }^{\star} \mathbb{N}$.

The category *Hilb - objects

Objects are pairs $\mathcal{H}:=\left(|\mathcal{H}|, P_{\mathcal{H}}\right)$ specified by the following data:

The category *Hilb - objects

Objects are pairs $\mathcal{H}:=\left(|\mathcal{H}|, P_{\mathcal{H}}\right)$ specified by the following data:
(i) a non-standard Hilbert space $|\mathcal{H}|$ (the underlying Hilbert space);

The category *Hilb - objects

Objects are pairs $\mathcal{H}:=\left(|\mathcal{H}|, P_{\mathcal{H}}\right)$ specified by the following data:
(i) a non-standard Hilbert space $|\mathcal{H}|$ (the underlying Hilbert space);
(ii) an internal non-standard linear map $P_{\mathcal{H}}:|\mathcal{H}| \rightarrow|\mathcal{H}|$ such that:

The category *Hilb - objects

Objects are pairs $\mathcal{H}:=\left(|\mathcal{H}|, P_{\mathcal{H}}\right)$ specified by the following data:
(i) a non-standard Hilbert space $|\mathcal{H}|$ (the underlying Hilbert space);
(ii) an internal non-standard linear map $P_{\mathcal{H}}:|\mathcal{H}| \rightarrow|\mathcal{H}|$ such that:

- $P_{\mathcal{H}}$ is a self-adjoint idempotent (the truncating projector);

The category *Hilb - objects

Objects are pairs $\mathcal{H}:=\left(|\mathcal{H}|, P_{\mathcal{H}}\right)$ specified by the following data:
(i) a non-standard Hilbert space $|\mathcal{H}|$ (the underlying Hilbert space);
(ii) an internal non-standard linear map $P_{\mathcal{H}}:|\mathcal{H}| \rightarrow|\mathcal{H}|$ such that:

- $P_{\mathcal{H}}$ is a self-adjoint idempotent (the truncating projector);
- there are a non-standard natural $D \in{ }^{*} \mathbb{N}$ and a family $\left(\left|e_{d}\right\rangle\right)_{d=1}^{D}$ of non-standard vectors in $|\mathcal{H}|$ (an orthonormal basis for \mathcal{H}) such that

$$
P_{\mathcal{H}}=\sum_{d=1}^{D}\left|e_{d}\right\rangle\left\langle e_{d}\right|
$$

The category *Hilb - objects

Objects are pairs $\mathcal{H}:=\left(|\mathcal{H}|, P_{\mathcal{H}}\right)$ specified by the following data:
(i) a non-standard Hilbert space $|\mathcal{H}|$ (the underlying Hilbert space);
(ii) an internal non-standard linear map $P_{\mathcal{H}}:|\mathcal{H}| \rightarrow|\mathcal{H}|$ such that:

- $P_{\mathcal{H}}$ is a self-adjoint idempotent (the truncating projector);
- there are a non-standard natural $D \in{ }^{\star} \mathbb{N}$ and a family $\left(\left|e_{d}\right\rangle\right)_{d=1}^{D}$ of non-standard vectors in $|\mathcal{H}|$ (an orthonormal basis for \mathcal{H}) such that

$$
P_{\mathcal{H}}=\sum_{d=1}^{D}\left|e_{d}\right\rangle\left\langle e_{d}\right|
$$

By Transfer Theorem we have that D is unique, and we define the dimension of object \mathcal{H} to be the non-standard natural $\operatorname{dim} \mathcal{H}:=D$.

The category *Hilb - morphisms

Morphisms $F: \mathcal{H} \rightarrow \mathcal{K}$ in ${ }^{\star}$ Hilb are the those internal non-standard linear maps $F:|\mathcal{H}| \rightarrow|\mathcal{K}|$ such that:

$$
P_{\mathcal{K}} \circ F \circ P_{\mathcal{H}}=F
$$

The category *Hilb - morphisms

Morphisms $F: \mathcal{H} \rightarrow \mathcal{K}$ in ${ }^{\star}$ Hilb are the those internal non-standard linear maps $F:|\mathcal{H}| \rightarrow|\mathcal{K}|$ such that:

$$
P_{\mathcal{K}} \circ F \circ P_{\mathcal{H}}=F
$$

In particular, the identity for an object \mathcal{H} is the truncating projector:

$$
i d_{\mathcal{H}}:=P_{\mathcal{H}}
$$

The category *Hilb - morphisms

Morphisms $F: \mathcal{H} \rightarrow \mathcal{K}$ in ${ }^{\star}$ Hilb are the those internal non-standard linear maps $F:|\mathcal{H}| \rightarrow|\mathcal{K}|$ such that:

$$
P_{\mathcal{K}} \circ F \circ P_{\mathcal{H}}=F
$$

In particular, the identity for an object \mathcal{H} is the truncating projector:

$$
i d_{\mathcal{H}}:=P_{\mathcal{H}}
$$

This makes *Hilb a full subcategory of the Karoubi envelope for the category of non-standard Hilbert spaces and ${ }^{*} \mathbb{C}$-linear maps.

