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Part I
A non-topological TQFT



Construction Sketch

Phys ∗Mod

𝐻 𝐻′ (∗Mod)

𝐴 𝐵 (𝐶∗Alg)

ℎ(𝑎𝑣) = 𝑓(𝑎)ℎ(𝑣)

ℎ

𝑓
𝒮(𝐴) = {𝜑 ∶ 𝐴 ⟶ ℂ}

𝜑 positive
𝐶∗Alg

𝑜𝑝

𝒪

𝐺𝑁𝑆

▶ ∗Mod = representations of
𝐶∗-algebras + isometric relative
homomorphisms

▶ 𝒮 ∶ 𝐶∗Alg
𝑜𝑝 ⟶ Set

▶ Phys = 1 ↓ 𝒮
Pairs (𝐴, 𝜑), 𝜑 ∈ 𝒮(𝐴)

▶ 𝒮 monoidal ⟹ Phys monoidal
(𝐴, 𝜑)⊗(𝐵, 𝜓) = (𝐴⊗𝐵, 𝜑⊗𝜓)

▶ (𝐴, 𝜑) ⟼ 𝐴
▶ “Noncommutative spaces”
▶ Not Morita invariant
▶ What is 𝐺𝑁𝑆?
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The GNS Construction

Definition
A pointed 𝐴-module (𝐻, 𝑣) represents 𝜑 ∶ 𝐴 ⟶ ℂ if

𝜑(𝑎) = ⟨𝑎𝑣, 𝑣⟩𝐻

Theorem (The Gelfand-Naimark-Segal Theorem)
▶ Positive 𝜑 have an initial representation
▶ A representation is initial iff it is cyclic

(cyclic = generated by the chosen vector)

Notation
▶ Initial representation of 𝜑 = 𝐺𝑁𝑆(𝜑)
▶ Representing vector = Ω
▶ Write 𝐻 for (𝐻, 𝑣)
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The GNS Functor
𝐻 represents 𝜑 ⟹ 𝑓∗𝐻 represents 𝑓∗𝜑

𝐵 𝐴 ℂ
𝑓 𝜑

𝐻𝑓∗𝐻

𝐺𝑁𝑆(𝜑)𝐺𝑁𝑆(𝑓∗𝜑) 𝑓∗𝐺𝑁𝑆(𝜑)∃!

𝐺𝑁𝑆(𝑓)

Theorem
This gives a symmetric monoidal functor

𝐺𝑁𝑆 ∶ Phys
𝑜𝑝 ⟶ ∗Mod
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Proof.
Things exist by initiality. Diagrams commute by cyclicity.



The GNS Functor
𝐻 represents 𝜑 ⟹ 𝑓∗𝐻 represents 𝑓∗𝜑
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The Covariant GNS Functor
Physically Correct Direction

Phys ∗Mod
𝑜𝑝 ∗Mod𝑎𝑑𝑗

𝐺𝑁𝑆𝑜𝑝 adjoint

𝐺𝑁𝑆𝑐

Definition
▶ ∗Mod𝑎𝑑𝑗 is ∗-modules with adjoint homomorphisms
▶ Adjoint homomorphisms: coisometries ℎ such that

𝑎ℎ(𝑣) = ℎ(𝑓(𝑎)𝑣)
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Part II
Physics From a Functor



The Schrödinger Picture – Example Factory

1. 𝐻 – faithful 𝐴-module

2. 𝑈 ∶ 𝐻 ⟶ 𝐻′ – isometric linear map

3. 𝑓 ∶ 𝐴 ⟶ 𝐵 = 𝑈𝐴𝑈 ∗ – algebra map given by 𝑎 ⟼ 𝑈𝑎𝑈 ∗

Theorem (Lifting Schrödinger)
For any 𝜓 ∈ 𝐻 we have 𝑓 ∶ 𝑈𝜓 ⟶ 𝜓 ∈ Phys, and

𝐺𝑁𝑆(𝜓) 𝐺𝑁𝑆(𝑈𝜓)

𝐻 𝐻′

𝐺𝑁𝑆(𝑓)

𝑈
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Symmetries and Unitary Representations
Why does a 𝐺-equivariant state give a unitary representation of 𝐺?

Because of composition!

𝐺 Phys ∗Mod𝑎𝑑𝑗
𝐺𝑁𝑆𝑐

Unitary representation of 𝐺!

