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Phys —— «Mod



Construction Sketch

» «Mod = representations of
C*-algebras + isometric relative
homomorphisms

Phys — «Mod

H L H’ (xMod)

A L B (C*Alg)

h(av) = f(a)h(v)



Construction Sketch

> §:C*Alg’” — Set

» Phys=1]&8

S(A)={p: A— C} Pairs (A, ¢), ¢ € S(A)

» S monoidal = Phys monoidal
(4,0)®(B,¢) = (AR B, @)

Phys — «Mod

 positive



Construction Sketch

Phys —— «Mod
o

C*Alg°?
> (A,p)r— A
» “Noncommutative spaces”

» Not Morita invariant



Construction Sketch

N
Phys &} +*Mod

» Whatis GNS?



The GNS Construction

Definition
A pointed A-module (H,v) represents ¢ : A — C if

p(a) = (av,v) g



The GNS Construction

Definition
A pointed A-module (H,v) represents ¢ : A — C if

p(a) = (av,v) g

Theorem (The Gelfand-Naimark-Segal Theorem)
» Positive p have an initial representation
» A representation is initial iff it is cyclic
(cyclic = generated by the chosen vector)

Notation
» Initial representation of ¢ = GNS(y)
» Representing vector = (2
» Write H for (H,v)



The GNS Functor

H represents ¢ = f*H represents f*¢

f*H
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The GNS Functor

H represents ¢ = f*H represents f*¢

GNS(f'¢) — F*GNS(p) — GNS(p)
\_/?
GNS(f)
f




The GNS Functor
H represents ¢ = f*H represents f*¢

=

GNS(f*¢) —— f*GNS(¢) —— GNS(yp)
\—/)
GNS(f)
5 f A @

Theorem

This gives a symmetric monoidal functor
GNS : Phys°? — xMod

Proof.

Things exist by initiality. Diagrams commute by cyclicity.



The GNS Functor

H represents ¢ = f*H represents f*¢

3

GNS(f*p) —— f*GNS(p) —— GNS(p)
\/)
GNS(f)
5 f A ©

Theorem

This gives a symmetric monoidal functor

GNS : Phys”? — xMod

It’s going the wrong way!



The Covariant GNS Functor

Physically Correct Direction

op adjoint
Phys L *Mod“°? J" *Mod,, 4

GNS



The Covariant GNS Functor

Physically Correct Direction

op adjoint
Phys L *Mod“°? J" *Mod,, 4

GNS
Definition

> «Mod,, 4,

» Adjoint homomorphisms: coisometries h such that

is *-modules with adjoint homomorphisms
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Physics From a Functor



The Schrédinger Picture — Example Factory

1. H - faithful A-module
2. U: H— H’ - isometric linear map
3. f+A— B =UAU" - algebra map given by a +— UaU*

Theorem (Lifting Schrodinger)
For any ) € H we have f : Up) — 1 € Phys, and

GNS(1) GNS() GNS(U)

L,

H H’




The Schrédinger Picture — Example Factory

1. H - faithful A-module
2. U: H— H’ - isometric linear map
3. f+A— B =UAU* - algebra map given by a +— UaU*

Corollary
If U is unitary, then g(a) = U*aU gives g : ¥ — U1 € Phys, and

GNS(1) GNS.(9) GNS(U)

L,

H H’




Symmetries and Unitary Representations

Why does a G-equivariant state give a unitary representation of G?

GNS

G Phys —°  +Mod,,



Symmetries and Unitary Representations

Why does a G-equivariant state give a unitary representation of G?
Because of composition!

GNS

G— +Phys — s +Mod,,

\/

Unitary representation of G
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Why does a G-equivariant state give a unitary representation of G?
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Unitary representation of G!

Bonus items:
» Groupoids of symmetries
» Equivariant GNS:

GNS,
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Bonus items:
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Symmetries and Unitary Representations

Why does a G-equivariant state give a unitary representation of G?
Because of composition!

GNS

G————— s Phys——° xMod,,

\/

Unitary representation of G!

Bonus items:
» Groupoids of symmetries
» Equivariant GNS:

GNSE

G ¢ *Mod L Rep(G)

Phys
» Compatibility with composite systems:

© ® 1) has symmetry G x G’



Relation to Probability Theory

Prob - compact probability spaces. From (X, i) we construct:
> A state on C(X) - the expectation value E , (a) = fX adp
» L2(pn),a C(X)-module

Theorem
The following diagram of symmetric monoidal functors commutes

Prob°?