The category *Hilb - \dagger-symmetric monoidal structure

Morphisms $F: \mathcal{H} \rightarrow \mathcal{K}$ in ${ }^{\star}$ Hilb can be expressed as matrices with non-standard dimensions, using orthonormal bases for \mathcal{H} and \mathcal{K} :

$$
F=\sum_{d^{\prime}=1}^{\operatorname{dim} \mathcal{K}} \sum_{d=1}^{\operatorname{dim} \mathcal{H}}\left|e_{d^{\prime}}^{\prime}\right\rangle F_{d^{\prime} d}\left\langle e_{d}\right|
$$

The category *Hilb - \dagger-symmetric monoidal structure

Morphisms $F: \mathcal{H} \rightarrow \mathcal{K}$ in ${ }^{\star}$ Hilb can be expressed as matrices with non-standard dimensions, using orthonormal bases for \mathcal{H} and \mathcal{K} :

$$
F=\sum_{d^{\prime}=1}^{\operatorname{dim} \mathcal{K}} \sum_{d=1}^{\operatorname{dim} \mathcal{H}}\left|e_{d^{\prime}}^{\prime}\right\rangle F_{d^{\prime} d}\left\langle e_{d}\right|
$$

In particular, the identity on \mathcal{H} can be expressed as follows:

$$
i d_{\mathcal{H}}=\sum_{d=1}^{\operatorname{dim} \mathcal{H}}\left|e_{d}\right\rangle\left\langle e_{d}\right|
$$

The category *Hilb - \dagger-symmetric monoidal structure

Morphisms $F: \mathcal{H} \rightarrow \mathcal{K}$ in ${ }^{\star}$ Hilb can be expressed as matrices with non-standard dimensions, using orthonormal bases for \mathcal{H} and \mathcal{K} :

$$
F=\sum_{d^{\prime}=1}^{\operatorname{dim} \mathcal{K}} \sum_{d=1}^{\operatorname{dim} \mathcal{H}}\left|e_{d^{\prime}}^{\prime}\right\rangle F_{d^{\prime} d}\left\langle e_{d}\right|
$$

In particular, the identity on \mathcal{H} can be expressed as follows:

$$
i d_{\mathcal{H}}=\sum_{d=1}^{\operatorname{dim} \mathcal{H}}\left|e_{d}\right\rangle\left\langle e_{d}\right|
$$

Equipped with Kronecker product, conjugate transpose, and the * \mathbb{C}-linear structure of matrices, *Hilb is an enriched \dagger-symmetric monoidal category, with ${ }^{\star} \mathbb{C}$ as its field of scalars.

The category *Hilb - some classical structures

If $\left|e_{d}\right\rangle_{d=1}^{\operatorname{dim}_{d} \mathcal{H}}$ is an orthonormal basis for \mathcal{H}, the following comultiplication and counit define a unital special commutative \dagger-Frobenius algebra on \mathcal{H} :

$$
\longrightarrow=\sum_{d=1}^{\operatorname{dim} \mathcal{H}}\left|e_{d}\right\rangle \otimes\left|e_{d}\right\rangle \otimes\left\langle e_{d}\right| \quad \longrightarrow \quad=\sum_{d=1}^{\operatorname{dim} \mathcal{H}}\left\langle e_{d}\right|
$$

The category *Hilb - some classical structures

If $\left|e_{d}\right\rangle_{d=1}^{\operatorname{dim}_{d} \mathcal{H}}$ is an orthonormal basis for \mathcal{H}, the following comultiplication and counit define a unital special commutative \dagger-Frobenius algebra on \mathcal{H} :

$$
\longrightarrow:=\sum_{d=1}^{\operatorname{dim} \mathcal{H}}\left|e_{d}\right\rangle \otimes\left|e_{d}\right\rangle \otimes\left\langle e_{d}\right| \quad-=\sum_{d=1}^{\operatorname{dim} \mathcal{H}}\left\langle e_{d}\right|
$$

When $\left|e_{d}\right\rangle_{d=1}^{\operatorname{dim}_{d} \mathcal{H}}$ is the non-standard extension of a standard complete orthonormal basis $\left|e_{d}\right\rangle_{d=1}^{\infty}$, the comultiplication is the non-standard extension of the standard isometry given by the H^{*}-algebra associated with $\left|e_{d}\right\rangle_{d=1}^{\infty}$. In that case, the counit is the genuinely non-standard object.

The category *Hilb - dagger compact structure

(i) Consider an object \mathcal{H}, and a decomposition $P_{\mathcal{H}}=\sum_{d=1}^{\operatorname{dim} \mathcal{H}}\left|e_{d}\right\rangle\left\langle e_{d}\right|$ of its truncating projector in terms of some orthonormal basis of \mathcal{H}.

[^4]
The category *Hilb - dagger compact structure

(i) Consider an object \mathcal{H}, and a decomposition $P_{\mathcal{H}}=\sum_{d=1}^{\operatorname{dim} \mathcal{H}}\left|e_{d}\right\rangle\left\langle e_{d}\right|$ of its truncating projector in terms of some orthonormal basis of \mathcal{H}.
(ii) Let $\left|\xi_{d}\right\rangle$ be the state in $|\mathcal{H}|^{*}$ corresponding to the effect $\left\langle e_{d}\right|$ in \mathcal{H}.

