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Introduction - motivation for this work

We want to do (diagrammatic) CQM in oo-dimensions, but...

! Although there is a characterisation of orthonormal bases in terms of H*-algebras.
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Introduction - limit constructions, algebraically

Non-standard analysis: an algebraic way to handle limit constructions?.

2Regardless of topological convergence. The sceptics out there might prefer to think
directly in terms of the ultraproduct construction: we work in spaces of sequences,
quotiented by a notion of “asymptotic equality”, or “equality almost everywhere”,
determined by some non-principal ultrafilter 7 on N.
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(a) Natural numbers are unbounded, and hence:

(i) infinite non-standard natural numbers exist

(ii) any sequence has an non-standard extension to infinite natural indices
(b) Algebraic manipulation of series (without taking limits):

(i) consider a sequence of partial sums a, := ZJ'.’ZI b;

(i) extend it to obtain infinite sums 37", b;, where v is infinite natural

(c) Some genuinely new finite vectors arise in non-standard Hilbert spaces:

|en) form an orthonormal basis

v is an infinite natural

1 14
e.g. 7 nz_:l len), where

2Regardless of topological convergence. The sceptics out there might prefer to think
directly in terms of the ultraproduct construction: we work in spaces of sequences,
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Introduction - the Transfer Theorem

The heavy lifting in non-standard analysis is done by the following result.

Theorem (Transfer Theorem)

A sentence ¢ holds in the standard model M of some theory—with
quantifiers ranging over standard elements, functions, relations and
subsets—if and only if the sentence  holds in any/all non-standard models
*M of the theory—with quantifiers ranging over internal non-standard
elements, functions, relations and subsets.
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Introduction - the Transfer Theorem

Example (Natural predecessors)

Consider the sentence defining predecessors in the natural numbers:
VneN.[n#0=[GmeN.n=m+1]]
By TT, the following sentence holds in the non-standard model *N:

Vne *N.[n#0=[3me *N.n=m+ 1]]

Hence all non-zero non-standard naturals have predecessors.
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Introduction - the Transfer Theorem

Example (Well-ordering of naturals)

Consider the sentence defining the well-order property for the natural
numbers, i.e. saying that every non-empty subset of N has a minimum:

VACN.[A#£0= [Bme Avac Am <]
By TT, the following sentence holds in the non-standard model *N:
VAC *N.[*A#0= [3mc*AVac*Am < a]]
Hence all non-empty internal subsets A C *N have a minimum. (The

requirement that A be internal is key here: e.g. the subset of all infinite
non-standard naturals has no minimum, but it is also not internal.)
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Introduction - the Transfer Theorem

Example (Partial sums)

Consider the sentence defining the sequence s : N — R of partial sums for
every sequence f : N — R in the standard model R:

VF:N—R3ds:N —R.
[s(0) = F(0) A [Vn € N.s(n+ 1) = s(n) + f(n+ 1)]]
By TT, the following sentence holds in the non-standard model *R:
Vf:*N —*R.3s :*N —*R.
[s(0) = £(0) A [Vn €*N.s(n + 1) = s(n) + f(n + 1)]]

Hence every internal sequence f : *N — *R admits a corresponding internal
sequence of partial sums s : *N — *R, i.e. the notation >_" ; f(n) is
legitimate for all m € *N.

v
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The category *Hilb - objects

Objects are pairs H := (|H|, Py ) specified by the following data:

S Gogioso, F Genovese (Oxford) Infinite-dimensional CQM CLAP Scotland 8 /24



The category *Hilb - objects

Objects are pairs H := (|H|, Py ) specified by the following data:
(i) a non-standard Hilbert space || (the underlying Hilbert space);

S Gogioso, F Genovese (Oxford) Infinite-dimensional CQM CLAP Scotland 8 /24



The category *Hilb - objects

Objects are pairs H := (|H|, Py ) specified by the following data:
(i) a non-standard Hilbert space || (the underlying Hilbert space);
(ii) an internal non-standard linear map Py : |H| — |H| such that:

S Gogioso, F Genovese (Oxford) Infinite-dimensional CQM CLAP Scotland 8 /24



The category *Hilb - objects

Objects are pairs H := (|H|, Py ) specified by the following data:
(i) a non-standard Hilbert space || (the underlying Hilbert space);

(ii) an internal non-standard linear map Py : |H| — |H| such that:
o Py is a self-adjoint idempotent (the truncating projector);

S Gogioso, F Genovese (Oxford) Infinite-dimensional CQM CLAP Scotland 8 /24



The category *Hilb - objects

Objects are pairs H := (|H|, Py ) specified by the following data:
(i) a non-standard Hilbert space || (the underlying Hilbert space);