OP/GNS\‘

Phys®? ————— xMod



Relation to Probability Theory

Prob - compact probability spaces. From (X, i) we construct:
> A state on C(X) - the expectation value E , (a) = fX adu
» L2(pn),a C(X)-module

Theorem

The following diagram of symmetric monoidal functors commutes
Prob®”

OP/GNS\‘

Phys®? ————— xMod

Proof.
1. L2(u) is cyclic
2.1 € L?(u) represents the expectation value E,



Application: Eigenvalue-Eigenvector Link

Any normal a € O(p) determines a probability space

P(a) = (Spec((a)), ¢l(a))

Theorem (Eigenvalue-Eigenvector Link)

The following are equivalent:
1. af) = \Q
2. a=Xae. inP,(a)



Application: Eigenvalue-Eigenvector Link

Any normal a € O(p) determines a probability space

P(a) = (Spec((a)), ¢l(a))

Theorem (Eigenvalue-Eigenvector Link)

The following are equivalent:
1. af) = AQ
2. a=Xae. inP,(a)

Proof.

The inclusion (a) C O(yp) givesamap R : ¢ — P_(a) € Phys
Previous theorem computes GNS(R):

L?(¢l(qy) — GNS(p)

Thus: aQ =XQ<«<=a-1=X-1inL? < a= \ae.



Classical Markov Processes

Definition (Markov Processes)
» M (X) = probability measures on X
» Markov process X — Y =map X — M(Y)
» Category of Markov processes = Kleisli(M)



Classical Markov Processes

Definition (Markov Processes)
» M (X) = probability measures on X
» Markov process X — Y =map X — M(Y)
» Category of Markov processes = Kleisli(M)

Theorem (Generalized Gelfand Duality; Furber & Jacobs 2015)

Gelfand duality extends to a contravariant equivalence between
Markov processes and completely positive unital maps between

C*-algebras



Quantum Markov Processes

Theorem (Non-Unitary GNS Representation)

There is a commuting prism of symmetric monoidal functors:

Prob°”
Ccop ! L2
i . GNS
Phys°? : +*Mod
.
Prob$} U

Csop/ {
GNS,,

Phys? Hilb




Example: State Vector Collapse

» P € A - self-adjoint projection (i.e. idempotent)
» &: A— Agivenby at+— PaP

Theorem
> © represented by ) =—> ®* ¢ represented by P}
» GNS,, (®) is the composite

GNS(@*p) —— GNS(p) —E—s GNS(o)



Example: State Vector Collapse

» P € A - self-adjoint projection (i.e. idempotent)
» &: A— Agivenby at+— PaP

Theorem
> © represented by ) =—> ®* ¢ represented by P}
» GNS,, (®) is the composite

GNS(®*p) — GNS(p) —E—s GNS(p)

Corollary
GNS s (@) is cyclic (2 = PQ), and acts as

P orth. proj.
GNS(p) —— GNS(p) GNS(D*p)




Example: Particle Scattering

» H - Hilbert space
» S:F(H)— F(H) - unitary scattering matrix
» H,,Hg C F(H) - particles of type a and /3

Proposition

There is a process S, g : @« — 3 € Phys,; such that

i i rojection
H inclusion F(H) S F(H) proj

GNSM,C(SQB>
If you believe in QED:

vy+y—e +et
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Internalizing in a Topos

» GNS inatopos E = monoidal morphism in Stacks(E)

» Which definition? All equivalent in Set!
» In models of synthetic differential geometry:

» Infinitesimal processes, like symmetries
(Heisenberg <= Schrodinger)
» Deformation quantization = Infinitesimal A-families

» Few examples — must use C°°-x-algebras (work in progress)



Questions for the Future

What is ...
> ...a gauge theory? No spacetime!
> ...extended locality in general?

» ...afamily of vacuum states?



Questions for the Future

What is ...
> ...a gauge theory? No spacetime!
> ...extended locality in general?

» ...afamily of vacuum states?

Target Theorem (Witten)

The fi-family of vacua of super Yang-Mills theory is trivial.
(in four dimensions, N = 2)



Thank You!



