Games for topological fixpoint logics

Clemens Kupke University of Strathclyde, Glasgow Scotland, UK & EU

joint work with

Nick Bezhanishvili University of Amsterdam The Netherlands

Categories, Logic & Physics, 5 April 2017

Overview

- ▶ (topological) semantics of the modal μ -calculus
- ▶ fixpoint games
- ▶ main result: evaluation game for topological semantics
- bisimulations
- ▶ Disclaimer: topological semantics in our setting means
 - Kripke models based on topological spaces
 - ▶ semantics of a formula given by an "admissible" subset
 - different from "Spatial Logic of modal mu-calculus" by Goldblatt/Hodkinson (2016)

semantics of the modal μ -calculus

Modal μ -calculus

- ▶ adding least and greatest fixpoint operators to modal logic
- ▶ Goal: express properties about ongoing, (possibly) infinite behaviour

Formulas

$$\begin{aligned} \mathcal{L}_{\mu} \ni \varphi & ::= & \mathrm{p} \mid \neg \mathrm{p} \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \bot \mid \top \mid \Diamond \varphi \mid \Box \varphi \mid \\ & \mu \mathrm{p.}\varphi(\mathrm{p},\mathrm{q}_{1},\ldots,\mathrm{q}_{n}) \mid \nu \mathrm{p.}\varphi(\mathrm{p},\mathrm{q}_{1},\ldots,\mathrm{q}_{n}) \end{aligned}$$

where $p \in Prop$ and p occurs only positively in formulas of the form $\mu p.\varphi(p, q_1, \ldots, q_n)$ and $\nu p.\varphi(p, q_1, \ldots, q_n)$.

Formulas as operators

For a formula $\delta \in \mathcal{L}_{\mu}$, a Kripke frame (X, R) and a valuation V : Prop $\rightarrow \mathcal{P}X$ let

$$\begin{split} \delta^{\mathrm{V}}_{\mathrm{p}} &: \mathcal{P}\mathrm{X} \quad \longrightarrow \quad \mathcal{P}\mathrm{X} \\ \mathrm{U} \quad \mapsto \quad \llbracket \delta \rrbracket^{(\mathrm{X},\mathrm{R})}_{\mathrm{V}[\mathrm{p} \mapsto \mathrm{U}]} \end{split}$$

where

$$V[p \mapsto U](q) = \begin{cases} U & \text{if } p = q \\ V(q) & \text{otherwise.} \end{cases}$$

and where $\llbracket \varphi \rrbracket_{V}^{(X,R)}$ denotes semantics of φ on a model (X, R, V).

Observation

If δ contains only positive occurrences of p, then δ_p^V is a monotone operator.

⇒ We define the semantics of $\mu p.\delta$ and $\nu p.\delta$ as least and greatest fixpoints of δ_p^V , respectively.

An example

Standard interpretation:

- ▶ R is the transition relation
- ▶ $\Diamond^* \mathbf{p} = \mu \mathbf{q} \cdot \mathbf{p} \lor \Diamond \mathbf{q}$: p reachable via transitive closure of R
- ▶ \mathbb{N} is the least fixed point of the map $U \mapsto V(p) \cup \Diamond U$, where

$$\Diamond U = \{x' \mid \exists x \in U.(x',x) \in R\}$$

Later with topology:

- \blacktriangleright basis of clopens: finite subsets of $\mathbb N$ and cofinite sets containing ∞
- least clopen fixpoint: $\mathbb{N} \cup \{\infty\}$
- ▶ p reachable via topological transitive closure of R

Topological semantics: Motivation

Denotations of formulas restricted to admissible subsets of a model - admissibility defined topologically.

Motivation:

- notion of reachability in the limit in order to be able to specify systems with continuous behaviour
- ▶ apply techniques from Stone duality to the μ -calculus

 modal μ-algebras give relatively easy completeness proofs with respect to topological semantics (cf. work by Ambler/Bonsangue/Kwiatkowska)

Our goal

Characterise topological semantics using games, ultimately: automata!

Why games?

