New Foundations for String Diagram Rewriting

Fabio Zanasi University College London

Collaborators

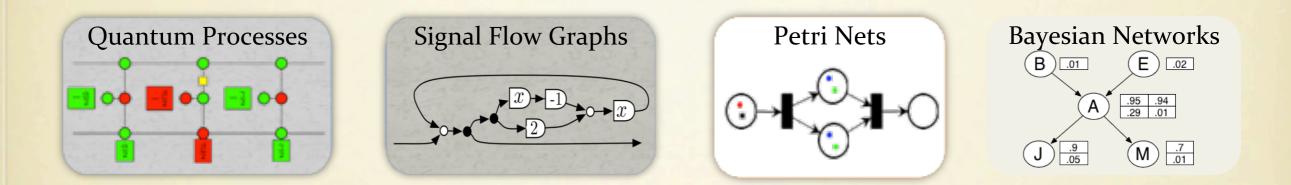


Filippo Bonchi

Fabio Gadducci

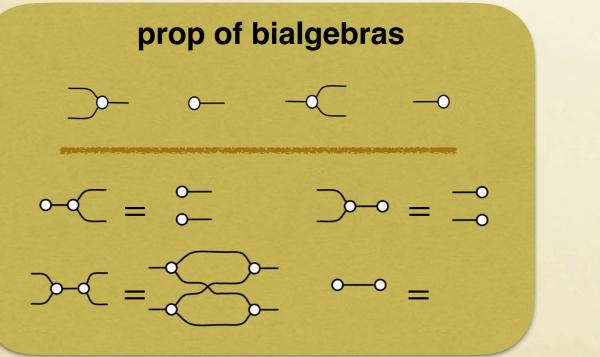
Aleks Kissinger Pawel Sobocinski

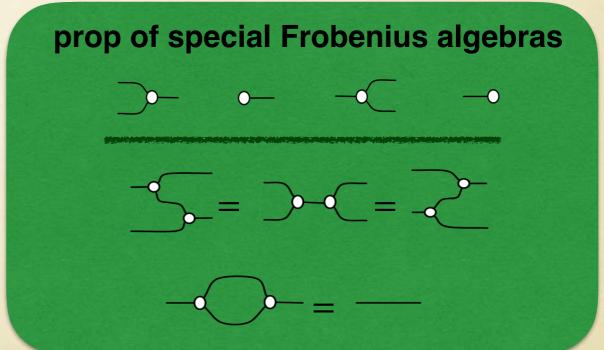
Props: algebras of network diagrams



A prop is (just) a symmetric monoidal category with set of objects $\mathbb N$

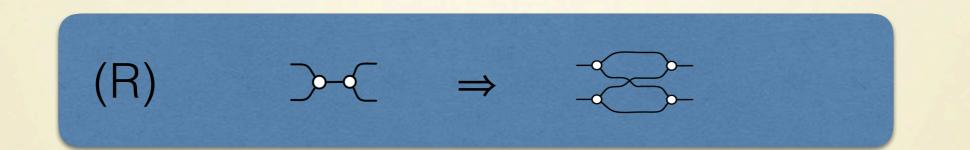
Props can be freely constructed starting from a signature Σ and equations E

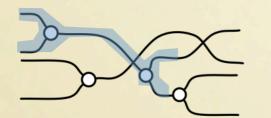


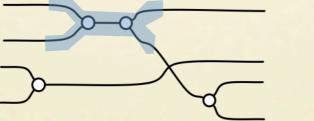


Rewriting in a prop

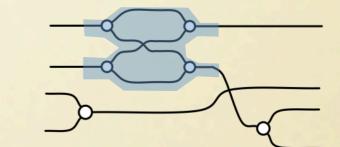
Perspective of this work: see *E* as a **rewriting system** on diagrams







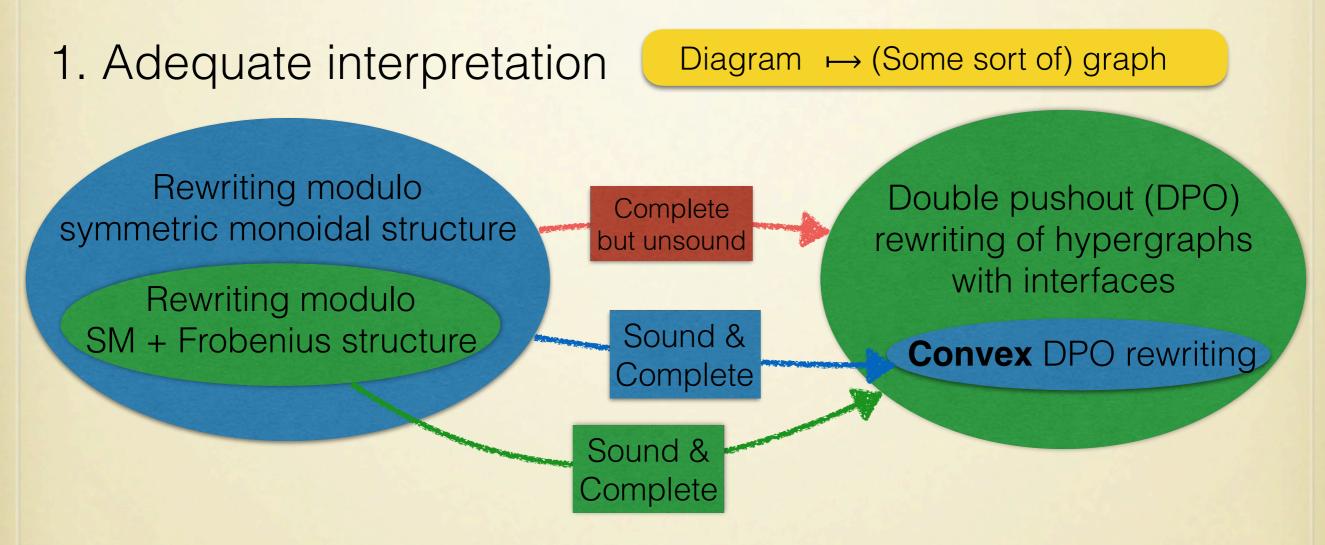
⇒R



Our question

How to implement rewriting modulo symmetric monoidal structure in a simple, yet rigorous way?