(ii) an internal non-standard linear map Py : |H| — |H| such that:

o Py is a self-adjoint idempotent (the truncating projector);
o there are a non-standard natural D € *N and a family (|e4))5_; of
non-standard vectors in || (an orthonormal basis for #) such that

D
Py = |ed){edl
d=1

S Gogioso, F Genovese (Oxford) Infinite-dimensional CQM CLAP Scotland 8 /24



The category *Hilb - objects

Objects are pairs H := (|H|, Py ) specified by the following data:
(i) a non-standard Hilbert space || (the underlying Hilbert space);

(ii) an internal non-standard linear map Py : |H| — |H| such that:

o Py is a self-adjoint idempotent (the truncating projector);
o there are a non-standard natural D € *N and a family (|e4))5_; of
non-standard vectors in || (an orthonormal basis for #) such that

D
Py = |ed){edl
d=1

By Transfer Theorem we have that D is unique, and we define the
dimension of object H to be the non-standard natural dimH := D.
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The category *Hilb - morphisms

Morphisms F : H — K in *Hilb are the those internal non-standard linear
maps F : |H| — |K| such that:

PcoFoPy=F
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The category *Hilb - morphisms

Morphisms F : H — K in *Hilb are the those internal non-standard linear
maps F : |H| — |K| such that:

PcoFoPy=F
In particular, the identity for an object H is the truncating projector:
idy == Py

This makes *Hilb a full subcategory of the Karoubi envelope for the
category of non-standard Hilbert spaces and *C-linear maps.
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The category *Hilb - {-symmetric monoidal structure

Morphisms F : H — K in *Hilb can be expressed as matrices with
non-standard dimensions, using orthonormal bases for H and K:

dim K dimH

F=> > leuFaaled

d'=1 d=1
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The category *Hilb - f-symmetric monoidal structure

Morphisms F : H — K in *Hilb can be expressed as matrices with
non-standard dimensions, using orthonormal bases for H and K:

dim K dimH

F=> > leuFaaled

d'=1 d=1
In particular, the identity on H can be expressed as follows:

dimH

idy =) |ed){ed
d—1

Equipped with Kronecker product, conjugate transpose, and the *C-linear
structure of matrices, *Hilb is an enriched {-symmetric monoidal category,
with *C as its field of scalars.
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The category *Hilb - some classical structures

If \ed>g,i;“1ﬂ is an orthonormal basis for H, the following comultiplication
and counit define a unital special commutative j-Frobenius algebra on H:

dimH B
4( . }—:1 led) ® |ed) @ (ed] —0 = dz1 ed
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The category *Hilb - some classical structures

If \ed>g,":“1H is an orthonormal basis for H, the following comultiplication

and counit define a unital special commutative j-Frobenius algebra on H:

dimH B
4( . }—:1 led) ® |ed) @ (ed] —0 = dz1 ed

When |eg4)4™* is the non-standard extension of a standard complete
orthonormal basis |e4)52 ;, the comultiplication is the non-standard
extension of the standard isometry given by the H*-algebra associated with
leq)52 ;- In that case, the counit is the genuinely non-standard object.
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The category *Hilb - dagger compact structure

(i) Consider an object H, and a decomposition Py = S 4™™ |es)(eq| of

its truncating projector in terms of some orthonormal baS|s of H.

3By Transfer Theorem, this definition is independent of the choice of basis.

S Gogioso, F Genovese (Oxford) Infinite-dimensional CQM CLAP Scotland 12 / 24



The category *Hilb - dagger compact structure

(i) Consider an object H, and a decomposition Py = S 4™™ |es)(eq| of
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The category *Hilb - dagger compact structure

(i) Consider an object H, and a decomposition Py = S 4™™ |es)(eq| of
its truncating projector in terms of some orthonormal baS|s of H.
(ii) Let |€4) be the state in |H|* corresponding to the effect (eq4| in H.
(iii) The dual object is defined by H* := (|H|*, Py+), where we let3:

dimH

Pre =Y |¢a) (&l
d=1

3By Transfer Theorem, this definition is independent of the choice of basis.
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(i) Consider an object H, and a decomposition Py = S 4™™ |es)(eq| of
its truncating projector in terms of some orthonormal baS|s of H.

(ii) Let |€4) be the state in |H|* corresponding to the effect (eq4| in H.
(iii) The dual object is defined by H* := (|H|*, Py+), where we let3:

dimH

Pre =Y |¢a) (&l
d=1

(iv) Cups and caps can then be defined as follows:

dimH dimH
( = ; I€n) @ |en) > = > (en] @ (&)

n=1

(v) The category-theoretic dimension for H is Tr Py = dim H.