▶ consider the formula

$$\varphi = \nu p.\mu q. \Diamond ((s \land p) \lor q)$$

- ▶ not immediate to check with the "denotational" semantics
- \blacktriangleright game semantics: outermost fixpoint that is unfolded infinitely often has to be ν
- consequently: φ expresses

"there is a path along which s holds infinitely often"

▶ Problem: Game operates on states of the model - how to ensure admissibility?

Related Work

- ▶ S. Ambler, M. Kwiatkowska, N. Measor. Duality and the Completeness of the Modal mu-Calculus. (1995)
- M.M. Bonsangue, M. Kwiatkowska, Re-Interpreting the Modal mu-Calculus (1995)
- ▶ J. van Benthem, N. Bezhanishvili, I. M. Hodkinson. Sahlqvist Correspondence for Modal mu-calculus. (2012)
- N. Bezhanishvili, I. Hodkinson. Sahlqvist theorem for modal fixed point logic. (2012)
- W.Conradie, Y.Fomatati, A.Palmigiano, S.Sourabh, Algorithmic correspondence for intuitionistic modal mu-calculus.(2015)
- ► S. Enqvist, F. Seifan, Y. Venema, Completeness for the modal µ-calculus: separating the combinatorics from the dynamics. (2016)

Our topological setting

The spaces

 extremally disconnected Stone spaces: closure of any open set is open (and thus clopen)

▶ consequently: clopen sets form a complete lattice

▶ frames: descriptive frames (X, R) (ie, V-coalgebras) based on an extremally disconnected Stone space X = (X, τ)

▶ model = frame + clopen valuation $V : Prop \rightarrow Clp(X)$

Formulas interpreted as clopen subsets

- ▶ for the "purely modal" formulas this is ensured by taking a clopen valuation and descriptive general frames (=Vietoris coalgebras)
- ▶ for the fixpoint operators we note that
 - 1. $\delta_{p}^{V} : Clp(\mathbb{X}) \to Clp(\mathbb{X})$ is a monotone operator
 - 2. Clp(X) is a complete lattice
- ▶ we interpret $\mu p.\delta$ and $\nu p.\delta$ as the least and greatest clopen fixpoints, respectively

Fixpoint approximation on a complete lattice

$$\begin{array}{rcl} F_0^{\mu} &=& \bot, \\ F_{\alpha+1}^{\mu} &=& F(F_{\alpha+1}^{\mu}) \\ F_{\alpha}^{\mu} &=& \bigvee_{\beta < \alpha} F_{\beta}^{\mu} & \text{for } \alpha \text{ a limit ordinal.} \end{array}$$

$$\begin{array}{rcl} F_0^{\nu} &=& \top, \\ F_{\alpha+1}^{\nu} &=& F(F_{\alpha+1}^{\nu}) \\ F_{\alpha}^{\nu} &=& \bigwedge_{\beta < \alpha} F_{\beta}^{\nu} & \text{for } \alpha \text{ a limit ordinal.} \end{array}$$

Fact

For any monotone operator F there are ordinals α_{μ} and α_{ν} such that $F^{\mu}_{\alpha_{\mu}} = \mu F$ and $F^{\nu}_{\alpha_{\nu}} = \nu F$.

Extremally disconnected spaces & logical completeness

▶ For basic modal logic we have that

$$\operatorname{Log}(\operatorname{Coalg}(\mathbb{V})) = \operatorname{Log}(\operatorname{Coalg}_{\operatorname{ed}}(\mathbb{V}))$$

because

$$\begin{array}{c} \operatorname{GX} - \xrightarrow{\exists e} - \gg X \\ \downarrow \\ \exists \downarrow \\ \psi \\ \forall GX \xrightarrow{\mathbb{V}e} = \mathbb{V}X \end{array}$$

▶ (Problem: the above argument does not work for all of the µ-calculus...)

fixpoint games

A note about games

- ▶ all games in my talk are two-player graph games
- ▶ players are called ∃ and ∀ and board positions are partitioned into ∃'s and ∀'s positions
- ▶ plays can be infinite
- ► the winning condition on infinite games can be encoded using a parity condition
- ► this means that at any position of the game board either of the player has a historyfree/memoryless winning strategy

Tarski's fixpoint game on $\mathcal{P}X$

Here we have:

$$\bigwedge_{i\in I} U_i = \bigcap_{i\in I} U_i \qquad \mathrm{and} \qquad \bigvee_{i\in I} U_i = \bigcup_{i\in I} U_i$$

We define the game board of a two-player graph game:

Position	Player	Moves
$\mathbf{x} \in \mathbf{X}$	Ξ	$\{C \subseteq X \mid x \in F(C)\}$
$C\in \mathcal{P} X$	\forall	С

Least fixpoint game: \forall wins infinite plays. Greatest fixpoint game: \exists wins infinite plays.

