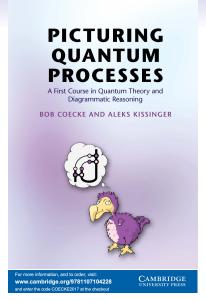
A categorical semantics for causal structure

Aleks Kissinger and Sander Uijlen

April 19, 2017

Process theory

Symmetric monoidal category + interepretation of morphisms as processes



Available now from: CUP, Amazon, etc.

20% discount @ CUP with code: COECKE2017

Symmetric monoidal categories

States, effects, numbers

Morphisms in/out of the monoidal unit get special names:

$$state := \frac{\downarrow}{\rho}$$

effect :=
$$\frac{\sqrt{\pi}}{1}$$

$$number := \lambda$$

Interpretation: discarding + causality

Consider a special family of discarding effects:

$$\overline{\uparrow}_A$$
 $\overline{\uparrow}_{A\otimes B}:=\overline{\uparrow}_A\overline{\uparrow}_B$ $\overline{\uparrow}_I:=1$

This enables us to say when a process is causal:

$$\begin{array}{ccc}
 & \overline{B} \\
 & \overline{B} \\
 & A
\end{array} =$$

"If the output of a process is discarded, it doesn't matter which process happened."

The classical case

 $\mathbf{Mat}(\mathbb{R}_+)$ is the category whose objects are natural numbers and morphisms are *matrices of positive numbers*. Then:

Causal states = probability distributions Causal processes = stochastic maps

The quantum case

CPM is the category whose objects are Hilbert spaces and morphisms are *completely postive maps*. Then:

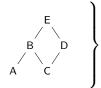
$$\frac{\overline{\overline{}}}{\overline{}} = \operatorname{Tr}(-)$$
 $\frac{\overline{\overline{}}}{\sqrt{\rho}} = \operatorname{Tr}(\rho) = 1$

Causal states = density operators Causal processes = CPTPs

Causal structure of a process

A **causal structure** on Φ associates input/output pairs with a set of ordered events:

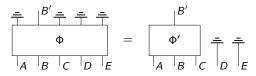
$$\mathcal{G} := \left\{ \begin{array}{cccc} (A, A') & \leftrightarrow & A \\ (B, B') & \leftrightarrow & B \\ (C, C') & \leftrightarrow & C \\ (D, D') & \leftrightarrow & D \\ (E, E') & \leftrightarrow & E \end{array} \right. \left. \begin{array}{c} E \\ B & D \\ A & C \end{array} \right\}$$



Causal structure of a process

Definition

 Φ admits causal structure \mathcal{G} , written $\Phi \vDash \mathcal{G}$ if the output of each event only depends on the inputs of itself and its causal ancestors.



Example: one-way signalling

$$\begin{array}{ccc}
 & = & & |A'| \\
 & |A'| & |B'| & |A'| & |A'| \\
 & |A| & |B| & |A| & |B|
\end{array}$$

$$P(A'|AB) = P(A'|A)$$

Example: non-signalling

$$\begin{bmatrix}
A' \mid B' \\
\Phi
\end{bmatrix} = \begin{bmatrix}
B \\
A \mid
B
\end{bmatrix}$$

$$\begin{bmatrix}
A' \mid B' \\
A \mid
B
\end{bmatrix}$$

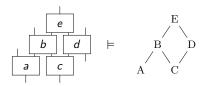
$$\begin{bmatrix}
A \mid
B \mid
B
\end{bmatrix}$$

$$\begin{array}{c|cccc}
|A'|B' \\
\hline
\Phi \\
A|B
\end{array}
\vDash$$

$$P(A'|AB) = P(A'|A)$$

$$P(A'|AB) = P(A'|A) \qquad \qquad P(B'|AB) = P(B'|B)$$

An acyclic diagram comes with a canonical choice of causal structure:

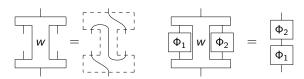


Theorem

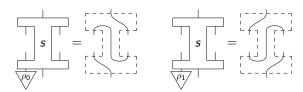
All acyclic diagrams of processes admit their associated causal structure if and only if all processes are causal.

Higher-order causal structure

We can also define (super-)processes with higher-order causal structure:



These can introduce definite, or indefinite causal structure:



e.g. Quantum Switch, OCB W-matrix, ...

The questions

Q1: Can we define a category whose *types* express causal structure?

Q2: Can we define a category whose *types* express **higher-order** causal structure?

It turns out answering Q2 gives the answer to Q1.