Outline



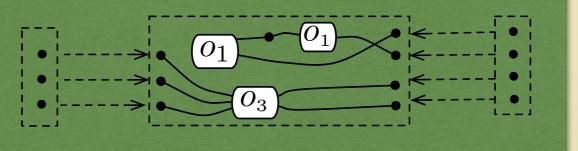
2. Decidability of confluence

Hypergraph interpretation

prop **Syn(** Σ **)** of syntax freely generated by $\Sigma = \{ o_1 \downarrow, o_2 \downarrow, \downarrow o_3 \downarrow \}$

Operations in Σ ~ Hyperedges L/R boundary ~ Cospan structure

prop **Csp(Hyp(Σ)) P(**(Z)) P(Z) discrete) cospans Σ-labelled lexplored by pergraphs



 O_2

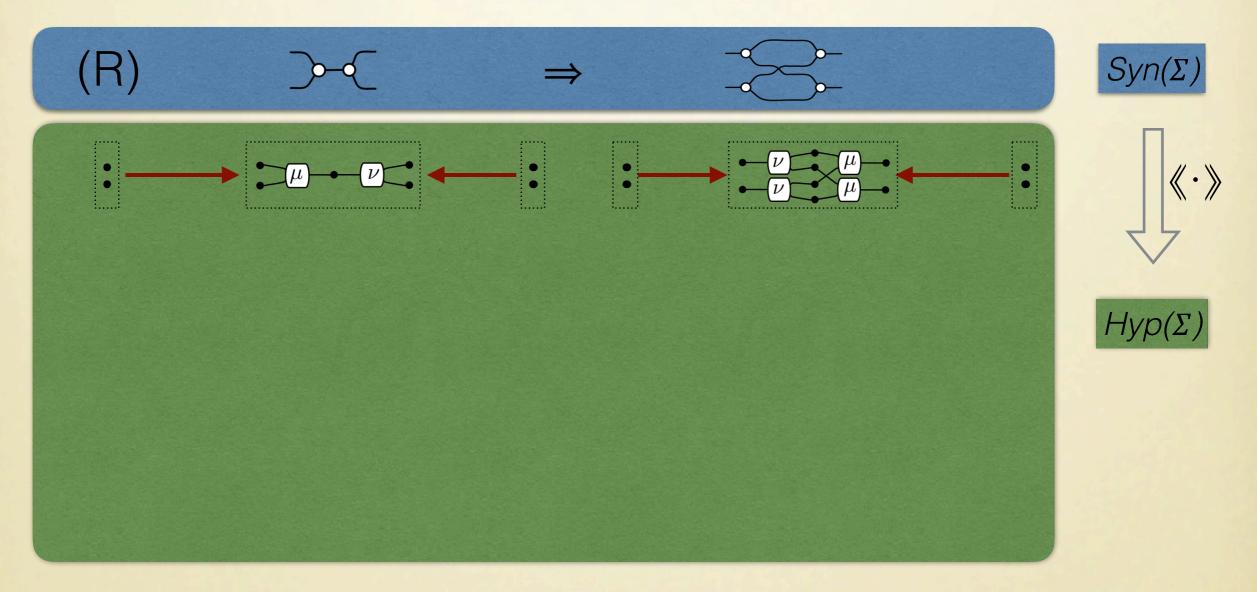
 O_3

01

Proposition $\langle \cdot \rangle$: $Syn(\Sigma) \rightarrow Csp(Hyp(\Sigma))$ is faithful.