Fact

 \exists has a winning strategy at position $x \in X$ in the least (greatest) fixpoint game iff $x \in \mu F$ ($x \in \nu F$).

Proof idea for least fixpoint game

Suppose $x \in \mu F$.

This means there exists an ordinal α such that $x \in F^{\mu}_{\alpha}$.

Suppose α is a limit ordinal, then

$$\mathrm{x} \in igvee_{eta < lpha} \mathrm{F}^{\mu}_{eta} = igcup_{eta < lpha} \mathrm{F}^{\mu}_{eta} \subseteq \mathrm{F}(igcup_{eta < lpha} \mathrm{F}^{\mu}_{eta})$$

Therefore \exists moves from x to $\bigcup_{\beta < \alpha} F^{\mu}_{\beta}$ and \forall has to move to some $x' \in F^{\mu}_{\beta}$ with $\beta < \alpha$.

Similarly for successor ordinals.

Well-foundedness of the ordinals implies finiteness of the play.

Proof idea for least fixpoint game

For the converse assume that $x \notin \mu F$.

Then either \exists gets stuck at x, or she moves to some $C \subseteq X$ with $x \in F(C)$.

By assumption we know that $C \not\subseteq \mu F$, i.e., \forall can continue the play by moving to some $x' \in C \setminus \mu F$ and the play continues ...

Either the play will be infinite or \exists gets stuck which shows that \forall has a winning strategy.

Fixpoints on an extremally disconnected Stone space

$$\bigwedge_{i\in I} U_i = \mathrm{Int}(\bigcap_{i\in I} U_i) \qquad \mathrm{and} \qquad \bigvee_{i\in I} U_i = \mathrm{Cl}(\bigcup_{i\in I} U_i)$$

Possible consequences for the μ -game (informal!):

- 1. To show that $x \in \mu F$ it suffices for \exists to provide a "suitable" set $C \subseteq X$ such that $x \in F(U)$ for all clopens $U \in Clp(\mathbb{X})$ with $C \subseteq U$.
- 2. If \exists chooses some (open) set $O \subseteq X$ such that $x \in F(Cl(O))$, \forall is only allowed to challenge her with elements of O.

Both observations lead to different (but equivalent) games.

Topological least fixpoint game I

_	Position	Player	Moves
_	$\mathbf{x} \in \mathbf{X}$	Е	$\{C \subseteq X \mid x \in F(U)$
			for all $U \in Clp(X)$
			with $C \subseteq U$ }
	$C\in \mathcal{P}X$	\forall	\mathbf{C}

Topological least fixpoint game II

Position	Pl.	Moves
$\mathbf{x} \in \mathbf{X}$	Ξ	$\{(\forall, U) \in M \times Clp(\mathbb{X}) \mid x \in F(U)\}$
$(\forall, U) \in M \times Clp(\mathbb{X})$	A	$\{(\exists, \mathrm{U}') \in \mathrm{M} \times \mathrm{Clp}(\mathbb{X}) \mid \mathrm{U} \cap \mathrm{U}' \neq \emptyset\}$
$(\exists, \mathrm{U}') \in \mathrm{M} \times \mathrm{Clp}(\mathbb{X})$	Е	U'

(Here $M = \{\forall, \exists\}$ is the collection of markers to keep sets of positions of \exists and \forall disjoint.)

Correctness of \mathcal{G}^{II}

Suppose that $x \in \mu F$ for some $x \in X$.

Then there is a least ordinal α such that $\mathbf{x} \in \mathbf{F}^{\mu}_{\alpha}$.