[^5]
The category *Hilb - dagger compact structure

(i) Consider an object \mathcal{H}, and a decomposition $P_{\mathcal{H}}=\sum_{d=1}^{\operatorname{dim} \mathcal{H}}\left|e_{d}\right\rangle\left\langle e_{d}\right|$ of its truncating projector in terms of some orthonormal basis of \mathcal{H}.
(ii) Let $\left|\xi_{d}\right\rangle$ be the state in $|\mathcal{H}|^{*}$ corresponding to the effect $\left\langle e_{d}\right|$ in \mathcal{H}.
(iii) The dual object is defined by $\mathcal{H}^{*}:=\left(|\mathcal{H}|^{*}, P_{\mathcal{H}^{*}}\right)$, where we let ${ }^{3}$:

$$
P_{\mathcal{H}^{*}}:=\sum_{d=1}^{\operatorname{dim} \mathcal{H}}\left|\xi_{d}\right\rangle\left\langle\xi_{d}\right|
$$

[^6]
The category *Hilb - dagger compact structure

(i) Consider an object \mathcal{H}, and a decomposition $P_{\mathcal{H}}=\sum_{d=1}^{\operatorname{dim} \mathcal{H}}\left|e_{d}\right\rangle\left\langle e_{d}\right|$ of its truncating projector in terms of some orthonormal basis of \mathcal{H}.
(ii) Let $\left|\xi_{d}\right\rangle$ be the state in $|\mathcal{H}|^{*}$ corresponding to the effect $\left\langle e_{d}\right|$ in \mathcal{H}.
(iii) The dual object is defined by $\mathcal{H}^{*}:=\left(|\mathcal{H}|^{*}, P_{\mathcal{H}^{*}}\right)$, where we let ${ }^{3}$:

$$
P_{\mathcal{H}^{*}}:=\sum_{d=1}^{\operatorname{dim} \mathcal{H}}\left|\xi_{d}\right\rangle\left\langle\xi_{d}\right|
$$

(iv) Cups and caps can then be defined as follows:

$$
\oint:=\sum_{n=1}^{\operatorname{dim} \mathcal{H}}\left|\xi_{n}\right\rangle \otimes\left|e_{n}\right\rangle \quad==\sum_{n=1}^{\operatorname{dim} \mathcal{H}}\left\langle e_{n}\right| \otimes\left\langle\xi_{n}\right|
$$

[^7]
The category *Hilb - dagger compact structure

(i) Consider an object \mathcal{H}, and a decomposition $P_{\mathcal{H}}=\sum_{d=1}^{\operatorname{dim} \mathcal{H}}\left|e_{d}\right\rangle\left\langle e_{d}\right|$ of its truncating projector in terms of some orthonormal basis of \mathcal{H}.
(ii) Let $\left|\xi_{d}\right\rangle$ be the state in $|\mathcal{H}|^{*}$ corresponding to the effect $\left\langle e_{d}\right|$ in \mathcal{H}.
(iii) The dual object is defined by $\mathcal{H}^{*}:=\left(|\mathcal{H}|^{*}, P_{\mathcal{H}^{*}}\right)$, where we let ${ }^{3}$:

$$
P_{\mathcal{H}^{*}}:=\sum_{d=1}^{\operatorname{dim} \mathcal{H}}\left|\xi_{d}\right\rangle\left\langle\xi_{d}\right|
$$

(iv) Cups and caps can then be defined as follows:

(v) The category-theoretic dimension for \mathcal{H} is $\operatorname{Tr} P_{\mathcal{H}}=\operatorname{dim} \mathcal{H}$.
${ }^{3}$ By Transfer Theorem, this definition is independent of the choice of basis.

Case study - wavefunctions with periodic boundary

Wavefunctions in an n-dimensional box with periodic boundary conditions.
(i) Underlying Hilbert space ${ }^{\star} \mathrm{L}^{2}\left[(\mathbb{R} / \mathbb{Z})^{n}\right]$.
(ii) Complete orthonormal basis of momentum eigenstates:

$$
\left|\chi_{\underline{k}}\right\rangle:=\underline{x} \rightarrow e^{-i 2 \pi \underline{k} \cdot \underline{x}}
$$

(iii) Dimension $D:=(2 \omega+1)^{n}$, where ω is some infinite natural.

Case study - wavefunctions with periodic boundary

Wavefunctions in an n-dimensional box with periodic boundary conditions.
(i) Underlying Hilbert space ${ }^{\star} \mathrm{L}^{2}\left[(\mathbb{R} / \mathbb{Z})^{n}\right]$.
(ii) Complete orthonormal basis of momentum eigenstates:

$$
\left|\chi_{\underline{k}}\right\rangle:=\underline{x} \rightarrow e^{-i 2 \pi \underline{k} \cdot \underline{x}}
$$

(iii) Dimension $D:=(2 \omega+1)^{n}$, where ω is some infinite natural.

Classical structure corresponding to the momentum observable:

$$
\longrightarrow:=\sum_{k_{1}=-\omega}^{+\omega} \ldots \sum_{k_{n}=-\omega}^{+\omega}\left|\chi_{\underline{k}}\right\rangle \otimes\left|\chi_{\underline{k}}\right\rangle \otimes\left\langle\chi_{\underline{\underline{k}}}\right| \quad \longrightarrow \quad:=\sum_{k_{1}=-\omega}^{+\omega} \ldots \sum_{k_{n}=-\omega}^{+\omega}\left\langle\chi_{\underline{k}}\right|
$$

Case study - wavefunctions with periodic boundary

The following multiplication and unit define a unital quasi-special commutative \dagger-Frobenius algebra, with normalisation factor $(2 \omega+1)^{n}$:

$$
\text { 〇- }:=\sum_{k_{1}, h_{1}=-\omega}^{+\omega} \ldots \sum_{k_{n}, h_{n}=-\omega}^{+\omega}\left|\chi_{\underline{k}+\underline{h}}\right\rangle \otimes\left\langle\chi_{\underline{k}}\right| \otimes\left\langle\chi_{\underline{\underline{h}}} \quad \quad:=\mid \chi_{\underline{0}}\right\rangle
$$