3By Transfer Theorem, this definition is independent of the choice of basis.
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Case study - wavefunctions with periodic boundary

Wavefunctions in an n-dimensional box with periodic boundary conditions.
(i) Underlying Hilbert space *L?[(R/Z)"].
(i) Complete orthonormal basis of momentum eigenstates:

(iii) Dimension D := (2w + 1)", where w is some infinite natural.
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Wavefunctions in an n-dimensional box with periodic boundary conditions.
(i) Underlying Hilbert space *L?[(R/Z)"].

(i) Complete orthonormal basis of momentum eigenstates:

(iii) Dimension D := (2w + 1)", where w is some infinite natural.

Classical structure corresponding to the momentum observable:

+w +w Tw tw
—( = ¥ - % wehwe —0 = X ¥l

ki=—w kn=—w ki=—w kn=—w
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Case study - wavefunctions with periodic boundary

The following multiplication and unit define a unital quasi-special
commutative {-Frobenius algebra, with normalisation factor (2w + 1)™:

+w +w

e = Y Y umoule e— = )

ki,m=—w kn,hn=—w
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Case study - wavefunctions with periodic boundary

The following multiplication and unit define a unital quasi-special
commutative {-Frobenius algebra, with normalisation factor (2w + 1)™:

T = S Y pupedem  e— =

ki,m=—w kn,hn=—w

The addition used here is that of the abelian group *Z5 _ ;:
e from the point of view of *Z", it is cyclic on {—w, ..., +w}";
@ from the point of view of Z", it cycles “beyond infinity".

In particular, it contains Z"” as a proper subgroup.
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Case study - wavefunctions with periodic boundary

The classical states for @ are those in the following form, where x takes the
_ 1 * . 1 .
form x = 5759 for some g € *Z5,, ., (i.e. we have x € 5= *Z3 .1):

-y Zxk )
kn=—

ki=—w
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Case study - wavefunctions with periodic boundary

The classical states for @ are those in the following form, where x takes the
_ 1 * . 1 .
form x = 5759 for some g € *Z5,, ., (i.e. we have x € 5= *Z3 .1):

-y Zxk )
kn=—

ki=—w

The classical states for ® behave as Dirac deltas:
(x,|f) == f(xg), for near-standard smooth f and near-standard xq

We call them the position eigenstates, and @ the position observable.
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Interlude - approximating tori by periodic lattices

o The requirement that x € Tlﬂ *Z5,, .1 for position eigenstates |dy) is
a consequence of the fact that the functions X, are multiplicative
characters of Z", but not necessarily of *Z3 ..
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o An undesirable extra phase ’27(2+1)sx (for generic s; € {—1,0, +1})
appears when equation & o |0x) = |0x) ® |Jx) is expanded, and this
phase cancels out in general if and only if x € ﬁ* R
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o The requirement that x € Tlﬂ *Z5,, .1 for position eigenstates |dy) is
a consequence of the fact that the functions X, are multiplicative
characters of Z", but not necessarily of *Z3 ..

o An undesirable extra phase ’27(2+1)sx (for generic s; € {—1,0, +1})
appears when equation & o |0x) = |0x) ® |Jx) is expanded, and this
phase cancels out in general if and only if x € ﬁ* R

@ From the non-standard point of view, ﬁ *Z5.,41 is a periodic lattice

of infinitesimal mesh 5~ in the non-standard torus *(R/Z)".
w+1
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Interlude - approximating tori by periodic lattices

The requirement that x € Tlﬂ 25,1 for position eigenlst?tes- |0x) is
a consequence of the fact that the functions X, are multiplicative
characters of Z", but not necessarily of *Z3 ..

An undesirable extra phase e’27(2v+t1)sx (for generic sjie {—1,0,+1})
appears when equation & o |0x) = |0x) ® |Jx) is expanded, and this
phase cancels out in general if and only if x € ﬁ* R

From the non-standard point of view, ﬁ *Z5.,41 is a periodic lattice

of infinitesimal mesh 5~ in the non-standard torus *(R/Z)".
w+1

From the standard point of view, ﬁ* 5.,+1 approximates all
elements of the standard torus (R/Z)" up to infinitesimal equivalence.
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Case study - wavefunctions with periodic boundary

The position and momentum observables are strongly complementary, a
manifestation of the Weyl Canonical Commutation Relations.
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@ Momentum observable acts as the group algebra for translations T:
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Case study - wavefunctions with periodic boundary

The position and momentum observables are strongly complementary, a
manifestation of the Weyl Canonical Commutation Relations

@ Position observable defined by the group algebra for boosts By

@ Momentum observable acts as the group algebra for translations T.
1 ~ 1 *x7n
( |0x) | x ﬁ 2ol (> P s (}) = (m Z2w+1’+70>

The Weyl Canonical Commutation Relations in graphical form:

1) BK Té
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Case study - wavefunctions on lattices

Wavefunctions on an n-dimensional lattice Z".
(i) Underlying Hilbert space * L%[Z"].

