Categories of Physical Processes

Stanisław Szawiel

University of Warsaw

Categories, Logic, and Physics, Scotland 20th November 2017

Part I A non-topological TQFT

 $\mathbf{Phys} \longrightarrow \ast \mathbf{Mod}$

 Mod = representations of C-algebras + isometric relative homomorphisms

Phys $\longrightarrow *Mod$ $H \xrightarrow{h} H' \quad (*Mod)$ $A \xrightarrow{f} B \quad (C^*Alg)$ h(av) = f(a)h(v)

$$\begin{array}{l} \mathbf{Phys} \longrightarrow *\mathbf{Mod} \\ \mathcal{S}(A) = \{\varphi : A \longrightarrow \mathbb{C}\} \\ \varphi \text{ positive} \end{array}$$

- $\blacktriangleright \ \mathcal{S}: C^*\mathbf{Alg}^{op} \longrightarrow \mathbf{Set}$
- $\begin{array}{l} \blacktriangleright \ \mathbf{Phys} = 1 \downarrow \mathcal{S} \\ \text{Pairs} \ (A, \varphi), \varphi \in \mathcal{S}(A) \end{array}$
- ► S monoidal \implies Phys monoidal (A, φ) \otimes (B, ψ) = (A \otimes B, $\varphi \otimes \psi$)

- $\blacktriangleright \ (A,\varphi) \longmapsto A$
- Noncommutative spaces"
- Not Morita invariant

 $\mathbf{Phys} \xrightarrow{GNS} *\mathbf{Mod}$

The GNS Construction

Definition

A pointed $A\operatorname{-module}\,(H,v)$ represents $\varphi:A\longrightarrow \mathbb{C}$ if

 $\varphi(a) = \langle av, v \rangle_H$

The GNS Construction

Definition

A pointed A-module (H,v) represents $\varphi:A\longrightarrow \mathbb{C}$ if

 $\varphi(a) = \langle av, v \rangle_H$

Theorem (The Gelfand-Naimark-Segal Theorem)

- Positive φ have an initial representation
- A representation is initial iff it is cyclic (cyclic = generated by the chosen vector)

Notation

- \blacktriangleright Initial representation of $\varphi = GNS(\varphi)$
- Representing vector = Ω
- Write H for (H, v)

H represents $\varphi \Longrightarrow f^{*}H$ represents $f^{*}\varphi$

H represents $\varphi \Longrightarrow f^{*}H$ represents $f^{*}\varphi$

 $GNS(f^*\varphi) \hspace{1cm} GNS(\varphi)$

H represents $\varphi \Longrightarrow f^{*}H$ represents $f^{*}\varphi$

$$GNS(f^*\varphi) \qquad \quad f^*GNS(\varphi) \longrightarrow GNS(\varphi)$$

$$H$$
 represents $\varphi \Longrightarrow f^{*}H$ represents $f^{*}\varphi$

$$GNS(f^*\varphi) \xrightarrow{\exists !} f^*GNS(\varphi) \longrightarrow GNS(\varphi)$$

H represents $\varphi \Longrightarrow f^{*}H$ represents $f^{*}\varphi$

$$\begin{array}{c} GNS(f^{*}\varphi) \xrightarrow{\exists !} f^{*}GNS(\varphi) \longrightarrow GNS(\varphi) \\ & & & \\ & \\ & & \\ & \\ & & & \\ & & \\ & & \\ & & & \\ & &$$

H represents $\varphi \Longrightarrow f^{*}H$ represents $f^{*}\varphi$

Theorem

This gives a symmetric monoidal functor

$$GNS: \mathbf{Phys}^{op} \longrightarrow *\mathbf{Mod}$$

Proof.

Things exist by initiality. Diagrams commute by cyclicity.

H represents $\varphi \Longrightarrow f^{*}H$ represents $f^{*}\varphi$

Theorem

This gives a symmetric monoidal functor

 $GNS: \mathbf{Phys}^{op} \longrightarrow *\mathbf{Mod}$

It's going the wrong way!