Case study - wavefunctions with periodic boundary

The following multiplication and unit define a unital quasi-special commutative \dagger-Frobenius algebra, with normalisation factor $(2 \omega+1)^{n}$:

$$
\bigcirc:=\sum_{k_{1}, h_{1}=-\omega}^{+\omega} \ldots \sum_{k_{n}, h_{n}=-\omega}^{+\omega}\left|\chi_{\underline{k}+\underline{h}}\right\rangle \otimes\left\langle\chi_{\underline{k}}\right| \otimes\left\langle\chi_{\underline{\underline{h}}}\right| \quad \quad:=\left|\chi_{\underline{0}}\right\rangle
$$

The addition used here is that of the abelian group ${ }^{*} \mathbb{Z}_{2 \omega+1}^{n}$:

- from the point of view of ${ }^{*} \mathbb{Z}^{n}$, it is cyclic on $\{-\omega, \ldots,+\omega\}^{n}$;
- from the point of view of \mathbb{Z}^{n}, it cycles "beyond infinity". In particular, it contains \mathbb{Z}^{n} as a proper subgroup.

Case study - wavefunctions with periodic boundary

The classical states for \bullet are those in the following form, where \underline{x} takes the form $\underline{x}=\frac{1}{2 \omega+1} \underline{q}$ for some $\underline{q} \in{ }^{\star} \mathbb{Z}_{2 \omega+1}^{n}$ (i.e. we have $\underline{x} \in \frac{1}{2 \omega+1} * \mathbb{Z}_{2 \omega+1}^{n}$):

$$
\left|\delta_{\underline{\underline{x}}}\right\rangle:=\sum_{k_{1}=-\omega}^{+\omega} \ldots \sum_{k_{n}=-\omega}^{+\omega} \chi_{\underline{k}}(\underline{x})^{*}\left|\chi_{\underline{k}}\right\rangle
$$

Case study - wavefunctions with periodic boundary

The classical states for \bullet are those in the following form, where \underline{x} takes the form $\underline{x}=\frac{1}{2 \omega+1} \underline{q}$ for some $\underline{q} \in{ }^{\star} \mathbb{Z}_{2 \omega+1}^{n}$ (i.e. we have $\underline{x} \in \frac{1}{2 \omega+1}{ }^{*} \mathbb{Z}_{2 \omega+1}^{n}$):

$$
\left|\delta_{\underline{x}}\right\rangle:=\sum_{k_{1}=-\omega}^{+\omega} \ldots \sum_{k_{n}=-\omega}^{+\omega} \chi_{\underline{k}}(\underline{x})^{*}\left|\chi_{\underline{k}}\right\rangle
$$

The classical states for \bullet behave as Dirac deltas:

$$
\left\langle\delta_{\underline{x}_{0}} \mid f\right\rangle \simeq f\left(\underline{x}_{0}\right), \text { for near-standard smooth } f \text { and near-standard } \underline{x}_{0}
$$

We call them the position eigenstates, and \bullet the position observable.

Interlude - approximating tori by periodic lattices

- The requirement that $\underline{x} \in \frac{1}{2 \omega+1} * \mathbb{Z}_{2 \omega+1}^{n}$ for position eigenstates $\left|\delta_{\underline{x}}\right\rangle$ is a consequence of the fact that the functions $\chi_{\underline{k}}$ are multiplicative characters of \mathbb{Z}^{n}, but not necessarily of ${ }^{\star} \mathbb{Z}_{2 \omega+1}^{n}$.

Interlude - approximating tori by periodic lattices

- The requirement that $\underline{x} \in \frac{1}{2 \omega+1} * \mathbb{Z}_{2 \omega+1}^{n}$ for position eigenstates $\left|\delta_{\underline{x}}\right\rangle$ is a consequence of the fact that the functions $\chi_{\underline{k}}$ are multiplicative characters of \mathbb{Z}^{n}, but not necessarily of ${ }^{*} \mathbb{Z}_{2 \omega+1}^{n}$.
- An undesirable extra phase $e^{i 2 \pi(2 \omega+1) s \cdot x}$ (for generic $s_{j} \in\{-1,0,+1\}$) appears when equation $\prec \circ\left|\delta_{\underline{x}}\right\rangle=\left|\delta_{\underline{x}}\right\rangle \otimes\left|\delta_{\underline{\underline{x}}}\right\rangle$ is expanded, and this phase cancels out in general if and only if $\underline{x} \in \frac{1}{2 \omega+1} \star \mathbb{Z}_{2 \omega+1}^{n}$.

Interlude - approximating tori by periodic lattices

- The requirement that $\underline{x} \in \frac{1}{2 \omega+1} \star \mathbb{Z}_{2 \omega+1}^{n}$ for position eigenstates $\left|\delta_{\underline{x}}\right\rangle$ is a consequence of the fact that the functions $\chi_{\underline{k}}$ are multiplicative characters of \mathbb{Z}^{n}, but not necessarily of ${ }^{\star} \mathbb{Z}_{2 \omega+1}^{n}$.
- An undesirable extra phase $e^{i 2 \pi(2 \omega+1) s \cdot \underline{x}}$ (for generic $s_{j} \in\{-1,0,+1\}$) appears when equation $-\left\{\circ\left|\delta_{\underline{x}}\right\rangle=\left|\delta_{\underline{x}}\right\rangle \otimes\left|\delta_{\underline{x}}\right\rangle\right.$ is expanded, and this phase cancels out in general if and only if $\underline{x} \in \frac{1}{2 \omega+1} \star \mathbb{Z}_{2 \omega+1}^{n}$.
- From the non-standard point of view, $\frac{1}{2 \omega+1} \star \mathbb{Z}_{2 \omega+1}^{n}$ is a periodic lattice of infinitesimal mesh $\frac{1}{2 \omega+1}$ in the non-standard torus ${ }^{\star}(\mathbb{R} / \mathbb{Z})^{n}$.