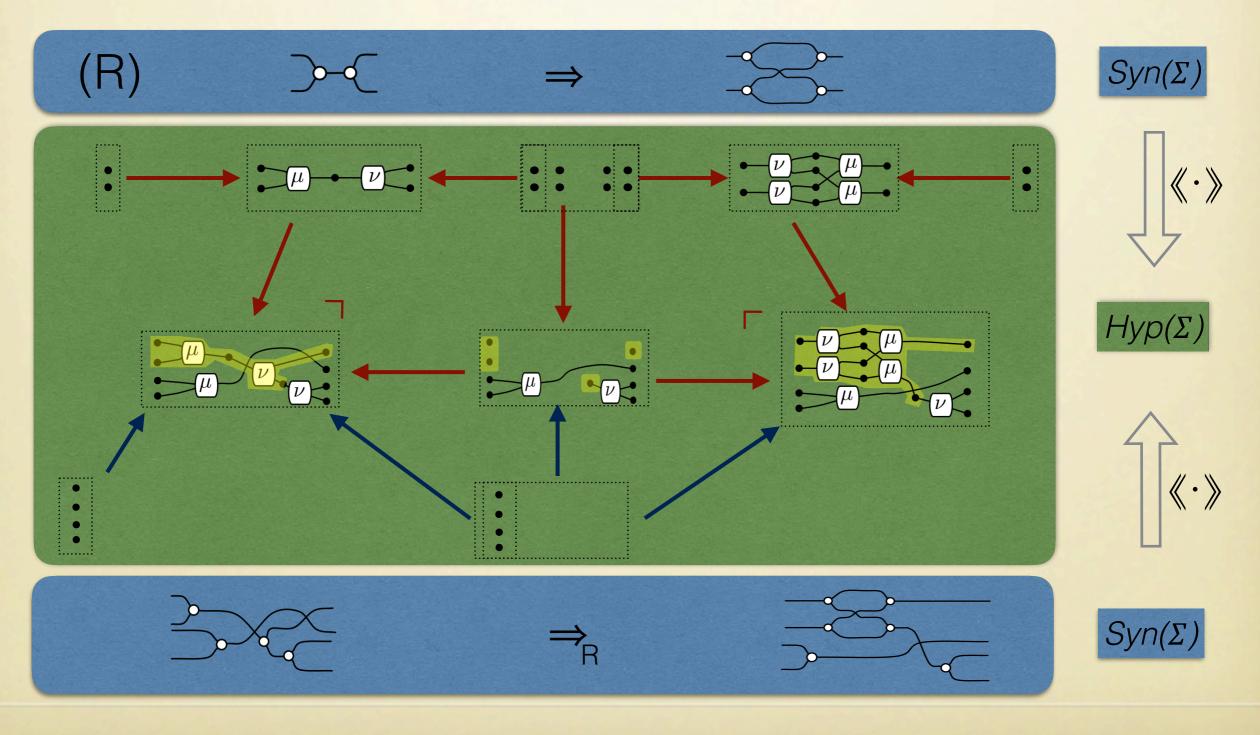
DPO rewriting with interfaces

 $Hyp(\Sigma)$ is an *ahdesive category* (Lack & Sobocinski) and thus adapted to DPO rewriting.



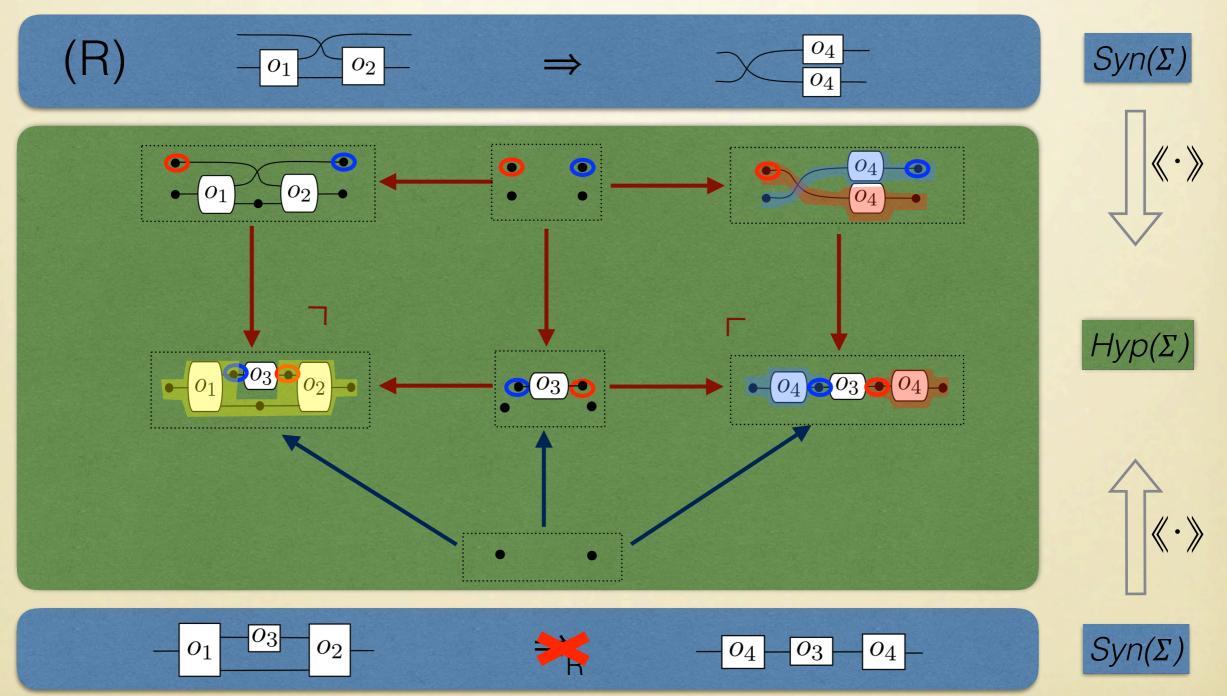
DPO rewriting with interfaces

 $Hyp(\Sigma)$ is an *ahdesive category* (Lack & Sobocinski) and thus adapted to double-pushout rewriting.



