Categories of Physical Processes

Stanisław Szawiel

University of Warsaw
Categories, Logic, and Physics, Scotland 20th November 2017

Part I
A non-topological TQFT

Construction Sketch

Phys $\longrightarrow * \operatorname{Mod}$

Construction Sketch

- $* \operatorname{Mod}=$ representations of
C^{*}-algebras + isometric relative homomorphisms

Phys $\longrightarrow * \operatorname{Mod}$

$$
\begin{aligned}
& H \xrightarrow{h} H^{\prime} \quad(* \mathbf{M o d}) \\
& A \xrightarrow{f} B \quad\left(C^{*} \mathbf{A l g}\right) \\
& h(a v)=f(a) h(v)
\end{aligned}
$$

Construction Sketch

$$
\begin{gathered}
\text { Phys } \longrightarrow * \text { Mod } \\
\mathcal{S}(A)=\{\varphi: A \longrightarrow \mathbb{C}\} \\
\varphi \text { positive }
\end{gathered}
$$

- $\mathcal{S}: C^{*} \mathbf{A l g}^{o p} \longrightarrow$ Set
- Phys $=1 \downarrow \mathcal{S}$ Pairs $(A, \varphi), \varphi \in \mathcal{S}(A)$
- \mathcal{S} monoidal \Longrightarrow Phys monoidal $(A, \varphi) \otimes(B, \psi)=(A \otimes B, \varphi \otimes \psi)$

Construction Sketch

$$
\begin{array}{ll}
\text { Phys } \longrightarrow * \text { Mod } & \\
\mathcal{O} \mid \\
C^{*} \mathbf{A l g}^{o p} & \\
& \\
& \\
& \\
& \\
& \\
& \\
& \text { "Noncommutative spaces" } \\
& \\
& \text { Norita invariant }
\end{array}
$$

Construction Sketch

Phys $\xrightarrow{G N S} *$ Mod

- What is GNS?

The GNS Construction

Definition

A pointed A-module (H, v) represents $\varphi: A \longrightarrow \mathbb{C}$ if

$$
\varphi(a)=\langle a v, v\rangle_{H}
$$

The GNS Construction

Definition

A pointed A-module (H, v) represents $\varphi: A \longrightarrow \mathbb{C}$ if

$$
\varphi(a)=\langle a v, v\rangle_{H}
$$

Theorem (The Gelfand-Naimark-Segal Theorem)

- Positive φ have an initial representation
- A representation is initial iff it is cyclic (cyclic $=$ generated by the chosen vector)

Notation

- Initial representation of $\varphi=G N S(\varphi)$
- Representing vector $=\Omega$
- Write H for (H, v)

The GNS Functor

H represents $\varphi \Longrightarrow f^{*} H$ represents $f^{*} \varphi$

$$
f^{*} H \longrightarrow H
$$

The GNS Functor

H represents $\varphi \Longrightarrow f^{*} H$ represents $f^{*} \varphi$
$G N S\left(f^{*} \varphi\right)$
$G N S(\varphi)$

The GNS Functor

H represents $\varphi \Longrightarrow f^{*} H$ represents $f^{*} \varphi$

$$
\begin{array}{rl}
G N S\left(f^{*} \varphi\right) & f^{*} G N S(\varphi) \longrightarrow G N S(\varphi) \\
B & f \\
& \longrightarrow \stackrel{\varphi}{\longrightarrow}
\end{array}
$$

The GNS Functor

H represents $\varphi \Longrightarrow f^{*} H$ represents $f^{*} \varphi$

$$
G N S\left(f^{*} \varphi\right) \xrightarrow{\exists!} f^{*} G N S(\varphi) \longrightarrow G N S(\varphi)
$$

$$
B \xrightarrow{f} A \xrightarrow{\varphi} \mathbb{C}
$$

The GNS Functor

H represents $\varphi \Longrightarrow f^{*} H$ represents $f^{*} \varphi$

$$
\begin{aligned}
& G N S\left(f^{*} \varphi\right) \stackrel{\exists!}{\longrightarrow} f^{*} G N S(\varphi) \longrightarrow \\
& G N S(f) \\
& B \longrightarrow A N S(\varphi) \\
& B \longrightarrow
\end{aligned}
$$

The GNS Functor

H represents $\varphi \Longrightarrow f^{*} H$ represents $f^{*} \varphi$

$$
\begin{aligned}
& G N S\left(f^{*} \varphi\right) \stackrel{\exists!}{\longrightarrow} f^{*} G N S(\varphi) \longrightarrow \\
& G N S(f) \\
& B \longrightarrow A N S(\varphi) \\
& B \longrightarrow \\
& C
\end{aligned}
$$

Theorem

This gives a symmetric monoidal functor

$$
G N S: \text { Phys }^{o p} \longrightarrow * \text { Mod }
$$

Proof.

Things exist by initiality. Diagrams commute by cyclicity.