Bonus items:
▶ Groupoids of symmetries
▶ Equivariant GNS:

Phys

𝐺

∗Mod

𝐺

𝑎𝑑𝑗
𝐺𝑁𝑆

𝐺

𝑐

Rep(𝐺)𝑈

▶ Compatibility with composite systems:

𝜑 ⊗ 𝜓 has symmetry 𝐺 × 𝐺′
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Relation to Probability Theory

Prob – compact probability spaces. From (𝑋, 𝜇) we construct:
▶ A state on 𝐶(𝑋) – the expectation value 𝔼𝜇(𝑎) = ∫𝑋 𝑎 𝑑𝜇
▶ 𝐿2(𝜇), a 𝐶(𝑋)-module

Theorem
The following diagram of symmetric monoidal functors commutes

Prob
𝑜𝑝

Phys
𝑜𝑝 ∗Mod

𝐶𝑜𝑝 𝐿2

𝐺𝑁𝑆

Proof.
1. 𝐿2(𝜇) is cyclic
2. 1 ∈ 𝐿2(𝜇) represents the expectation value 𝔼𝜇
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Application: Eigenvalue-Eigenvector Link
Any normal 𝑎 ∈ 𝒪(𝜑) determines a probability space

𝑃𝜑(𝑎) = (𝑆𝑝𝑒𝑐(⟨𝑎⟩), 𝜑|⟨𝑎⟩)

Theorem (Eigenvalue-Eigenvector Link)
The following are equivalent:

1. 𝑎Ω = 𝜆Ω
2. 𝑎 = 𝜆 a.e. in 𝑃𝜑(𝑎)

Proof.
The inclusion ⟨𝑎⟩ ⊆ 𝒪(𝜑) gives a map 𝑅 ∶ 𝜑 ⟶ 𝑃𝜑(𝑎) ∈ Phys
Previous theorem computes 𝐺𝑁𝑆(𝑅):

𝐿2(𝜑|⟨𝑎⟩) ⟶ 𝐺𝑁𝑆(𝜑)

Thus: 𝑎Ω = 𝜆Ω ⟺ 𝑎 ⋅ 1 = 𝜆 ⋅ 1 in 𝐿2 ⟺ 𝑎 = 𝜆 a.e.
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Classical Markov Processes

Definition (Markov Processes)
▶ 𝑀(𝑋) = probability measures on 𝑋
▶ Markov process 𝑋 ⟶ 𝑌 = map 𝑋 ⟶ 𝑀(𝑌 )
▶ Category of Markov processes = 𝐾𝑙𝑒𝑖𝑠𝑙𝑖(𝑀)

Theorem (Generalized Gelfand Duality; Furber & Jacobs 2015)
Gelfand duality extends to a contravariant equivalence between
Markov processes and completely positive unital maps between
𝐶∗-algebras
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Quantum Markov Processes

Theorem (Non-Unitary GNS Representation)
There is a commuting prism of symmetric monoidal functors:

Prob
𝑜𝑝

Phys
𝑜𝑝 ∗Mod

Prob
𝑜𝑝
𝑀

Phys
𝑜𝑝
𝑀 Hilb

𝐶𝑜𝑝 𝐿2

𝐺𝑁𝑆

𝐶𝑜𝑝 𝐿2
𝑈

𝐺𝑁𝑆𝑀



Example: State Vector Collapse

▶ 𝑃 ∈ 𝐴 – self-adjoint projection (i.e. idempotent)
▶ Φ ∶ 𝐴 ⟶ 𝐴 given by 𝑎 ⟼ 𝑃 𝑎𝑃

Theorem
▶ 𝜑 represented by Ω ⟹ Φ∗𝜑 represented by 𝑃Ω
▶ 𝐺𝑁𝑆𝑀(Φ) is the composite

𝐺𝑁𝑆(Φ∗𝜑) 𝐺𝑁𝑆(𝜑) 𝐺𝑁𝑆(𝜑)𝑃

Corollary

𝐺𝑁𝑆𝑀,𝑐(Φ) is cyclic (Ω ⟼ 𝑃Ω), and acts as

𝐺𝑁𝑆(Φ∗𝜑)𝐺𝑁𝑆(𝜑) 𝐺𝑁𝑆(𝜑)
orth. proj.𝑃
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Example: Particle Scattering

▶ 𝐻 – Hilbert space
▶ 𝑆 ∶ ℱ(𝐻) ⟶ ℱ(𝐻) – unitary scattering matrix
▶ 𝐻𝛼, 𝐻𝛽 ⊆ ℱ(𝐻) – particles of type 𝛼 and 𝛽

Proposition
There is a process 𝑆𝛼𝛽 ∶ 𝛼 ⟶ 𝛽 ∈ Phys𝑀 such that

𝐻𝛼 ℱ(𝐻) ℱ(𝐻) 𝐻𝛽
𝑆 projection

𝐺𝑁𝑆𝑀,𝑐(𝑆𝛼𝛽)

inclusion

If you believe in QED:

𝛾 + 𝛾 ⟶ 𝑒− + 𝑒+



Part III
The Frontier



Internalizing in a Topos

▶ 𝐺𝑁𝑆 in a topos 𝐸 = monoidal morphism in Stacks(𝐸)
▶ Which definition? All equivalent in Set!
▶ In models of synthetic differential geometry:

▶ Infinitesimal processes, like symmetries
(Heisenberg ⟺ Schrödinger)

▶ Deformation quantization = Infinitesimal ℏ-families

▶ Few examples – must use 𝐶∞-∗-algebras (work in progress)



Questions for the Future

What is …
▶ …a gauge theory? No spacetime!
▶ …extended locality in general?
▶ …a family of vacuum states?

Target Theorem (Witten)
The ℏ-family of vacua of super Yang-Mills theory is trivial.
(in four dimensions, 𝑁 = 2)
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Thank You!