Interlude - approximating tori by periodic lattices

- The requirement that $\underline{x} \in \frac{1}{2 \omega+1} * \mathbb{Z}_{2 \omega+1}^{n}$ for position eigenstates $\left|\delta_{\underline{x}}\right\rangle$ is a consequence of the fact that the functions $\chi_{\underline{k}}$ are multiplicative characters of \mathbb{Z}^{n}, but not necessarily of ${ }^{\star} \mathbb{Z}_{2 \omega+1}^{n}$.
- An undesirable extra phase $e^{i 2 \pi(2 \omega+1) s \cdot \underline{x}}$ (for generic $s_{j} \in\{-1,0,+1\}$) appears when equation $-\left\{\circ\left|\delta_{\underline{x}}\right\rangle=\left|\delta_{\underline{x}}\right\rangle \otimes\left|\delta_{\underline{x}}\right\rangle\right.$ is expanded, and this phase cancels out in general if and only if $\underline{x} \in \frac{1}{2 \omega+1} \star \mathbb{Z}_{2 \omega+1}^{n}$.
- From the non-standard point of view, $\frac{1}{2 \omega+1} * \mathbb{Z}_{2 \omega+1}^{n}$ is a periodic lattice of infinitesimal mesh $\frac{1}{2 \omega+1}$ in the non-standard torus ${ }^{\star}(\mathbb{R} / \mathbb{Z})^{n}$.
- From the standard point of view, $\frac{1}{2 \omega+1}{ }^{\star} \mathbb{Z}_{2 \omega+1}^{n}$ approximates all elements of the standard torus $(\mathbb{R} / \mathbb{Z})^{n}$ up to infinitesimal equivalence.

Case study - wavefunctions with periodic boundary

The position and momentum observables are strongly complementary, a manifestation of the Weyl Canonical Commutation Relations.

Case study - wavefunctions with periodic boundary

The position and momentum observables are strongly complementary, a manifestation of the Weyl Canonical Commutation Relations.

- Position observable defined by the group algebra for boosts $B_{\underline{k}}$.
- Momentum observable acts as the group algebra for translations $T_{\underline{x}}$:

$$
\left(\left\{\left|\delta_{\underline{x}}\right\rangle \left\lvert\, \underline{x} \in \frac{1}{2 \omega+1} * \mathbb{Z}_{2 \omega+1}^{n}\right.\right\},>-, 0-\right) \cong\left(\frac{1}{2 \omega+1} * \mathbb{Z}_{2 \omega+1}^{n},+, 0\right)
$$

Case study - wavefunctions with periodic boundary

The position and momentum observables are strongly complementary, a manifestation of the Weyl Canonical Commutation Relations.

- Position observable defined by the group algebra for boosts $B_{\underline{k}}$.
- Momentum observable acts as the group algebra for translations $T_{\underline{x}}$:

$$
\left.\left(\left\{\left|\delta_{\underline{x}}\right\rangle \left\lvert\, \underline{x} \in \frac{1}{2 \omega+1}{ }^{\star} \mathbb{Z}_{2 \omega+1}^{n}\right.\right\},\right\rangle--, \circ-\right) \cong\left(\frac{1}{2 \omega+1}{ }^{\star} \mathbb{Z}_{2 \omega+1}^{n},+, 0\right)
$$

The Weyl Canonical Commutation Relations in graphical form:

Case study - wavefunctions on lattices

Wavefunctions on an n-dimensional lattice \mathbb{Z}^{n}.
(i) Underlying Hilbert space ${ }^{*} L^{2}\left[\mathbb{Z}^{n}\right]$.
(ii) Complete orthonormal basis of position eigenstates:

$$
\left|\delta_{\underline{k}}\right\rangle:=\underline{h} \mapsto \begin{cases}1 & \text { if } \underline{k}=\underline{h} \\ 0 & \text { otherwise }\end{cases}
$$

(iii) Dimension $D:=(2 \omega+1)^{n}$, where ω is some infinite natural.

Case study - wavefunctions on lattices

Wavefunctions on an n-dimensional lattice \mathbb{Z}^{n}.
(i) Underlying Hilbert space ${ }^{\star} \mathrm{L}^{2}\left[\mathbb{Z}^{n}\right]$.
(ii) Complete orthonormal basis of position eigenstates:

$$
\left|\delta_{\underline{k}}\right\rangle:=\underline{h} \mapsto \begin{cases}1 & \text { if } \underline{k}=\underline{h} \\ 0 & \text { otherwise }\end{cases}
$$

(iii) Dimension $D:=(2 \omega+1)^{n}$, where ω is some infinite natural.