We will show that \exists has a (winning) strategy that ensures that either \forall gets stuck within the next round or that the play reaches a position $\mathbf{x}' \in \mathbf{F}_{\alpha'}^{\mu}$ with $\alpha' < \alpha$.

Correctness of \mathcal{G}^{II}

Case α is a limit ordinal

Then \exists 's strategy is to move from x to

$$(\forall, \bigvee_{\beta < \alpha} \mathbf{F}^{\mu}_{\beta}) = (\forall, \operatorname{Cl}(\bigcup_{\beta < \alpha} \mathbf{F}^{\mu}_{\beta})).$$

Unless \forall gets stuck, he will move to some position (\exists, U') where $U' \in Clp(\mathbb{X})$ with

$$\mathrm{U}' \cap \bigvee_{\beta < \alpha} \mathrm{F}^{\mu}_{\beta} = \mathrm{U}' \cap \mathrm{Cl}(\bigcup_{\beta < \alpha} \mathrm{F}^{\mu}_{\beta}) \neq \emptyset.$$

One can easily see that this implies $U' \cap \bigcup_{\beta < \alpha} F^{\mu}_{\beta} \neq \emptyset$. Therefore \exists can pick a suitable element $x' \in \bigcup_{\beta < \alpha} F^{\mu}_{\beta}$ and $x' \in F^{\mu}_{\beta}$ for some $\beta < \alpha$. Pragmatic answer Because this makes our arguments work.

Observation There seems to be no direct transformation for \exists 's winning strategies in the first game into winning strategies in the second game.

Even 2 games are not enough!

Four Games: Two more for greatest fixpoints.

The two greatest fixpoint games

Game $\mathcal{G}_{\nu}^{\mathrm{I}}$:

Game $\mathcal{G}_{\nu}^{\mathrm{II}}$:

PositionPlayerMoves $x \in X$ \exists $\{U \in Clp(X) \mid x \in F(U)\}$ $U \in Clp(X)$ \forall U

evaluation game

Goal

For a formula $\varphi \in \mathcal{L}_{\mu}$ and a model $\mathbb{M} = (\mathbb{X}, \mathbb{R}, \mathbb{V})$ define a game s.t. \exists has a winning strategy at position (φ, \mathbf{x}) iff $\mathbf{x} \in \llbracket \varphi \rrbracket_{\mathbb{V}}^{\mathbb{M}}$.

Evaluation game $\mathcal{E}(\varphi, \mathbb{M})$: Standard formulation

Given a formula $\varphi \in \mathcal{L}_{\mu}$ we define its evaluation game as follows:

Position	Condition	Player	Possible Moves
(p,x)	$\mathrm{p}\in\mathrm{FV}(arphi),\mathrm{x} ot\in\mathrm{V}(\mathrm{p})$	Ξ	Ø
(p,x)	$\mathrm{p}\in\mathrm{FV}(arphi),\mathrm{x}\in\mathrm{V}(\mathrm{p})$	\forall	Ø
(¬p,x)	$\mathrm{p}\in\mathrm{FV}(arphi),\mathrm{x} ot\in\mathrm{V}(\mathrm{p})$	\forall	Ø
(¬p,x)	$\mathrm{p}\in\mathrm{FV}(arphi),\mathrm{x}\in\mathrm{V}(\mathrm{p})$	Е	Ø
$(\psi_1 \wedge \psi_2, \mathbf{x})$		\forall	$\{(\psi_1,\mathrm{x}),(\psi_2,\mathrm{x})\}$
$(\psi_1 \lor \psi_2, \mathbf{x})$		Э	$\{(\psi_1,\mathrm{x}),(\psi_2,\mathrm{x})\}$
$(\Diamond \psi, \mathbf{x})$		Э	$ \{(\psi, \mathbf{x}') \mid \mathbf{x}' \in \mathrm{R}[\mathbf{x}] \}$
$(\Box \psi, \mathbf{x})$		\forall	$ \{(\psi, \mathbf{x}') \mid \mathbf{x}' \in \mathbf{R}[\mathbf{x}] \}$
$(\eta \mathrm{p.}\psi,\mathrm{x})$	$\eta\in\{\mu, u\}$	∃/∀	(ψ, \mathbf{x})
(p,x)	$\mathbf{p} \in \mathrm{BV}(arphi), arphi$ @ $\mathbf{p} = \mu \mathbf{p}. \psi$	∃/∀	(ψ, \mathbf{x})

Plus some suitable winning condition on infinite plays.