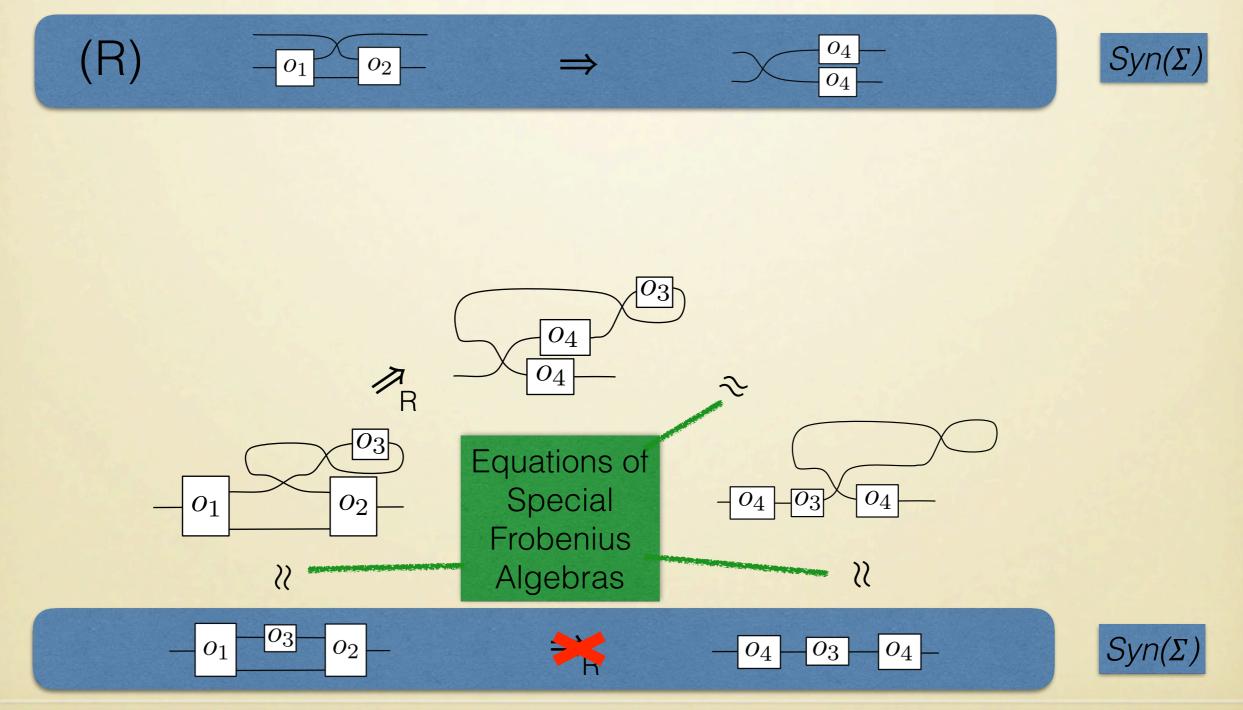
DPO rewriting can be unsound

Rewriting in $Hyp(\Sigma)$ is complete but generally not sound



DPO rewriting can be unsound

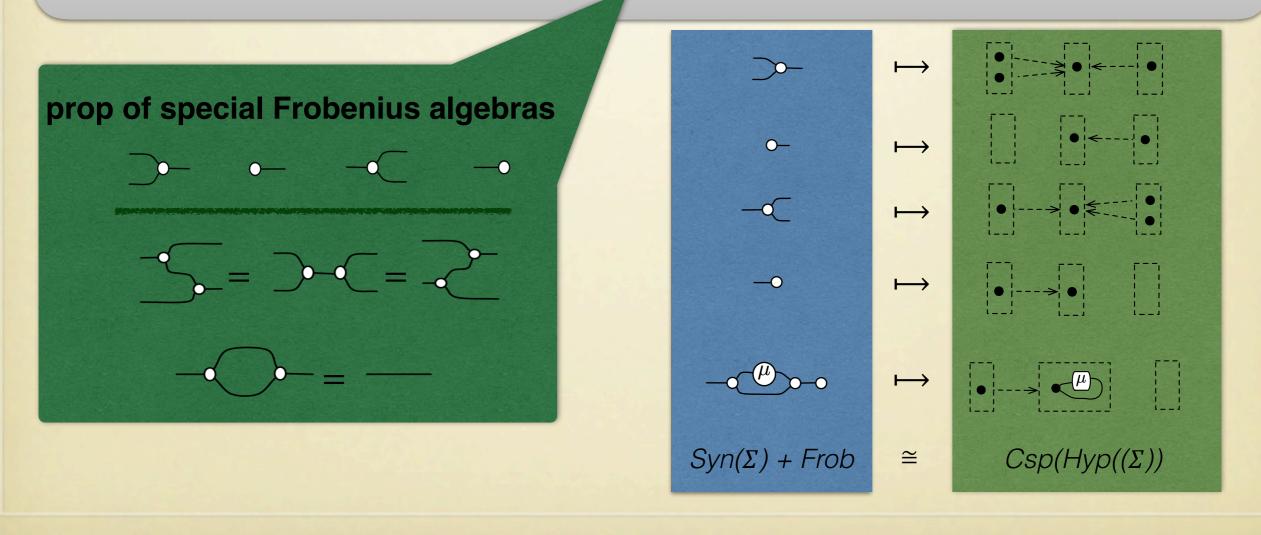
Rewriting in $Hyp(\Sigma)$ is complete but generally not sound



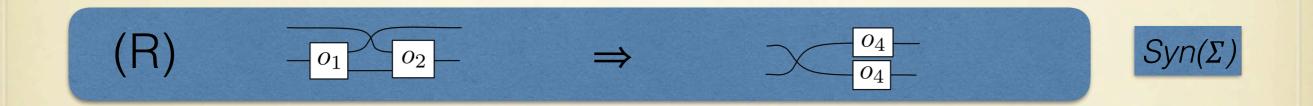
Frobenius makes DPO rewriting sound

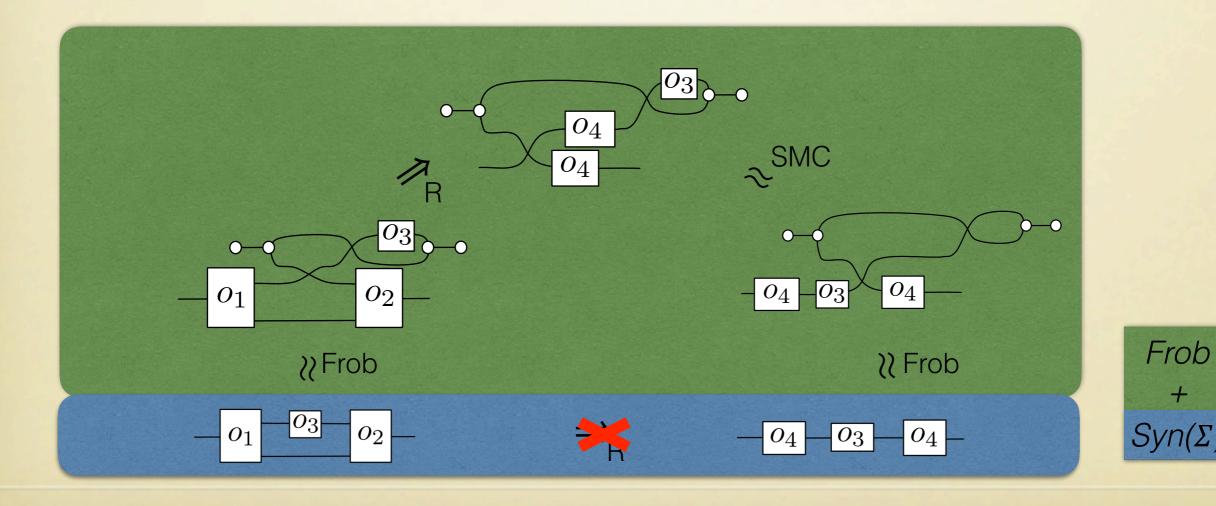
Theorem I

DPO rewriting with interfaces is *sound and complete* for symmetric monoidal categories with a chosen *special Frobenius structure*.