Compact closed categories

An easy way to get higher-order processes is to use compact closed categories:

Definition

An SMC $\mathcal C$ is *compact closed* if every object A has a *dual* object A^* , i.e. there exists $\eta_A:I\to A^*\otimes A$ and $\epsilon_A:A\otimes A^*\to I$, satisfying:

$$(\epsilon_A\otimes 1_A)\circ (1_A\otimes \eta_A)=1_A \qquad (1_{A^*}\otimes \epsilon_A)\circ (\eta_A\otimes 1_{A^*})=1_{A^*}$$

Higher-order processes

Processes send states to states:

$$\begin{array}{c} \downarrow \\ \hline \\ \rho \end{array} \mapsto \begin{array}{c} \downarrow \\ \hline \\ f \end{array}$$

In compact closed categories, everything is a state, thanks to *process-state* duality:

$$f: A \multimap B \quad \leftrightarrow \qquad f \qquad f \qquad A^* \otimes B$$

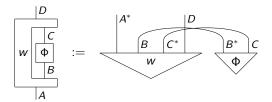
⇒ higher order processes are the same as first-order processes:

$$\left(\begin{array}{c|c} & & & \\ \hline f & \mapsto & \begin{array}{c} & \\ \hline & \\ \end{array} \right) : (A \multimap B) \multimap (C \multimap D)$$

Some handy notation

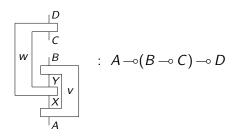
We can treat everything as a state, and write states in any shape we like:

Then plugging shapes together means composing the appropriate caps:



Some handy notation

It looks like we can now freely work with higher-order causal processes:



...but theres a problem.

The compact collapse

In a compact closed category:

$$(A \otimes B)^* = A^* \otimes B^*$$

Which gives:

$$(A \multimap B) \multimap C \cong (A \multimap B)^* \otimes C$$

$$\cong (A^* \otimes B)^* \otimes C$$

$$\cong A \otimes B^* \otimes C$$

$$\cong B^* \otimes A \otimes C$$

$$\cong B \multimap A \otimes C$$

⇒ everything collapses to first order!

The compact collapse

But first-order causal \neq second-order causal:

$$\left(\forall \Phi \ causal \ . \ \boxed{\begin{array}{c} \frac{=}{\top} \\ \hline \\ \hline \end{array}} \right)$$

So, causal types are richer than compact-closed types. In particular:

$$A \multimap B := (A \otimes B^*)^* \not\cong A^* \otimes B$$

If we drop this iso from the definition of compact closed, we get a *-autonomous category.

Definition

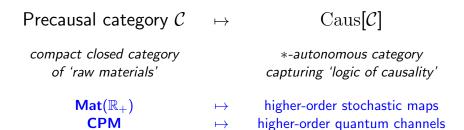
A *-autonomous category is a symmetric monoidal category equipped with a full and faithful functor $(-)^*: \mathcal{C}^{\mathrm{op}} \to \mathcal{C}$ such that, by letting:

$$A \multimap B := (A \otimes B^*)^* \tag{1}$$

there exists a natural isomorphism:

$$\mathcal{C}(A \otimes B, C) \cong \mathcal{C}(A, B \multimap C) \tag{2}$$

The recipe



Precausal categories

Precausal categories give 'good' raw materials, i.e. discarding behaves well w.r.t. the categorical structure. The standard examples are $\mathbf{Mat}(\mathbb{R}_+)$ and \mathbf{CPM} .

Definition

A precausal category is a compact closed category ${\mathcal C}$ such that:

- (C1) $\mathcal C$ has discarding processes for every system
- (C2) For every (non-zero) system A, the dimension of A:

$$d_A := \overline{\underline{\mathbb{I}}}_A$$

is an invertible scalar.

- (C3) \mathcal{C} has enough causal states
- (C4) Second-order causal processes factorise

Enough causal states

$$\left(\forall \rho \ causal \ . \begin{array}{|c|c|} \hline f \\ \hline \hline \rho \\ \hline \end{array} \right) \implies \begin{array}{|c|c|} \hline f \\ \hline \hline \end{array} = \begin{array}{|c|c|} \hline g \\ \hline \end{array}$$

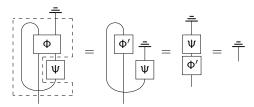
Second-order causal processes factorise

Theorem

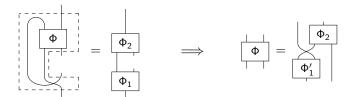
In a pre-causal category, one-way signalling processes factorise:

$$\left(\begin{array}{c} \exists \ \Phi' \ causal \ . \\ \hline \begin{matrix} - \\ \hline \end{matrix} \\ \hline \begin{matrix} \Phi \end{matrix} \\ = \begin{matrix} - \\ \hline \end{matrix} \\ \hline \begin{matrix} - \\ \end{matrix} \\ \hline \end{matrix} \right) \implies \left(\begin{array}{c} \exists \ \Phi_1, \Phi_2 \ causal \ . \\ \hline \begin{matrix} \Phi_2 \\ \hline \end{matrix} \\ \hline \begin{matrix} \Phi_1 \end{matrix} \\ \hline \end{matrix} \right)$$

Proof. Treat Φ as a second-order process by bending wires. Then for any causal Ψ , we have:



So Φ is second-order causal. By (C4):



Theorem (No time-travel)

No non-trivial system A in a precausal category $\mathcal C$ admits time travel. That is, if there exist systems B and C such that:

then $A \cong I$.