The GNS Functor

H represents $\varphi \Longrightarrow f^{*} H$ represents $f^{*} \varphi$

$$
\begin{aligned}
& G N S\left(f^{*} \varphi\right) \stackrel{\exists!}{\longrightarrow} f^{*} G N S(\varphi) \longrightarrow \\
& G N S(f) \\
& B \longrightarrow A N S(\varphi) \\
& B \longrightarrow \\
& C
\end{aligned}
$$

Theorem

This gives a symmetric monoidal functor

$$
G N S: \text { Phys }^{o p} \longrightarrow * \text { Mod }
$$

It's going the wrong way!

The Covariant GNS Functor

Physically Correct Direction

The Covariant GNS Functor

Physically Correct Direction

Definition

- $\operatorname{Mod}_{a d j}$ is $*$-modules with adjoint homomorphisms
- Adjoint homomorphisms: coisometries h such that

$$
a h(v)=h(f(a) v)
$$

Part II
 Physics From a Functor

The Schrödinger Picture - Example Factory

1. H - faithful A-module
2. $U: H \longrightarrow H^{\prime}$ - isometric linear map
3. $f: A \longrightarrow B=U A U^{*}$ - algebra map given by $a \longmapsto U a U^{*}$

Theorem (Lifting Schrödinger)

For any $\psi \in H$ we have $f: U \psi \longrightarrow \psi \in \mathbf{P h y s}$, and

The Schrödinger Picture - Example Factory

1. H-faithful A-module
2. $U: H \longrightarrow H^{\prime}$ - isometric linear map
3. $f: A \longrightarrow B=U A U^{*}$ - algebra map given by $a \longmapsto U a U^{*}$

Corollary

If U is unitary, then $g(a)=U^{*} a U$ gives $g: \psi \longrightarrow U \psi \in$ Phys, and

Symmetries and Unitary Representations

Why does a G-equivariant state give a unitary representation of G ?

$$
G \longrightarrow \text { Phys } \xrightarrow{G N S_{c}} * \operatorname{Mod}_{a d j}
$$

Symmetries and Unitary Representations

Why does a G-equivariant state give a unitary representation of G ? Because of composition!

Symmetries and Unitary Representations

Why does a G-equivariant state give a unitary representation of G ? Because of composition!

Bonus items:

- Groupoids of symmetries
- Equivariant GNS:

$$
\text { Phys } \xrightarrow{G N S_{c}} * \operatorname{Mod}_{a d j}
$$

Symmetries and Unitary Representations

Why does a G-equivariant state give a unitary representation of G ? Because of composition!

Bonus items:

- Groupoids of symmetries
- Equivariant GNS:

$$
\operatorname{Phys}^{G} \xrightarrow{G N S_{c}^{G}} * \operatorname{Mod}_{a d j}^{G}
$$

Symmetries and Unitary Representations

Why does a G-equivariant state give a unitary representation of G ? Because of composition!

Bonus items:

- Groupoids of symmetries
- Equivariant GNS:

$$
\operatorname{Phys}^{G} \xrightarrow{G N S_{c}^{G}} * \operatorname{Mod}_{a d j}^{G} \xrightarrow{U} \operatorname{Rep}(G)
$$

Symmetries and Unitary Representations

Why does a G-equivariant state give a unitary representation of G ? Because of composition!

Bonus items:

- Groupoids of symmetries
- Equivariant GNS:

$$
\operatorname{Phys}^{G} \xrightarrow{G N S_{c}^{G}} * \operatorname{Mod}_{a d j}^{G} \xrightarrow{U} \operatorname{Rep}(G)
$$

- Compatibility with composite systems:

$$
\varphi \otimes \psi \text { has symmetry } G \times G^{\prime}
$$

Relation to Probability Theory

Prob - compact probability spaces. From (X, μ) we construct:

- A state on $C(X)$ - the expectation value $\mathbb{E}_{\mu}(a)=\int_{X} a d \mu$
- $L^{2}(\mu)$, a $C(X)$-module

Theorem

The following diagram of symmetric monoidal functors commutes

Relation to Probability Theory

Prob - compact probability spaces. From (X, μ) we construct:

- A state on $C(X)$ - the expectation value $\mathbb{E}_{\mu}(a)=\int_{X} a d \mu$
- $L^{2}(\mu)$, a $C(X)$-module

Theorem

The following diagram of symmetric monoidal functors commutes

Proof.

1. $L^{2}(\mu)$ is cyclic
2. $1 \in L^{2}(\mu)$ represents the expectation value \mathbb{E}_{μ}

Application: Eigenvalue-Eigenvector Link

Any normal $a \in \mathcal{O}(\varphi)$ determines a probability space

$$
P_{\varphi}(a)=\left(\operatorname{Spec}(\langle a\rangle),\left.\varphi\right|_{\langle a\rangle}\right)
$$

Theorem (Eigenvalue-Eigenvector Link)

The following are equivalent:

1. $a \Omega=\lambda \Omega$
2. $a=\lambda$ a.e. in $P_{\varphi}(a)$

Application: Eigenvalue-Eigenvector Link

Any normal $a \in \mathcal{O}(\varphi)$ determines a probability space

$$
P_{\varphi}(a)=\left(\operatorname{Spec}(\langle a\rangle),\left.\varphi\right|_{\langle a\rangle}\right)
$$

Theorem (Eigenvalue-Eigenvector Link)

The following are equivalent:

1. $a \Omega=\lambda \Omega$
2. $a=\lambda$ a.e. in $P_{\varphi}(a)$

Proof.