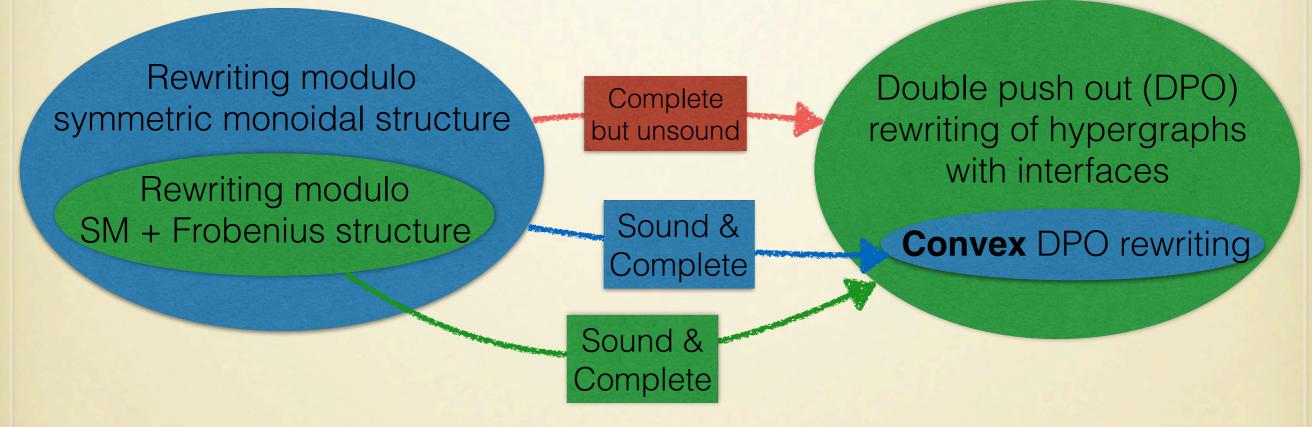
Frobenius makes DPO rewriting sound





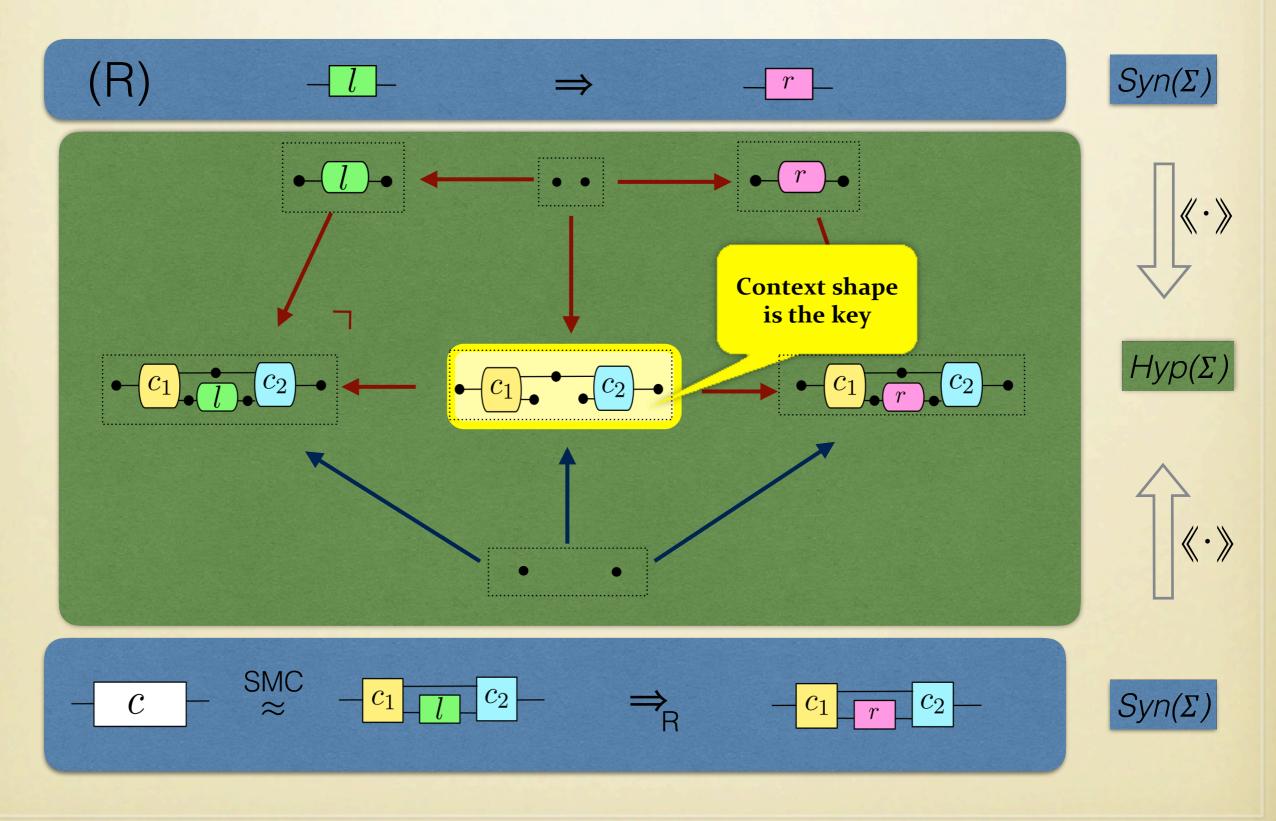
Where we are, so far

1. Adequate interpretation

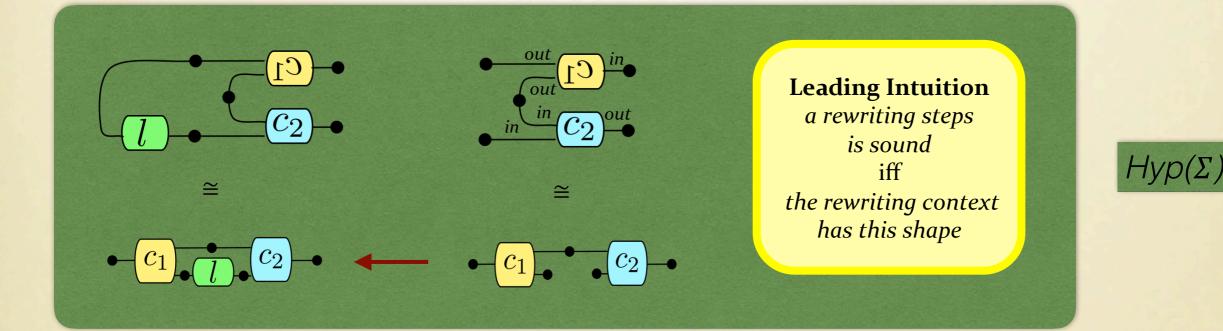


2. Decidability of confluence

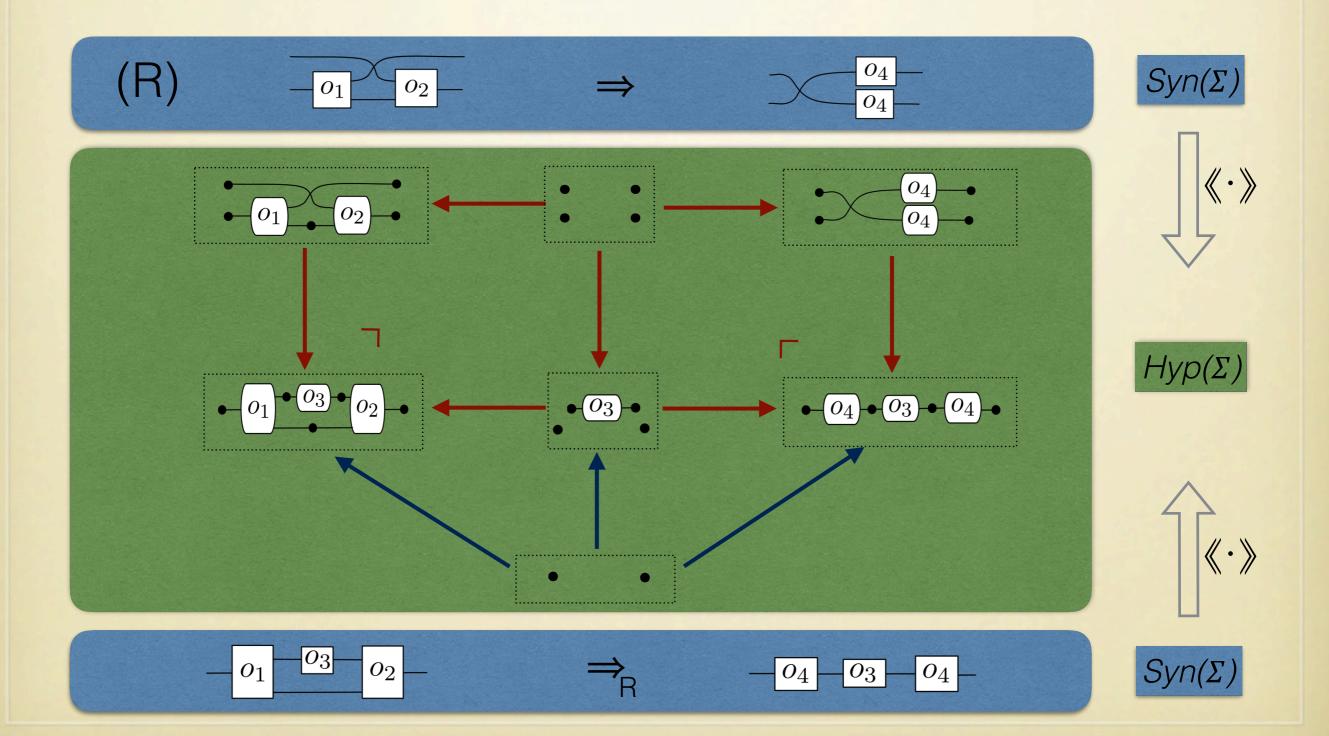
How does sound DPO rewriting look like?



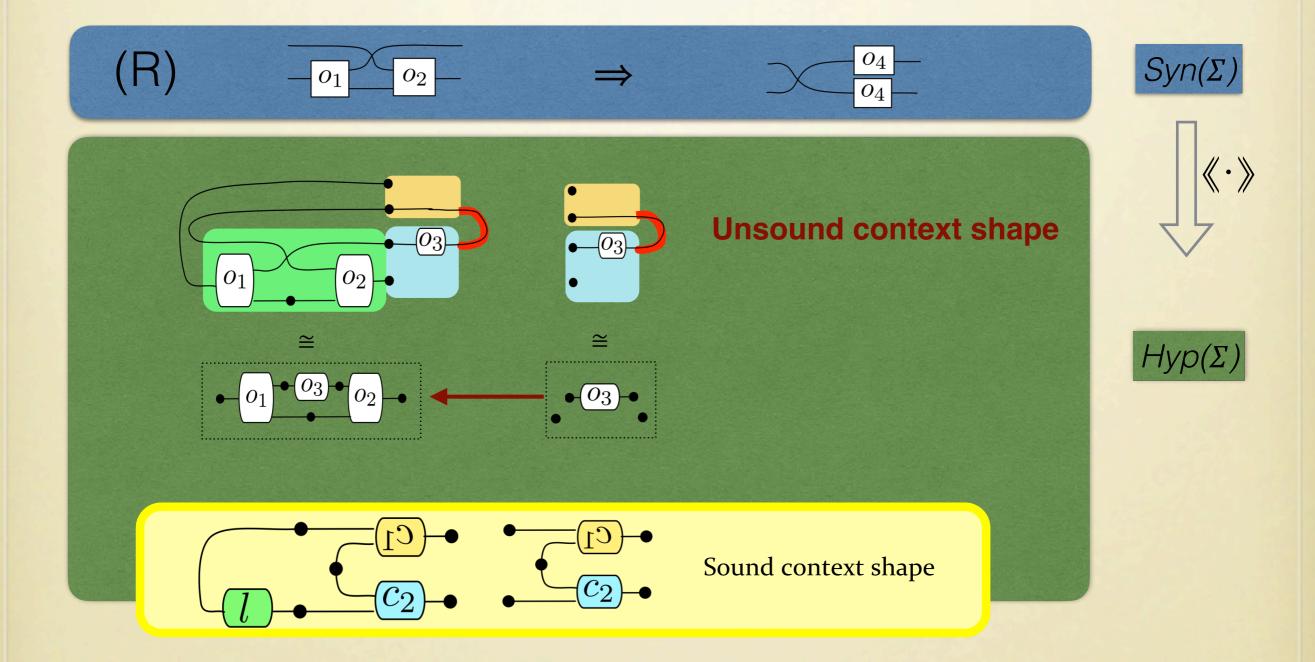
How does sound DPO rewriting look like?