Proof. For any causal process Ψ and causal state $\underline{\hspace{0.1in}}$:

$$\begin{array}{c} A C \\ \Phi \\ A B \end{array} := \begin{array}{c} A \\ \Psi \\ A \\ B \end{array}$$

is causal.So:

$$A \boxed{\Psi} = A \boxed{\stackrel{=}{\Phi}}_{B} = \frac{}{B} = 1$$

Applying (C4):

$$\begin{bmatrix} A & \vdots & \vdots & \vdots \\ A & \vdots & \vdots & \vdots \\ A & P \end{pmatrix} \implies A = \begin{bmatrix} A & P \\ P \\ A \end{bmatrix}$$

for some ρ causal. So $\rho \circ \bar{\uparrow} = 1_A$ and $\bar{\uparrow} \circ \rho = 1_I$ is causality.

Causal states

A process is causal, a.k.a. *first order causal*, if and only if it preserves the set of causal states:

$$\begin{array}{c} \stackrel{\downarrow}{\swarrow} causal \end{array} \implies \begin{array}{c} \stackrel{\downarrow}{f} causal \end{array}$$

That is, it preserves:

$$c = \left\{ \rho : A \mid \frac{\overline{\overline{+}}}{\sqrt{\rho}} = 1 \right\} \subseteq \mathcal{C}(I, A)$$

We define Caus[C] by equipping each object with a generalisation of the set c, and requiring processes to preserve it.

Duals and closure

Note any set of states $c \subseteq C(I, A)$ admits a dual, which is a set of effects:

$$c^* := \left\{ \pi : A^* \; \middle| \; orall
ho \in c \; . \; rac{ \left\langle \pi \right\rangle}{ \left\langle
ho \right\rangle} \; = \; 1
ight\}$$

The double-dual c^{**} is a set of states again.

Definition

A set of states $c \subseteq C(I, A)$ is *closed* if $c = c^{**}$.

Flatness

If c is the set of causal states, discarding $\in c^*$, and up to some rescaling, discarding-transpose:

$$\frac{1}{D}$$

i.e. the maximally mixed state $\in c$.

We make this symmetric $c \leftrightarrow c^*$, and call this property flatness:

Definition

A set of states $c \subseteq \mathcal{C}(I, A)$ is *flat* if there exist invertible numbers λ, μ such that:

$$\lambda \perp \in c$$

$$\mu \stackrel{=}{\uparrow} \in c^*$$

The main definition

Definition

For a precausal category \mathcal{C} , the category $\mathrm{Caus}[\mathcal{C}]$ has as objects pairs:

$$\mathbf{A} := (A, c_{\mathbf{A}} \subseteq \mathcal{C}(I, A))$$

where $c_{\mathbf{A}}$ is closed and flat. A morphism $f: \mathbf{A} \to \mathbf{B}$ is a morphism $f: \mathbf{A} \to \mathbf{B}$ in C such that:

$$\rho \in c_{\mathbf{A}} \implies f \circ \rho \in c_{\mathbf{B}}$$

The main theorem

Theorem

Caus[C] is a *-autonomous category, where:

$$m{A}\otimes m{B}:=(A\otimes B,(c_{m{A}}\otimes c_{m{B}})^{**}) \qquad \qquad m{I}:=(I,\{1_I\})$$
 $m{A}^*:=(A^*,c_{m{A}}^*)$

Connectives

One connective \otimes becomes 3 interrelated ones:

$$m{A} \otimes m{B}$$
 $m{A} \ensuremath{\mathfrak{P}} m{B} := (m{A}^* \otimes m{B}^*)^*$
 $m{A} \multimap m{B} := m{A}^* \ensuremath{\mathfrak{P}} m{B} \cong (m{A} \otimes m{B}^*)^*$

- ⊗ is the smallest joint state space that contains all product states

$$c_{\mathbf{A}} \gamma_{\mathbf{B}} = \left\{
ho : A \otimes B \mid \forall \pi \in c_{\mathbf{A}}^*, \xi \in c_{\mathbf{B}}^* : \frac{\langle \pi \rangle \langle \xi \rangle}{\rho} = 1 \right\}$$