Classical structure corresponding to the position observable:

$$
\text { 〕:= } \sum_{k_{1}=-\omega}^{+\omega} \cdots \sum_{k_{n}=-\omega}^{+\omega}\left|\delta_{\underline{k}}\right\rangle \otimes\left|\delta_{\underline{k}}\right\rangle \otimes\left\langle\delta_{\underline{k}}\right| \quad 0 \quad \sum_{k_{1}=-\omega}^{+\omega} \ldots \sum_{k_{n}=-\omega}^{+\omega}\left\langle\delta_{\underline{k}}\right|
$$

Case study - wavefunctions on lattices

The following multiplication and unit define a unital quasi-special commutative \dagger-Frobenius algebra, with normalisation factor $(2 \omega+1)^{n}$:

Case study - wavefunctions on lattices

The following multiplication and unit define a unital quasi-special commutative \dagger-Frobenius algebra, with normalisation factor $(2 \omega+1)^{n}$:

$$
\text { 〇-_ := } \sum_{k_{1}, h_{1}=-\omega}^{+\omega} \ldots \sum_{k_{n}, h_{n}=-\omega}^{+\omega}\left|\delta_{\underline{k_{+}} \underline{\underline{h}}}\right\rangle \otimes\left\langle\delta_{\underline{k}}\right| \otimes\left\langle\delta_{\underline{\underline{h}}} \quad \text { O- }:=\mid \delta_{0}\right\rangle
$$

Its classical states are those in the following form, for $\underline{x} \in \frac{1}{2 \omega+1}{ }^{\star} \mathbb{Z}_{2 \omega+1}^{n}$:

$$
\left|\chi_{\underline{x}}\right\rangle:=\sum_{k_{1}=-\omega}^{+\omega} \ldots \sum_{k_{n}=-\omega}^{+\omega} e^{-i 2 \pi \underline{k} \cdot \underline{x}}\left|\delta_{\underline{k}}\right\rangle
$$

We call them the momentum eigenstates (they are self-evidently plane-waves), and \circ the momentum observable.

Case study - wavefunctions on lattices

The following multiplication and unit define a unital quasi-special commutative \dagger-Frobenius algebra, with normalisation factor $(2 \omega+1)^{n}$:

Its classical states are those in the following form, for $\underline{x} \in \frac{1}{2 \omega+1}{ }^{*} \mathbb{Z}_{2 \omega+1}^{n}$:

$$
\left|\chi_{\underline{x}}\right\rangle:=\sum_{k_{1}=-\omega}^{+\omega} \ldots \sum_{k_{n}=-\omega}^{+\omega} e^{-i 2 \pi \underline{k} \cdot \underline{x}}\left|\delta_{\underline{k}}\right\rangle
$$

We call them the momentum eigenstates (they are self-evidently plane-waves), and \circ the momentum observable. Once again, position and momentum observables are strongly complementary.

Interlude - approximating real space by lattices

A common trick in non-standard analysis sees standard real space approximated by non-standard lattices of infinitesimal mesh.

[^8]
Interlude - approximating real space by lattices

A common trick in non-standard analysis sees standard real space approximated by non-standard lattices of infinitesimal mesh.
(i) Fix two odd ${ }^{4}$ infinite naturals $\omega_{u v}, \omega_{i r} \in{ }^{\star} \mathbb{N}$.

[^9]
Interlude - approximating real space by lattices

A common trick in non-standard analysis sees standard real space approximated by non-standard lattices of infinitesimal mesh.
(i) Fix two odd ${ }^{4}$ infinite naturals $\omega_{u v}, \omega_{i r} \in{ }^{\star} \mathbb{N}$.
(ii) W rite $\omega_{u v} \omega_{i r}=2 \omega+1$ for some (unique) infinite natural $\omega \in{ }^{*} \mathbb{N}$.

[^10]
Interlude - approximating real space by lattices

A common trick in non-standard analysis sees standard real space approximated by non-standard lattices of infinitesimal mesh.
(i) Fix two odd ${ }^{4}$ infinite naturals $\omega_{u v}, \omega_{i r} \in{ }^{\star} \mathbb{N}$.
(ii) Write $\omega_{u v} \omega_{i r}=2 \omega+1$ for some (unique) infinite natural $\omega \in{ }^{\star} \mathbb{N}$.
(iii) Consider the periodic lattice $\frac{1}{\omega_{\mu v}}{ }^{\star} \mathbb{Z}_{2 \omega+1}^{n}$ of infinitesimal mesh in the non-standard torus $\left({ }^{\star} \mathbb{R} / \omega_{\text {ir }}{ }^{\star} \mathbb{Z}\right)^{\omega}{ }^{n}$.

[^11]
Interlude - approximating real space by lattices

A common trick in non-standard analysis sees standard real space approximated by non-standard lattices of infinitesimal mesh.
(i) Fix two odd ${ }^{4}$ infinite naturals $\omega_{u v}, \omega_{i r} \in{ }^{\star} \mathbb{N}$.
(ii) Write $\omega_{u v} \omega_{i r}=2 \omega+1$ for some (unique) infinite natural $\omega \in{ }^{\star} \mathbb{N}$.
(iii) Consider the periodic lattice $\frac{1}{\omega_{\mu v}}{ }^{\star} \mathbb{Z}_{2 \omega+1}^{n}$ of infinitesimal mesh in the non-standard torus $\left({ }^{\star} \mathbb{R} / \omega_{\text {ir }}{ }^{\star} \mathbb{Z}\right)^{\mu \nu}$.
(iv) The standard reals \mathbb{R} are recovered by restricting to the (aperiodic) sub-lattice of finite elements $\frac{1}{\omega_{u v}} \star \mathbb{Z}_{2 \omega+1}^{n} \cap\left({ }^{\star} \mathbb{R}_{0} / \omega_{i r}{ }^{\star} \mathbb{Z}\right)^{n}$, and then quotienting by infinitesimal equivalence \simeq :

$$
\mathbb{R} \cong\left(\frac{1}{\omega_{u v}}{ }^{\star} \mathbb{Z}_{2 \omega+1}^{n} \cap\left({ }^{\star} \mathbb{R}_{0} / \omega_{i r}{ }^{\star} \mathbb{Z}\right)^{n}\right) / \simeq
$$

[^12]
Case study - wavefunctions in real space

Wavefunctions in n-dimensional real space \mathbb{R}^{n}.
(i) Underlying Hilbert space ${ }^{\star} L^{2}\left[\mathbb{R}^{n}\right]$.
(ii) Orthonormal set of non-standard momentum eigenstates:

$$
\left|\chi_{\underline{p}}\right\rangle:=\underline{x} \mapsto \frac{1}{\sqrt{\omega_{u v}}} e^{-i 2 \pi(\underline{p} \cdot \underline{x})}, \text { for all } \underline{p} \in \frac{1}{\omega_{u v}} \mathbb{Z}_{2 \omega+1}^{n}
$$

(iii) Dimension $D:=(2 \omega+1)^{n}$, where $2 \omega+1=\omega_{u v} \omega_{i r}$.