The inclusion $\langle a\rangle \subseteq \mathcal{O}(\varphi)$ gives a map $R: \varphi \longrightarrow P_{\varphi}(a) \in$ Phys Previous theorem computes $G N S(R)$:

$$
L^{2}\left(\left.\varphi\right|_{\langle a\rangle}\right) \longrightarrow G N S(\varphi)
$$

Thus: $a \Omega=\lambda \Omega \Longleftrightarrow a \cdot 1=\lambda \cdot 1$ in $L^{2} \Longleftrightarrow a=\lambda$ a.e.

Classical Markov Processes

Definition (Markov Processes)

- $M(X)=$ probability measures on X
- Markov process $X \longrightarrow Y=\operatorname{map} X \longrightarrow M(Y)$
- Category of Markov processes $=$ Kleisli (M)

Classical Markov Processes

Definition (Markov Processes)

- $M(X)=$ probability measures on X
- Markov process $X \longrightarrow Y=\operatorname{map} X \longrightarrow M(Y)$
- Category of Markov processes $=$ Kleisli (M)

Theorem (Generalized Gelfand Duality; Furber \& Jacobs 2015)

Gelfand duality extends to a contravariant equivalence between Markov processes and completely positive unital maps between C^{*}-algebras

Quantum Markov Processes

Theorem (Non-Unitary GNS Representation)

There is a commuting prism of symmetric monoidal functors:

Example: State Vector Collapse

- $P \in A$ - self-adjoint projection (i.e. idempotent)
- $\Phi: A \longrightarrow A$ given by $a \longmapsto P a P$

Theorem

- φ represented by $\Omega \Longrightarrow \Phi^{*} \varphi$ represented by $P \Omega$
- $G N S_{M}(\Phi)$ is the composite

$$
G N S\left(\Phi^{*} \varphi\right) \longleftrightarrow G N S(\varphi) \xrightarrow{P} G N S(\varphi)
$$

Example: State Vector Collapse

- $P \in A$ - self-adjoint projection (i.e. idempotent)
- $\Phi: A \longrightarrow A$ given by $a \longmapsto P a P$

Theorem

- φ represented by $\Omega \Longrightarrow \Phi^{*} \varphi$ represented by $P \Omega$
- $G N S_{M}(\Phi)$ is the composite

$$
G N S\left(\Phi^{*} \varphi\right) \longleftrightarrow G N S(\varphi) \xrightarrow{P} G N S(\varphi)
$$

Corollary

$G N S_{M, c}(\Phi)$ is cyclic $(\Omega \longmapsto P \Omega)$, and acts as

$$
G N S(\varphi) \xrightarrow{P} G N S(\varphi) \xrightarrow{\text { orth. proj. }} G N S\left(\Phi^{*} \varphi\right)
$$

Example: Particle Scattering

- H - Hilbert space
- $S: \mathcal{F}(H) \longrightarrow \mathcal{F}(H)$ - unitary scattering matrix
- $H_{\alpha}, H_{\beta} \subseteq \mathcal{F}(H)$ - particles of type α and β

Proposition

There is a process $S_{\alpha \beta}: \alpha \longrightarrow \beta \in \mathbf{P h y s}_{M}$ such that

$$
H_{\alpha} \xrightarrow{\text { inclusion }} \mathcal{F}(H) \xrightarrow{S} \mathcal{F}(H) \xrightarrow{\text { projection }} H_{\beta}
$$

If you believe in QED:

$$
\gamma+\gamma \longrightarrow e^{-}+e^{+}
$$

Part III

The Frontier

Internalizing in a Topos

- $G N S$ in a topos $E=$ monoidal morphism in $\operatorname{Stacks}(E)$
- Which definition? All equivalent in Set!
- In models of synthetic differential geometry:
- Infinitesimal processes, like symmetries (Heisenberg \Longleftrightarrow Schrödinger)
- Deformation quantization $=$ Infinitesimal \hbar-families
- Few examples - must use $C^{\infty_{-*-a l g e b r a s ~(w o r k ~ i n ~ p r o g r e s s) ~}^{\text {(}} \text {) }}$

Questions for the Future

What is ...

- ...a gauge theory? No spacetime!
- ...extended locality in general?
- ...a family of vacuum states?

Questions for the Future

What is ...

- ...a gauge theory? No spacetime!
- ...extended locality in general?
- ...a family of vacuum states?

Target Theorem (Witten)

The \hbar-family of vacua of super Yang-Mills theory is trivial. (in four dimensions, $N=2$)

Thank You!