 — is the space of causal-state-preserving maps

Example: first-order systems

First order := systems of the form $\mathbf{A} = (A, \{\frac{\overline{-}}{T}\}^*)$

$$c_{m{A}\otimesm{B}}:=(c_{m{A}}\otimes c_{m{B}})^{**}=(\buildrel \bar{\buildrel }\buildrel \bar{\buildre$$

$$c_{\pmb{A}} \gamma_{\pmb{B}} := \left\{ \rho : A \otimes B \; \middle| \; \forall \pi \in c_{\pmb{A}}^*, \xi \in c_{\pmb{B}}^* \; . \underbrace{ \uparrow_{\pmb{A}} \quad \downarrow_{\pmb{\xi}}}_{\rho} \underbrace{\bar{\bar{\tau}}}_{\rho} = 1 \right\} = \mathsf{all}$$
 causal states

Theorem

For first order systems, $\mathbf{A} \otimes \mathbf{B} \cong \mathbf{A} ? \mathbf{B}$.

When $\otimes \neq \Im$

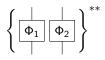
For f.o. $\boldsymbol{A}, \boldsymbol{A}', \boldsymbol{B}, \boldsymbol{B}'$:

$$(\mathbf{A} \multimap \mathbf{A}') \ \Re (\mathbf{B} \multimap \mathbf{B}') = \text{all causal processes}$$

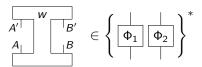
Theorem

 $(A \multimap A') \otimes (B \multimap B') = causal$, non-signalling processes

Proof. (idea) The causal states for $(A \multimap A') \otimes (B \multimap B')$ are:



We show:



is also normalised for all non-signalling processes:

This follows from a graphical proof using all 4 precausal axioms.

Refining causal structure

Since $I \cong I^* = (I, \{1\})$, a standard theorem of *-autonomous gives a canonical embedding:

$$(\mathbf{A} \multimap \mathbf{A}') \otimes (\mathbf{B} \multimap \mathbf{B}') \hookrightarrow (\mathbf{A} \multimap \mathbf{A}') \, \Im \, (\mathbf{B} \multimap \mathbf{B}')$$

What about in between?

$$(\mathbf{A} \multimap \mathbf{A}') \otimes (\mathbf{B} \multimap \mathbf{B}') \hookrightarrow \cdots \hookrightarrow (\mathbf{A} \multimap \mathbf{A}') \ \Im \ (\mathbf{B} \multimap \mathbf{B}')$$

One-way signalling

Theorem

One-way signalling processes are processes of the form:

One-way signalling

Proof. Exploiting the relationship between one-way signalling and second-order causal:

$$\begin{bmatrix} \bar{\Phi} \\ \bar{\Phi} \end{bmatrix} = \begin{bmatrix} \bar{\Phi}' \\ \bar{\Psi} \end{bmatrix} = \begin{bmatrix} \bar{\Phi}' \\ \bar{\Phi}' \end{bmatrix} = \begin{bmatrix} \bar{\Phi}' \\ \bar{\Phi}' \end{bmatrix}$$

we have:

Then *-autonomous structure gives a canonical iso:

$$(A' \multimap B) \multimap (A \multimap B') \cong A \multimap (A' \multimap B) \multimap B'$$

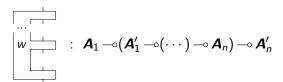
Further examples

• *n*-party non-signalling:

$$\begin{array}{c|c}
 & \cdots \\
 & & \\
 & & \\
\hline
 & \cdots \\
 & & \\
\hline
 & \cdots \\
\end{array}$$

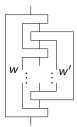
$$: (\mathbf{A}_1 \multimap \mathbf{A}'_1) \otimes \cdots \otimes (\mathbf{A}_n \multimap \mathbf{A}'_n)$$

• Quantum *n*-combs:



Further examples

• Compositions of those things:



Further examples

• Indefinite causal structures (e.g. quantum switch, OCB *W*-process, Baumeler-Wolf):

$$\frac{1}{8} \left(\begin{array}{c} \begin{bmatrix} -\frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & -\frac$$

Automation

The internal logic of *-autonomous categories is multiplicative linear logic (MLL):

$$\frac{\vdash \Gamma, A \vdash \Delta, B}{\vdash \Gamma, \Delta, A \otimes B} \qquad \frac{\vdash \Gamma, A, B}{\vdash \Gamma, A \otimes B}$$

$$\frac{}{\vdash 1} \qquad \frac{\vdash \Gamma}{\vdash \Gamma, \bot}$$

⇒ use off-the-shelf theorem provers to prove causality theorems.

Automation

For example, we can show using llprover that:

$$(A \multimap A') \otimes (B \multimap B')$$

$$\downarrow A \multimap (A' \multimap B) \multimap B'$$

$$\downarrow (A \multimap A') ?? (B \multimap B')$$

Thanks

...and some refs:

- A categorical semantics for causal structure. arXiv:1701.04732
- Causal structures and the classification of higher order quantum computation. Paulo Perinotti. arXiv:1612.05099