Evaluation game $\mathcal{E}(\varphi, \mathbb{M})$: our modification

Given a formula $\varphi \in \mathcal{L}_{\mu}$ we remove the last rule and add the following rules on fixpoint unfolding:

Position	Condition	Player	Possible Moves
$(\eta p.\psi, x)$	$\eta \in \{\mu,\nu\}$	A/E	(ψ, \mathbf{x})
(p,x)	$\eta = \mu$	\forall	$\{(p, U) \mid U \in Clp(X), x \in U\}$
(p, x)	$\eta = \nu$	Э	$\{(p, U) \mid U \in Clp(X), x \in U\}$
(p, U)	$\eta = \mu$	Ξ	$\{(\psi,\mathrm{x}')\mid\mathrm{x}'\in\mathrm{U}\}$
(p,U)	$\eta = \nu$	\forall	$\{(\psi, \mathrm{x}') \mid \mathrm{x}' \in \mathrm{U}\}$

where $p \in BV(\varphi)$, $\varphi @p = \eta p.\psi$ with $\eta \in \{\mu, \nu\}$, $U \in Clp(X)$.

Intuition

Reachability becomes easier to prove; safety more difficult.

Bisimulations

Let $\mathbb{M}_1 = (\mathbb{X}_1, \mathbb{R}_1, \mathbb{V})$ and $\mathbb{M}_2 = (\mathbb{X}_2, \mathbb{R}_2, \mathbb{V})$ be extremally disconnected Kripke models.

A relation $Z \subseteq X_1 \times X_2$ is called a clopen bisimulation iff

- ▶ $Z \subseteq X_1 \times X_2$ is a (standard) Kripke bisimulation and
- ▶ for any clopen subsets $U_1 \in Clp(X_1)$ and $U_2 \in Clp(X_2)$:

 $\begin{array}{lll} Z[U_1] &=& \{x' \in X_2 \mid \exists x \in U_1.(x,x') \in Z\} \in {\rm Clp}(\mathbb{X}_2) \\ Z^{-1}[U_2] &=& \{x \in X_1 \mid \exists x' \in U_2.(x,x') \in Z\} \in {\rm Clp}(\mathbb{X}_1). \end{array}$

Bisimulation invariance

Let Z be a clopen bisimulation between extremally disconnected Kripke models $\mathbb{M}_1 = (\mathbb{X}_1, \mathbb{R}_1, \mathbb{V})$ and $\mathbb{M}_2 = (\mathbb{X}_2, \mathbb{R}_2, \mathbb{V})$.

Proposition

For any formula $\varphi \in \mathcal{L}_{\mu}$ and states $x \in X_1$ and $x' \in X_2$ such that $(x, x') \in Z$, we have $x \in \llbracket \varphi \rrbracket$ iff $x' \in \llbracket \varphi \rrbracket$.

Proof sketch

Suppose that $(x, x') \in \mathbb{Z}$ and that $x \in \llbracket \varphi \rrbracket$ for some formula φ .

 $\Rightarrow (\varphi, \mathbf{x}) \in \mathrm{Win}_{\exists} (\mathcal{E}(\varphi, \mathbb{M}_1)).$

⇒ Transform ∃'s winning strategy in $\mathcal{G}_1 = \mathcal{E}(\varphi, \mathbb{M}_1)$ at position (φ, \mathbf{x}) into a winning strategy for ∃ in $\mathcal{G}_2 = \mathcal{E}(\varphi, \mathbb{M}_2)$ at position (φ, \mathbf{x}') .

 $\Rightarrow \mathbf{x}' \in \llbracket \varphi \rrbracket$

Future & Ongoing Work

- other topological spaces
- ▶ other notions of admissible subset
- automata & complexity?
- ► shedding light on completeness proof of fixpoint logics (modal µ-calculus)
- ► if (some of) this works out for Kripke frames, we could look into coalgebraic variants (game logic)

Thanks!