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Directed semigroups

Imagine a preordered set equipped with a “multiplication”
operation A ∗ B which is monotonic in each argument

A1 ≤ A2 B1 ≤ B2
A1 ∗ B1 ≤ A2 ∗ B2

and obeys a semi-associative law:

(A ∗ B) ∗ C ≤ A ∗ (B ∗ C)

(e.g., finite lists of N ordered pointwise, with α ∗ β def= α, |β|, β)
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Directed semigroups

Some other interesting examples:
I Let (P,≤,() be any imploid, that is, a preordered set

equipped with an operation A ( B which is contravariant in
A, covariant in B, and obeys a composition law:

B ( C ≤ (A ( B) ( (A ( C)

Then consider upwards closed subsets of P, ordered by ⊇, with

R ∗ S def= {C | ∃B.B ( C ∈ R ∧ B ∈ S }

I The free example...
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Directed semigroups

Concretely, semi-associativity may be visualized as right rotation

−→

acting on the inner nodes of a rooted binary tree.

Example: (p ∗ (q ∗ r)) ∗ s ≤ p ∗ (q ∗ (r ∗ s))

−→ −→
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The Tamari order and Tamari lattices

The free directed semigroup on one generator was first studied in:
I D. Tamari, “Monoïdes préordonnés et chaînes de Malcev,”

PhD Thesis, Université de Paris, 1951.

For each n ∈ N, the Cn =
(2n

n
)
/(n + 1) binary trees with n internal

nodes actually form a lattice Yn under right (or left) rotation. This
was already stated in Tamari’s thesis, and proved in:

I D. Tamari, “Sur quelques problèmes d’associativité,” Ann. sci. de
Univ. de Clermont-Ferrand 2, Sér. Math., vol. 24, 1964.

I H. Friedman and D. Tamari, “Problèmes d’associativité: une
structure de treillis finis induite par une loi demi-associative,” J.
Combinatorial Theory, vol. 2, 1967.

I S. Huang and D. Tamari, “Problems of associativity: A simple proof
for the lattice property of systems ordered by a semi-associative
law,” J. Combin. Theory Ser. A, vol. 13, no. 1, 1972.
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The Tamari order and Tamari lattices

Since the Catalan numbers Cn also count many isomorphic families
of objects, there are many equivalent descriptions2 of Yn...

10 Folkert Müller-Hoissen and Hans-Otto Walther

The number of its elements is the Catalan number28

Cn =
1

n+1

(
2n
n

)
.

For n = 2, there are only two elements, and the lattice ((ab)c) !→ (a(bc)) expresses
a rightward application of the usual associativity law. For n = 3, one obtains the
pentagon lattice in Figure 2. In his thesis, Tamari also considered representations
of these lattices as polytopes, which later became known as associahedra (also see
[42]).

x1x2 x3 x4

x1 x2x3 x4

x1 x2x3 x4

x1 x2 x3x4

x1x2 x3x4

111

112

122

123

113

Fig. 2 The left figure shows the Tamari lattice T3 associated with a monomial of length 4, composed
of different symbols x1, . . . ,x4. The outer brackets are usually dropped. The second figure shows an
equivalent representation in terms of triangulations of a 5-gon, related by (left/right) diagonal flips.
In the third figure the vertices are non-decreasing sequences of natural numbers ni (i the position)
with ni ≤ i (Tamari called such sequences “normal lists” [43]). The last figure shows a representation
in terms of planar rooted binary trees. Here the rightward associativity rule corresponds to right
rotation in a tree. Many other representations of Tamari lattices are known by now.

The first proof of the lattice property of the associativity posets appeared in 1964
[44] and in a revised form in Tamari’s publication with Haya Friedman in 1967
[45] (which, surprisingly, has no reference to the first version). In 1969 he achieved
a much simpler and totally different proof, jointly with a student, Samuel Huang
[46]. But the manuscript was rejected by two journals, with reference to the lesser
interest of 2nd proofs [47]. In 1970 George Grätzer, an expert of lattice theory, invited
Tamari to formulate the proof as a number of exercises for his forthcoming book [37]

28 This was shown in 1838 by Eugène Charles Catalan (1814–1894). Tamari’s work [40] contains
a proof based on the simple identity Cn =

(2n
n

)
−

( 2n
n−1

)
, where

(2n
n

)
is the number of sequences

with n appearances of a symbol (here the left bracket) and n appearances of another symbol (here
the right bracket). The problem is to extract the correct sequences. For n = 2, there are only two,
namely (()) and ()(), and this matches C2 = 2. Now the following translation (change of bracketing
convention) establishes contact with the original problem: (()) !→ x1(x2(x3)) !→ ((x1x2)x3), ()() !→
x1(x2)(x3) !→ (x1(x2x3)). The Catalan numbers already appeared in 1751 in work of Leonhard Euler
on the number of triangulations of a planar convex (n+2)-gon. By now a lot of counting problems
are known which are solved by the Catalan numbers [41].

The Hasse diagrams of the Yn form the 1-skeleta of a family of
(n − 1)-dimensional polytopes known as the associahedra
(independently discovered by Jim Stasheff).

2Figure taken from F. Müller-Hoissen and H.-O. Walther, Eds.,
Associahedra, Tamari Lattices and Related Structures: Tamari Memorial
Festschrift, Birkhauser, 2012.
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The Tamari order and Tamari lattices

Scanned by CamScanner

(from Tamari’s 1951 thesis)
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The Tamari lattice Y3
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The Tamari lattice Y4
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(in a geometric realization due to Don Knuth)
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The FSCD paper

Summary of contributions:
I A surprisingly simple presentation of the Tamari order as a
sequent calculus in the style of Lambek

I A proof of focusing completeness (a strong form of
cut-elimination) together with a coherence theorem

I An application to combinatorics: a new proof of
Chapoton’s theorem on the number of intervals in Yn
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The sequent calculus

Four rules for deriving sequents of the form A0, . . . ,An −→ B

A −→ A id
Θ −→ A Γ,A,∆ −→ B

Γ,Θ,∆ −→ B cut

A,B,∆ −→ C
A ∗ B,∆ −→ C ∗L

Γ −→ A ∆ −→ B
Γ,∆ −→ A ∗ B ∗R

where “,” denotes concatenation (a strictly associative operation)

(Note: no weakening, contraction, or exchange rules.)
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The sequent calculus

These rules are almost straight from Lambek3...

A,B,∆ −→ C
A ∗ B,∆ −→ C ∗L versus Γ,A,B,∆ −→ C

Γ,A ∗ B,∆ −→ C ∗L
amb

This simple restriction makes all the difference!

3J. Lambek, “The mathematics of sentence structure,” The American
Mathematical Monthly, vol. 65, no. 3, pp. 154–170, 1958.
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The sequent calculus

≤

Example: (p ∗ (q ∗ r)) ∗ s
Tam
≤ p ∗ (q ∗ (r ∗ s))

p −→ p

q −→ q
r −→ r s −→ s
r , s −→ r ∗ s R

q, r , s −→ q ∗ (r ∗ s) R

q ