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Bit commitment

I Bit commitment, used in a wide range of cryptographic
protocols (e.g. zero-knowledge proof, multiparty secure
computation, and oblivious transfer), consists of two phases,
namely: commit and opening.

I In the commit phase, the sender chooses a bit a (a = 0 or 1)
which he/she wishes to commit to the receiver, and thus
presents the receiver some evidence about the bit. The
committed bit cannot be known by the receiver prior to the
opening phase.
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Bit commitment

I In the opening phase, the sender announces some
information for reconstructing a. The receiver then
reconstructs a bit a′ using the sender’s evidence and
announcement. The commitment will be accepted by the
receiver if, and only if, a′ = a.

I Bit commitment is also useful in access control in cloud
computing because they can be used to protect privacy, by
creating anonymous credential [2, 4] or hiding access control
policy [3].
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Quantum Bit commitment

I The first quantum bit commitment (QBC) protocol is proposed
by Bennett and Brassard in 1984 [1]. A QBC protocol is
unconditionally secure if any cheating can be detected with a
probability arbitrarily close to 1.

I Here, the sender’s cheating means that the sender changes
the committed bit after the commit phase, while the receiver’s
cheating means that the receiver learns the committed bit
before the opening phase.
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Quantum Bit commitment

I A number of QBC protocols are designed to achieve
unconditional security, such as those of [2, 3]. However,
according to the Mayers-Lo-Chau (MLC) no-go theorem [2, 1],
unconditionally secure QBC can never be achieved in
principle, except for relativistic QBC [2, 3] and
infinite-dimensional systems QBC.

I Although unconditional secure QBC is impossible, several
QBC protocols satisfy some other notions of security, such as
cheat sensitive quantum bit commitment (CSQBC) protocols
[3, 1, 2, 2].

I In CSQBC protocols, the probability for detecting cheating is
merely required to be non-zero.
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Quantum Bit commitment

I More recently, Nagy [3, 1] proposed a QBC protocol in which
cheating can be detected with a high probability.

I Here we propose a QBC protocol which is more efficient and
secure than Nagy’s protocol. As far as we know, the security
of our protocol is better than all the existing CSQBC protocols
[3, 1, 2, 2].

I Moreover, no entanglement is used in our protocol, which
makes it implementable by the current technology.
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The commit phase

The commit phase contains the following steps:
I 1.The receiver generates a sequence of n qubits, where n is a

multiple of 4, such that the first n
4 qubits are |0〉, the second n

4
qubits are X(π2)|0〉 = |i〉, the third n

4 qubits are X(π)|0〉 = |1〉,
and the forth n

4 qubits are X(3π
2 )|0〉 = |i〉. Such a sequence is

called a uniform sequence. The receiver permutes the
sequence randomly and sends it to the sender. This step is
repeated m times.



The commit phase

I 2.The sender chooses m − 1 sequences and ask the receiver
to reveal, qubit by qubit, which state it was prepared. Then,
the sender measures those qubits in the appropriate basis to
verify whether the receiver has prepared those qubits in the
required specification: the {|0〉, |1〉} basis for qubits |0〉 and |1〉
and the {|i〉, |i〉} basis for qubits |i〉 and |i〉. If the sender detects
that the receiver has prepared a sequence that is not uniform,
then the sender has detected the receiver’s cheating.



The commit phase

I 3.The sender commits 2 bits by applying quantum operations
on the only sequence left. If the sender decides to commit
00/01/10/11, then he/she applies X(0)/X(π2)/X(π)/X(3π

2 ) to
all qubits in the sequence, respectively. Then, the sender
permutates the sequence and sends it to the receiver.

I 4. The receiver measures each received qubit either in the
{|0〉, |1〉} basis or in the {|i〉, |i〉} basis which is chosen uniformly
at random.



The opening phase

The opening phase contains the following steps:

I 1. The sender reveals which permutation he/she has applied
to the sequence.

I 2. Based on the information of the sender’s permutation, the
receiver is able to determine for each qubit if it was measured
in the correct basis: for a qubit that was originally in state |0〉
or |1〉, the correct basis is the {|0〉, |1〉} basis, for other qubits
the correct basis is the other basis.



The opening phase

Now, the receiver can recover the bits committed by the sender as
follows:

I (a). If the sender committed to 00, all the qubits measured in
the correct basis must yield a state which is the same as the
original one.

I (b). If the sender committed to 10, all the qubits measured in
the correct basis must yield a state which can be recovered to
the original one by applying a X(π) gate afterwards.



The opening phase

I (c). If the sender committed to 01, all the qubits measured in
the incorrect basis must yield a state which can be recovered
to the original one by applying a X(3π

2 ) gate afterwards.
I (d). If the sender committed to 11, all the qubits measured in

the incorrect basis must yield a state which can be recovered
to the original one by applying a X(π2) gate afterwards.

All other cases are classified as the sender’s cheating.



Correctness

We show the correctness of our protocol only in the graphical
language ZX-calculus which makes the demonstration pretty
intuitive while still strict. Note that we ignore scalars in the
graphical calculus.

Firstly, the bases involved in this protocol are a pair of
complementary bases which can be represented by a controlled
basis as follows (m is a controlled unitary):

m

m m
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Correctness

A controlled measurement can be represented as follows:

m

mm



Correctness

Now specify the m box. Clearly, m is a controlled unitary which
transforms the basis {|0〉, |1〉} into itself in the controlled state |0〉 as
well as sending the basis {|i〉, |i〉} into {|0〉, |1〉} in the controlled state
|1〉, thus in a matrix form m =

(
I U

)
, where

I =
(

1 0
0 1

)
, U = |0〉 〈i|+ |1〉

〈
i
∣∣∣∣ = 1

2

(
1 − i 1 + i
1 + i 1 − i

)
= X(

−π

2
).



Correctness

To represent m in a diagrammatic form, we decompose it into three
components such that each component has a simple graphical
representation:

(
I U

)
=

(
I X(π)

) ( I
X(π)

) (
I

U

)
.

Then =m =

π
4
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4
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Therefore,

=m

π
4

−π
4

H
π
4

.



Correctness
Now the the first two cases (a) and (b) of the opening phase is

m

mm

mm

m

(1)
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The last two cases (c) and (d) of the opening phase is
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m m
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Correctness

If the bits committed can be recovered, then both diagram (1) and
(2) should be reduced to an identity (straight line). We prove this
correctness by rewriting diagrams step by step.

For the first two cases (a) and (b) of the opening phase, we have
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Correctness
For the last two cases (c) and (d) of the opening phase, we have
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Concealing property

To obtain some knowledge of the sender’s commitment before the
opening phase, the receiver may cheat by preparing a non-uniform
sequence. For simplicity, let the length of each sequence to be 4.
Assume the receiver prepares m sequence, of which one is a
constant sequence |0000〉 and the remaining are uniform
sequences.

Suppose |0000〉 is picked by the sender. The receiver
measures 2 qubits in the {|0〉, |1〉} basis and 2 qubits in the {|i〉, |i〉}
basis once he/she receives the sequence from the sender. Then,
the receiver will know what the sender has committed via the
following procedure:



Concealing property

1. If measuring the {|0〉, |1〉} basis returns two |0〉 and measuring
in the {|i〉, |i〉} basis returns one |i〉 and the other one |i〉 , then
the bits committed by the sender is 00.

2. If measuring the {|0〉, |1〉} basis returns two |1〉 and measuring
in the {|i〉, |i〉} basis returns one |i〉 and the other one |i〉 , then
the bits committed by the sender is 10.

3. If measuring in the {|i〉, |i〉} basis returns two |i〉 and measuring
in the {|0〉, |1〉} basis returns one |0〉 and one |1〉, then the bits
committed by the sender is 01.

4. If measuring in the {|i〉, |i〉} basis returns two |i〉 and measuring
in the {|0〉, |1〉} basis returns one |0〉 and one |1〉, then the bits
committed by the sender is 11.

5. If measuring the {|0〉, |1〉} basis returns two |0〉 or two |1〉, and
measuring in the {|i〉, |i〉} basis returns two |i〉 or two |i〉, then
the receiver cannot reliably determine what bits the sender
has committed.



Concealing property

To sum up, the probability that the receiver cheats successfully is
pb <

1
m . Note that pb approximates to 1

m when the length of the
sequence is large. Indeed, suppose the m sequences the receiver
prepared are of length n. One of them is a constant sequence
|0 . . . 0〉 and others are uniform sequences.

Suppose |0 . . . 0〉 is picked by the sender. The receiver
measures n

2 qubits in the {|0〉, |1〉} basis and n
2 qubits in the {|i〉, |i〉}

basis. Then, the receiver will know what the sender has committed
via the following procedure:



Concealing property

1. If measuring the {|0〉, |1〉} basis returns only |0〉 or only |1〉 and
measuring in the {|i〉, |i〉} basis returns some |i〉 and some |i〉 ,
then the bits committed by the sender is either 00 or 10,
depending on whether he/she gets is |0〉.

2. If measuring in the {|i〉, |i〉} basis returns only |i〉 or only |i〉 and
measuring in the {|0〉, |1〉} basis returns some |0〉 and some
|1〉, then the bits committed by the sender is either 10 or 11,
depending on whether he/she gets is |i〉.

3. If measuring the {|0〉, |1〉} basis returns only |0〉 or only |1〉, and
measuring in the {|i〉, |i〉} basis returns only |i〉 or only |i〉, then it
cannot reliably determined what bits the sender has
committed.

Therefore, pb = 1
m × (1 − (

1
2)

n
2 ) = 1

m × (1 − (
1
4)

n). In other words,
pb approximates to 1

m when n is large.



Binding property

The binding property of our protocol is similar to the protocol of
Nagy. If the sender wishes to postpone the commitment until the
opening phase, then the sender has to know exactly the state of
each qubit in the sequence received from the receiver. Only in that
way can the sender picks a convenient index in the sequence
corresponding to a qubit that matches the late commitment, when
the receiver asks for the index.



Binding property

Nevertheless, there is no reliable method to distinguish
non-orthogonal quantum states. Without this knowledge, the
sender can only cheat by randomly select a qubit from
{|0〉, |1〉, |i〉, |i〉}. Hence, there is always a probability of
1
4 × 1 + 1

4 ×
1
2 + 1

4 ×
1
2 + 1

4 × 0 = 1
2 for the sender to be detected as

a cheater for each qubit verified by the receiver. Therefore, if the
length of sequence is n, the probability of the sender cheating
successfully is pa = (1

2)
n. Here, our pa is smaller than the pa in the

protocol of Nagy, which is (3
4)

n. Therefore, the security of our
protocol is better than Nagy’s.

Note that entanglement is of no use to the sender, since no
entangled state will consistently collapse (when measured) to the
outcome expected by the receiver.



Conclusion

Our QBC protocol is correct, concealing and binding.

Protocol resource pa pb bits committed
CSQBC [3, 1, 2, 2] − − ≥ 0.5 1

Li et. al. [3] C(m, n) (6+
√

2
8 )

n
2 ≥ 0.5 1

Nagy [3, 1] m × n (3
4)

n 1
m 1

Ours m × n (1
2)

n 1
m 2

Table: Comparison of security and efficiency



Thank you!
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