(ii) Complete orthonormal basis of position eigenstates:

1 ifk=h
16k) == h re=
- 0 otherwise

(iii) Dimension D := (2w + 1)", where w is some infinite natural.
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Case study - wavefunctions on lattices

Wavefunctions on an n-dimensional lattice Z".
(i) Underlying Hilbert space * L%[Z"].

(ii) Complete orthonormal basis of position eigenstates:

1 ifk=h
16k) == h re=
- 0 otherwise

(iii) Dimension D := (2w + 1)", where w is some infinite natural.

Classical structure corresponding to the position observable:

+w tw tw tw
—¢ = Y . T el e —® = X .. X

ki=—w kn=—w ki=—w kn=—w
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Case study - wavefunctions on lattices

The following multiplication and unit define a unital quasi-special
commutative -Frobenius algebra, with normalisation factor (2w + 1)":

} e 3 S e © (64 © (64 oO— = %)

ki,m=-w knshp=—w
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Case study - wavefunctions on lattices

The following multiplication and unit define a unital quasi-special
commutative -Frobenius algebra, with normalisation factor (2w + 1)":

o= S E meGdel o = i

ki,h=—w kn,hp=—w
; : H 1 x—7n .
Its classical states are those in the following form, for x € 525 *Z7 4
+w +w
Xx) = E E e 2mkx |5,
ki=—w kn=—w

We call them the momentum eigenstates (they are self-evidently
plane-waves), and © the momentum observable.
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Case study - wavefunctions on lattices

The following multiplication and unit define a unital quasi-special
commutative -Frobenius algebra, with normalisation factor (2w + 1)":

o= S E meGdel o = i

ki,m=-w knshp=—w

; : H 1 x—7n .
Its classical states are those in the following form, for x € ;-4 *Z7 . ;:

“+w “+w ]
Xe) o= DY > e PR

ki=—w kn=—w

We call them the momentum eigenstates (they are self-evidently

plane-waves), and o the momentum observable. Once again, position and
momentum observables are strongly complementary.
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Interlude - approximating real space by lattices

A common trick in non-standard analysis sees standard real space
approximated by non-standard lattices of infinitesimal mesh.

“*For the sceptics out there: an odd non-standard natural x € *N is an equivalence
class k = [(ki)ien] of sequences the elements of which are “asymptotically odd”, or “odd
almost everywhere”, according to the chosen non-principal ultrafilter 7 on N.
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Interlude - approximating real space by lattices

A common trick in non-standard analysis sees standard real space
approximated by non-standard lattices of infinitesimal mesh.

(i) Fix two odd* infinite naturals wy,,wj € *N.

(i) Write wyywir = 2w + 1 for some (unique) infinite natural w € *N.

“*For the sceptics out there: an odd non-standard natural £ € *N is an equivalence
class k = [(ki)ien] of sequences the elements of which are “asymptotically odd”, or “odd
almost everywhere”, according to the chosen non-principal ultrafilter 7 on N.
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approximated by non-standard lattices of infinitesimal mesh.

(i) Fix two odd* infinite naturals wy,,wj € *N.
(i) Write wyywir = 2w + 1 for some (unique) infinite natural w € *N.

(iii) Consider the periodic lattice wiuv*Zng of infinitesimal mesh in the
non-standard torus (*R/w;*Z)".

“*For the sceptics out there: an odd non-standard natural £ € *N is an equivalence
class k = [(ki)ien] of sequences the elements of which are “asymptotically odd”, or “odd
almost everywhere”, according to the chosen non-principal ultrafilter 7 on N.
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Interlude - approximating real space by lattices

A common trick in non-standard analysis sees standard real space
approximated by non-standard lattices of infinitesimal mesh.

(i) Fix two odd* infinite naturals wy,,wj € *N.
(i) Write wyywir = 2w + 1 for some (unique) infinite natural w € *N.

(iii) Consider the periodic lattice wiuv*Zng of infinitesimal mesh in the
non-standard torus (*R/w;*Z)".