Case study - wavefunctions in real space

Wavefunctions in n-dimensional real space \mathbb{R}^{n}.
(i) Underlying Hilbert space ${ }^{\star} L^{2}\left[\mathbb{R}^{n}\right]$.
(ii) Orthonormal set of non-standard momentum eigenstates:

$$
\left|\chi_{\underline{p}}\right\rangle:=\underline{x} \mapsto \frac{1}{\sqrt{\omega_{u v}}} e^{-i 2 \pi(\underline{p} \cdot \underline{x})}, \text { for all } \underline{p} \in \frac{1}{\omega_{u v}} \mathbb{Z}_{2 \omega+1}^{n}
$$

(iii) Dimension $D:=(2 \omega+1)^{n}$, where $2 \omega+1=\omega_{u v} \omega_{i r}$.

Classical structure corresponding to the momentum observable:

$$
-0:=\sum_{p_{1}=-\omega_{i r}}^{+\omega_{i r}} \ldots \sum_{p_{n}=-\omega_{i r}}^{+w_{i r}}\left|\chi_{\underline{p}}\right\rangle \otimes\left|\chi_{\underline{p}}\right\rangle \otimes\left\langle\chi_{\underline{p}}\right| \quad-\quad \sum_{p_{1}=-\omega_{i r}}^{+\omega_{i r}} \ldots \sum_{p_{n}=-\omega_{i r}}^{+\omega_{i r}}\left\langle\chi_{\underline{p}}\right|
$$

Case study - wavefunctions in real space

The following multiplication and unit define a unital quasi-special commutative \dagger-Frobenius algebra, with normalisation factor $(2 \omega+1)^{n}$:

$$
\sum:=\sum_{p_{1}, q_{1}=-\omega_{i r}}^{+\omega_{i r}} \ldots \sum_{p_{n}, q_{n}=-\omega_{i r}}^{+\omega_{i r}}\left|\chi_{\underline{p}+\underline{q}}\right\rangle \otimes\left\langle\chi_{\underline{\underline{p}}}\right| \otimes\left\langle\chi_{\underline{q}}\right| \quad 0 \quad:=\left|\chi_{\underline{0}}\right\rangle
$$

Case study - wavefunctions in real space

The following multiplication and unit define a unital quasi-special commutative \dagger-Frobenius algebra, with normalisation factor $(2 \omega+1)^{n}$:

$$
\sum:=\sum_{p_{1}, q_{1}=-\omega_{i r}}^{+\omega_{i r}} \ldots \sum_{p_{n}, q_{n}=-\omega_{i r}}^{+\omega_{i r}}\left|\chi_{\underline{p}+\underline{q}}\right\rangle \otimes\left\langle\chi_{\underline{\underline{p}}}\right| \otimes\left\langle\chi_{\underline{q}}\right| \quad 0 \quad:=\left|\chi_{\underline{0}}\right\rangle
$$

Its classical states are those in the following form, for $\underline{x} \in \frac{1}{\omega_{\text {ir }}} \star \mathbb{Z}_{2 \omega+1}^{n}$:

$$
\left|\delta_{\underline{x}}\right\rangle:=\sum_{p_{1}=-\omega_{\text {ir }}}^{+\omega_{\text {ir }}} \ldots \sum_{p_{n}=-\omega_{\text {ir }}}^{+\omega_{\text {ir }}} \chi_{\underline{p}}(\underline{x})^{*}\left|\chi_{\underline{p}}\right\rangle
$$

Once again, the classical states for \bullet behave as Dirac deltas, so we call them the position eigenstates, and \bullet the position observable.

Case study - wavefunctions in real space

The following multiplication and unit define a unital quasi-special commutative \dagger-Frobenius algebra, with normalisation factor $(2 \omega+1)^{n}$:

$$
\sum:=\sum_{p_{1}, q_{1}=-\omega_{i r}}^{+\omega_{i r}} \ldots \sum_{p_{n}, q_{n}=-\omega_{i r}}^{+\omega_{i r}}\left|\chi_{\underline{p}+\underline{q}}\right\rangle \otimes\left\langle\chi_{\underline{p}}\right| \otimes\left\langle\chi_{\underline{q}}\right| \quad \bullet \quad:=\left|\chi_{\underline{0}}\right\rangle
$$

Its classical states are those in the following form, for $\underline{x} \in \frac{1}{\omega_{i r}} * \mathbb{Z}_{2 \omega+1}^{n}$:

$$
\left|\delta_{\underline{x}}\right\rangle:=\sum_{p_{1}=-\omega_{\text {ir }}}^{+\omega_{\text {ir }}} \ldots \sum_{p_{n}=-\omega_{\text {ir }}}^{+\omega_{\text {ir }}} \chi_{\underline{p}}(\underline{x})^{*}\left|\chi_{\underline{p}}\right\rangle
$$

Once again, the classical states for \bullet behave as Dirac deltas, so we call them the position eigenstates, and \bullet the position observable. And once again the position and momentum observables are strongly complementary.