Back to the soundness counterexample



Back to the soundness counterexample



Convex DPO rewriting is sound

Theorem I

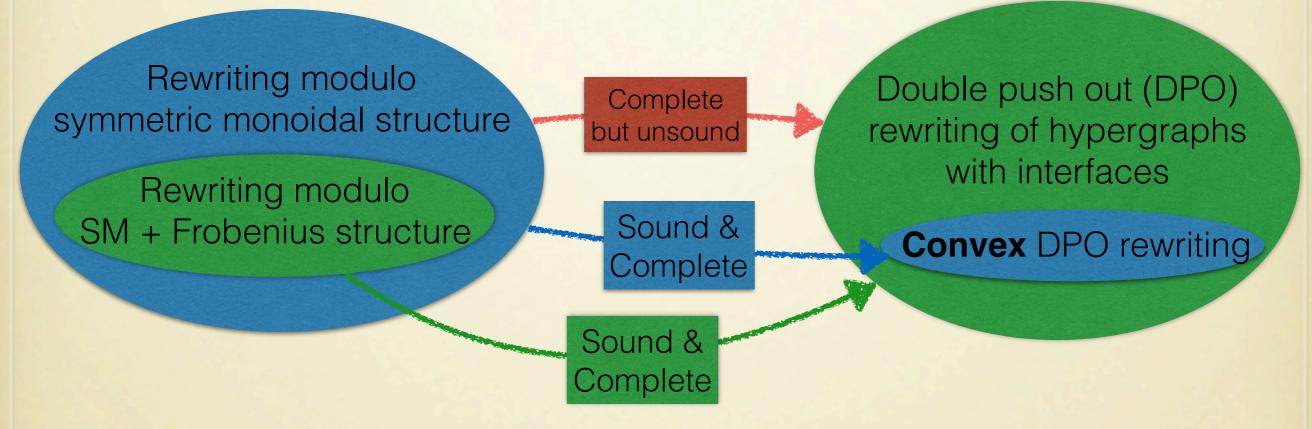
DPO rewriting with interfaces is *sound and complete* for symmetric monoidal categories with a chosen *special Frobenius structure*.

Theorem II

Convex DPO rewriting with interfaces is *sound and complete* for symmetric monoidal categories.

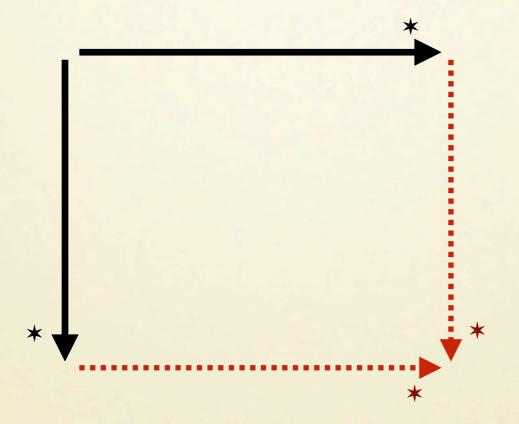
Where we are, so far

1. Adequate interpretation



2. Decidability of confluence

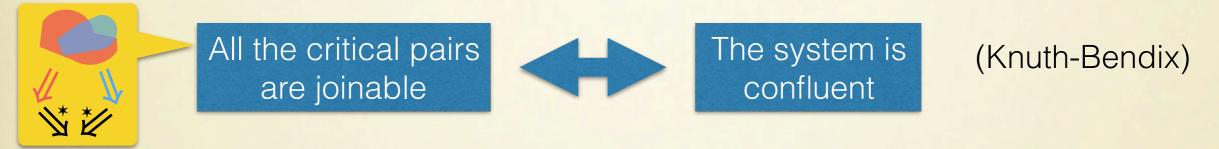
Confluence, abstractly



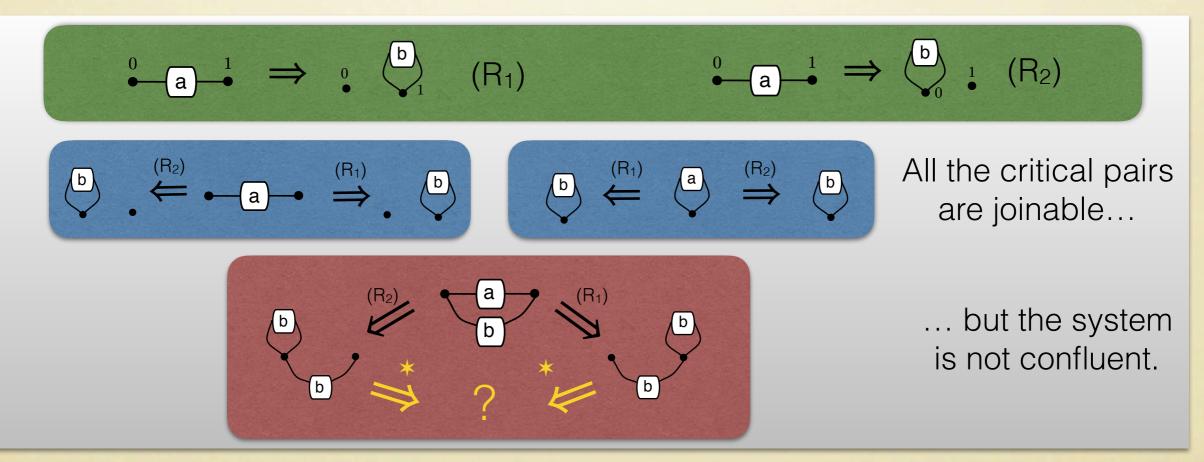
If *E* is confluent & terminating then $x \stackrel{E}{=} y$ becomes decidable.