The Covariant GNS Functor

Physically Correct Direction

The Covariant GNS Functor

Physically Correct Direction

Definition

- *Mod_{adj} is *-modules with adjoint homomorphisms
- \blacktriangleright Adjoint homomorphisms: coisometries h such that

ah(v)=h(f(a)v)

Part II Physics From a Functor

The Schrödinger Picture – Example Factory

1. H – faithful A-module

- 2. $U: H \longrightarrow H'$ isometric linear map
- 3. $f: A \longrightarrow B = UAU^*$ algebra map given by $a \longmapsto UaU^*$

Theorem (Lifting Schrödinger)

For any $\psi \in H$ we have $f: U\psi \longrightarrow \psi \in \mathbf{Phys}$, and

The Schrödinger Picture – Example Factory

H - faithful A-module
U : H → H' - isometric linear map
f : A → B = UAU* - algebra map given by a → UaU*

Corollary

If U is unitary, then $g(a)=U^*aU$ gives $g:\psi\longrightarrow U\psi\in\mathbf{Phys},$ and

Why does a G-equivariant state give a unitary representation of G?

$$G \longrightarrow \mathbf{Phys} \longrightarrow \mathbf{Mod}_{adj}$$

Why does a *G*-equivariant state give a unitary representation of *G*? Because of composition!

Why does a *G*-equivariant state give a unitary representation of *G*? Because of composition!

Bonus items:

- Groupoids of symmetries
- Equivariant GNS:

$$\mathbf{Phys} \quad \xrightarrow{GNS_c} \ast \mathbf{Mod}_{adj}$$

Why does a *G*-equivariant state give a unitary representation of *G*? Because of composition!

Bonus items:

- Groupoids of symmetries
- Equivariant GNS:

$$\mathbf{Phys}^{\boldsymbol{G}} \xrightarrow{GNS_{c}^{\boldsymbol{G}}} \ast \mathbf{Mod}_{adj}^{\boldsymbol{G}}$$

Why does a *G*-equivariant state give a unitary representation of *G*? Because of composition!

Bonus items:

- Groupoids of symmetries
- Equivariant GNS:

$$\mathbf{Phys}^{G} \xrightarrow{\quad GNS_{c}^{G}} \ast \mathbf{Mod}_{adj}^{G} \xrightarrow{\quad U \quad} \mathbf{Rep}(G)$$

Why does a *G*-equivariant state give a unitary representation of *G*? Because of composition!

Bonus items:

- Groupoids of symmetries
- Equivariant GNS:

$$\mathbf{Phys}^{G} \xrightarrow{GNS_{c}^{G}} \ast \mathbf{Mod}_{adj}^{G} \xrightarrow{U} \mathbf{Rep}(G)$$

Compatibility with composite systems:

 $\varphi\otimes\psi$ has symmetry $G\times G'$

Relation to Probability Theory

 \mathbf{Prob} – compact probability spaces. From (X,μ) we construct:

- ▶ A state on C(X) the expectation value $\mathbb{E}_{\mu}(a) = \int_{X} a \, d\mu$
- ▶ $L^2(\mu)$, a C(X)-module

Theorem

The following diagram of symmetric monoidal functors commutes

Relation to Probability Theory

 \mathbf{Prob} – compact probability spaces. From (X,μ) we construct:

- ▶ A state on C(X) the expectation value $\mathbb{E}_{\mu}(a) = \int_{X} a \, d\mu$
- ▶ $L^2(\mu)$, a C(X)-module

Theorem

The following diagram of symmetric monoidal functors commutes

Proof.

1. $L^2(\mu)$ is cyclic 2. $1\in L^2(\mu)$ represents the expectation value \mathbb{E}_{μ}

Application: Eigenvalue-Eigenvector Link

Any normal $a \in \mathcal{O}(\varphi)$ determines a probability space

$$P_{\varphi}(a) = (Spec(\langle a \rangle), \varphi|_{\langle a \rangle})$$

Theorem (Eigenvalue-Eigenvector Link)

The following are equivalent:

1. $a\Omega = \lambda \Omega$ 2. $a = \lambda$ a.e. in $P_{\varphi}(a)$

Application: Eigenvalue-Eigenvector Link

Any normal $a \in \mathcal{O}(\varphi)$ determines a probability space

$$P_{\varphi}(a) = (Spec(\langle a \rangle), \varphi|_{\langle a \rangle})$$

Theorem (Eigenvalue-Eigenvector Link)

The following are equivalent:

1. $a\Omega = \lambda \Omega$ 2. $a = \lambda$ a.e. in $P_{\alpha}(a)$

Proof.