(iv) The standard reals R are recovered by restricting to the (aperiodic)
sub-lattice of finite elements -1 -*Z5,+1 0 (*Ro/wiy*Z)", and then
quotienting by infinitesimal equalence o~

R = (wlu *zo 10 (*Ro /w,-,*Z)”) / ~

“*For the sceptics out there: an odd non-standard natural £ € *N is an equivalence
class k = [(ki)ien] of sequences the elements of which are “asymptotically odd”, or “odd
almost everywhere”, according to the chosen non-principal ultrafilter 7 on N.
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Case study - wavefunctions in real space

Wavefunctions in n-dimensional real space R".
(i) Underlying Hilbert space * L?[R"].

(i) Orthonormal set of non-standard momentum eigenstates:

1

. 1
e 2 (PX) for all PE—"Z5, 11

Vv Wuv Wyy

Xp) =X —
Xp) = x ™
(iii) Dimension D := (2w + 1)", where 2w + 1 = wy wj,.
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Case study - wavefunctions in real space

Wavefunctions in n-dimensional real space R".
(i) Underlying Hilbert space * L?[R"].
(i) Orthonormal set of non-standard momentum eigenstates:

1

Wyv

Xp) == x>

_ 1
o i2m (gl), for all p € 7*Zgw+1
- Wy

(iii) Dimension D := (2w + 1)", where 2w + 1 = wy wj,.
Classical structure corresponding to the momentum observable:

+wir twir +wir +wir
—a( = ¥ . T ek  —O0 = X . 3

P1=—Wir Pn=—Wir P1=—Wir Pn=—Wir
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Case study - wavefunctions in real space

The following multiplication and unit define a unital quasi-special
commutative f-Frobenius algebra, with normalisation factor (2w + 1)":

+wir +wir

R = Y e Y Mo 0Gle e— = X

P1,q1=—Wir Pn,Gn=—Wijr
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Case study - wavefunctions in real space

The following multiplication and unit define a unital quasi-special
commutative f-Frobenius algebra, with normalisation factor (2w + 1)":

+wir +wir
R = Y e Y Mo 0Gle e— = X

P1,q1=—Wir Pn,Gn=—Wijr
Its classical states are those in the following form, for x € wi WA
r

+wijr +wijr

6) = D e D Xp(x)*Xp)

P1=—Wijr Pn=—Wijr

Once again, the classical states for ® behave as Dirac deltas, so we call
them the position eigenstates, and @ the position observable.
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Case study - wavefunctions in real space

The following multiplication and unit define a unital quasi-special
commutative f-Frobenius algebra, with normalisation factor (2w + 1)":

+wir +wir
R = Y e Y Mo 0Gle e— = X

P1,q1=—Wir Pn,Gn=—Wijr
Its classical states are those in the following form, for x € wi WA
r

+wijr +wijr

6) = D e D Xp(x)*Xp)

P1=—Wijr Pn=—Wijr

Once again, the classical states for ® behave as Dirac deltas, so we call
them the position eigenstates, and @ the position observable. And once
again the position and momentum observables are strongly complementary.
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More stuff out there, and a lot more to come

The framework already covers a lot more material:
@ quantum fields on infinite lattices (non-separable);
@ quantum fields in real spaces (non-separable);
@ quantum algorithm for the Hidden Subgroup Problem on Z";
°

Mermin-type non-locality arguments for infinite-dimensional systems.
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More stuff out there, and a lot more to come

The framework already covers a lot more material:

@ quantum fields on infinite lattices (non-separable);

@ quantum fields in real spaces (non-separable);

@ quantum algorithm for the Hidden Subgroup Problem on Z";

@ Mermin-type non-locality arguments for infinite-dimensional systems.
And even more material is currently being worked out:
position/momentum duality, quantum symmetries and dynamics;
applications to other quantum protocols (e.g. RFI quantum teleport’n);
wavefunctions/fields over general locally compact abelian Lie groups;

wavefunctions/fields over Minkowski space;

connections with Feynman diagrams.
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Thank Y.

Thanks for Your Attention!

Any Questions?

S Gogioso, F Genovese. Infinite-dimensional CQM. arXiv:1605.04305

S Gogioso, F Genovese. Towards Quantum Field Theory in CQM?®. arXiv:1703.09594v2
S Abramsky, C Heunen. H*-algebras and nonunital FAs. arXiv:1011.6123

A Robinson. Non-standard analysis. Princeton University Press, 1974

CQM := "Categorical Quantum Mechanics”
FA = "Frobenius algebra”

5This is a revised and extended version, and will be out by the end of the week.
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