Decidability of Confluence

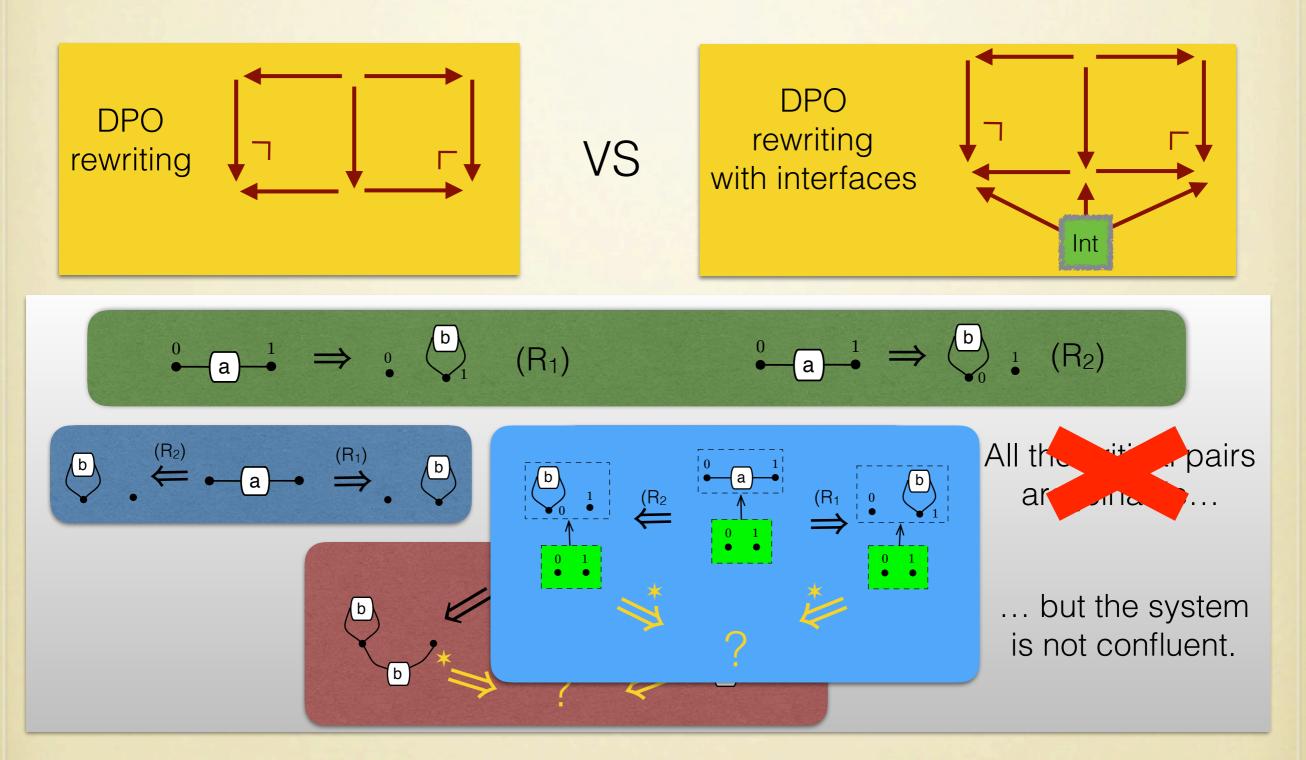
In term rewriting, confluence is decidable for terminating systems



In DPO (hyper)graph rewriting, confluence is undecidable (Plump)



Interfaces to the Rescue



Theorem In DPO rewriting with interfaces, confluence is decidable.

Confluence is decidable

Theorem I

DPO rewriting with interfaces is *sound and complete* for symmetric monoidal categories with a chosen *special Frobenius structure*.

Theorem II

Convex DPO rewriting with interfaces is *sound and complete* for symmetric monoidal categories.

Confluence is decidable

Theorem I bis

DPO rewriting with interfaces is *sound and complete* for symmetric monoidal categories with a chosen *special Frobenius structure*.

Confluence is decidable for terminating rewriting systems on such categories.

Theorem II

Convex DPO rewriting with interfaces is *sound and complete* for symmetric monoidal categories.

Confluence is decidable

Theorem I bis

DPO rewriting with interfaces is *sound and complete* for symmetric monoidal categories with a chosen *special Frobenius structure*.

Confluence is decidable for terminating rewriting systems on such categories.

Theorem II bis

Convex DPO rewriting with interfaces is *sound and complete* for symmetric monoidal categories.

Confluence is decidable for *connected* terminating rewriting systems on such categories.

Conclusions

Adequacy

Rewriting modulo symmetric monoidal structure

Rewriting modulo SM + Frobenius structure Double push out (DPO) rewriting of hypergraphs with interfaces

Convex DPO rewriting

Confluence

Decidable for connected systems

Decidable

		Terminating term rewriting systems	Terminating DPO-with-interface systems
	Confluence for ground objects	undecidable (Kapur et al.)	undecidable (Plump)
	Confluence	decidable (Knuth-Bendix)	decidable

Termination

Commutativity does not terminate

Proposal: interpret commutative operators as nodes of a new sort