The inclusion $\langle a \rangle \subseteq \mathcal{O}(\varphi)$ gives a map $R: \varphi \longrightarrow P_{\varphi}(a) \in \mathbf{Phys}$ Previous theorem computes GNS(R):

$$L^2(\varphi|_{\langle a \rangle}) \longrightarrow GNS(\varphi)$$

Thus: $a\Omega = \lambda \Omega \iff a \cdot 1 = \lambda \cdot 1$ in $L^2 \iff a = \lambda$ a.e.

Classical Markov Processes

Definition (Markov Processes)

- $\blacktriangleright \ M(X) = {\rm probability\ measures\ on\ } X$
- $\blacktriangleright \text{ Markov process } X \longrightarrow Y = \operatorname{map} X \longrightarrow M(Y)$
- ▶ Category of Markov processes = *Kleisli*(*M*)

Classical Markov Processes

Definition (Markov Processes)

- M(X) =probability measures on X
- $\blacktriangleright \text{ Markov process } X \longrightarrow Y = \operatorname{map} X \longrightarrow M(Y)$
- Category of Markov processes = Kleisli(M)

Theorem (Generalized Gelfand Duality; Furber & Jacobs 2015) Gelfand duality extends to a contravariant equivalence between Markov processes and completely positive unital maps between C*-algebras

Quantum Markov Processes

Theorem (Non-Unitary GNS Representation)

There is a commuting prism of symmetric monoidal functors:

Example: State Vector Collapse

- ▶ $P \in A$ self-adjoint projection (i.e. idempotent)
- $\blacktriangleright \ \Phi: A \longrightarrow A \text{ given by } a \longmapsto PaP$

Theorem

• φ represented by $\Omega \Longrightarrow \Phi^* \varphi$ represented by $P\Omega$

•
$$GNS_M(\Phi)$$
 is the composite

$$GNS(\Phi^*\varphi) \longleftrightarrow GNS(\varphi) \xrightarrow{P} GNS(\varphi)$$

Example: State Vector Collapse

▶ $P \in A$ – self-adjoint projection (i.e. idempotent)

•
$$\Phi: A \longrightarrow A$$
 given by $a \longmapsto PaP$

Theorem

• φ represented by $\Omega \Longrightarrow \Phi^* \varphi$ represented by $P\Omega$

•
$$GNS_M(\Phi)$$
 is the composite

$$GNS(\Phi^*\varphi) \longleftrightarrow GNS(\varphi) \xrightarrow{P} GNS(\varphi)$$

Corollary

$$GNS_{M,\,c}(\Phi)$$
 is cyclic ($\Omega\longmapsto P\Omega$), and acts as

$$GNS(\varphi) \xrightarrow{\quad P \quad } GNS(\varphi) \xrightarrow{\quad \text{orth. proj.}} GNS(\Phi^*\varphi)$$

Example: Particle Scattering

 \blacktriangleright *H* – Hilbert space

 $\blacktriangleright \ S: \mathcal{F}(H) \longrightarrow \mathcal{F}(H)$ – unitary scattering matrix

 $\blacktriangleright \ H_{\alpha}, H_{\beta} \subseteq \mathcal{F}(H) \text{ - particles of type } \alpha \text{ and } \beta$

Proposition

There is a process $S_{\alpha\beta}:\alpha\longrightarrow\beta\in\mathbf{Phys}_M$ such that

If you believe in QED:

$$\gamma + \gamma \longrightarrow e^- + e^+$$

Part III The Frontier

Internalizing in a Topos

- GNS in a topos E = monoidal morphism in $\mathbf{Stacks}(E)$
- Which definition? All equivalent in Set!
- In models of synthetic differential geometry:
 - ► Infinitesimal processes, like symmetries (Heisenberg ⇐⇒ Schrödinger)
 - Deformation quantization = Infinitesimal \hbar -families

Few examples – must use C^{∞} -*-algebras (work in progress)

Questions for the Future

What is ...

- …a gauge theory? No spacetime!
- ...extended locality in general?
- ...a family of vacuum states?

Questions for the Future

What is ...

- …a gauge theory? No spacetime!
- ...extended locality in general?
- …a family of vacuum states?

Target Theorem (Witten)

The \hbar -family of vacua of super Yang-Mills theory is trivial. (in four dimensions, N=2)

Thank You!