More stuff out there, and a lot more to come

The framework already covers a lot more material:

- quantum fields on infinite lattices (non-separable);
- quantum fields in real spaces (non-separable);
- quantum algorithm for the Hidden Subgroup Problem on \mathbb{Z}^{n};
- Mermin-type non-locality arguments for infinite-dimensional systems.

More stuff out there, and a lot more to come

The framework already covers a lot more material:

- quantum fields on infinite lattices (non-separable);
- quantum fields in real spaces (non-separable);
- quantum algorithm for the Hidden Subgroup Problem on \mathbb{Z}^{n};
- Mermin-type non-locality arguments for infinite-dimensional systems.

And even more material is currently being worked out:

- position/momentum duality, quantum symmetries and dynamics;
- applications to other quantum protocols (e.g. RFI quantum teleport'n);
- wavefunctions/fields over general locally compact abelian Lie groups;
- wavefunctions/fields over Minkowski space;
- connections with Feynman diagrams.

Thank You!

Thanks for Your Attention!

Any Questions?

S Gogioso, F Genovese. Infinite-dimensional CQM. arXiv:1605.04305
S Gogioso, F Genovese. Towards Quantum Field Theory in CQM ${ }^{5}$. arXiv:1703.09594v2
S Abramsky, C Heunen. H^{*}-algebras and nonunital FAs. arXiv:1011.6123
A Robinson. Non-standard analysis. Princeton University Press, 1974
CQM := "Categorical Quantum Mechanics"
FA := "Frobenius algebra"

${ }^{5}$ This is a revised and extended version, and will be out by the end of the week.

[^0]: ${ }^{2}$ Regardless of topological convergence. The sceptics out there might prefer to think directly in terms of the ultraproduct construction: we work in spaces of sequences, quotiented by a notion of "asymptotic equality", or "equality almost everywhere", determined by some non-principal ultrafilter \mathcal{F} on \mathbb{N}.

[^1]: ${ }^{2}$ Regardless of topological convergence. The sceptics out there might prefer to think directly in terms of the ultraproduct construction: we work in spaces of sequences, quotiented by a notion of "asymptotic equality", or "equality almost everywhere", determined by some non-principal ultrafilter \mathcal{F} on \mathbb{N}.

[^2]: ${ }^{2}$ Regardless of topological convergence. The sceptics out there might prefer to think directly in terms of the ultraproduct construction: we work in spaces of sequences, quotiented by a notion of "asymptotic equality", or "equality almost everywhere", determined by some non-principal ultrafilter \mathcal{F} on \mathbb{N}.

[^3]: ${ }^{2}$ Regardless of topological convergence. The sceptics out there might prefer to think directly in terms of the ultraproduct construction: we work in spaces of sequences, quotiented by a notion of "asymptotic equality", or "equality almost everywhere", determined by some non-principal ultrafilter \mathcal{F} on \mathbb{N}.

[^4]: ${ }^{3}$ By Transfer Theorem, this definition is independent of the choice of basis.

[^5]: ${ }^{3}$ By Transfer Theorem, this definition is independent of the choice of basis.

[^6]: ${ }^{3}$ By Transfer Theorem, this definition is independent of the choice of basis.

[^7]: ${ }^{3}$ By Transfer Theorem, this definition is independent of the choice of basis.

[^8]: ${ }^{4}$ For the sceptics out there: an odd non-standard natural $\kappa \in{ }^{\star} \mathbb{N}$ is an equivalence class $\kappa=\left[\left(k_{i}\right)_{i \in \mathbb{N}}\right]$ of sequences the elements of which are "asymptotically odd", or "odd almost everywhere", according to the chosen non-principal ultrafilter \mathcal{F} on \mathbb{N}.

[^9]: ${ }^{4}$ For the sceptics out there: an odd non-standard natural $\kappa \in{ }^{\star} \mathbb{N}$ is an equivalence class $\kappa=\left[\left(k_{i}\right)_{i \in \mathbb{N}}\right]$ of sequences the elements of which are "asymptotically odd", or "odd almost everywhere", according to the chosen non-principal ultrafilter \mathcal{F} on \mathbb{N}.

[^10]: ${ }^{4}$ For the sceptics out there: an odd non-standard natural $\kappa \in{ }^{\star} \mathbb{N}$ is an equivalence class $\kappa=\left[\left(k_{i}\right)_{i \in \mathbb{N}}\right]$ of sequences the elements of which are "asymptotically odd", or "odd almost everywhere", according to the chosen non-principal ultrafilter \mathcal{F} on \mathbb{N}.

[^11]: ${ }^{4}$ For the sceptics out there: an odd non-standard natural $\kappa \in{ }^{\star} \mathbb{N}$ is an equivalence class $\kappa=\left[\left(k_{i}\right)_{i \in \mathbb{N}}\right]$ of sequences the elements of which are "asymptotically odd", or "odd almost everywhere", according to the chosen non-principal ultrafilter \mathcal{F} on \mathbb{N}.

[^12]: ${ }^{4}$ For the sceptics out there: an odd non-standard natural $\kappa \in{ }^{\star} \mathbb{N}$ is an equivalence class $\kappa=\left[\left(k_{i}\right)_{i \in \mathbb{N}}\right]$ of sequences the elements of which are "asymptotically odd", or "odd almost everywhere", according to the chosen non-principal ultrafilter \mathcal{F} on \mathbb{N}.

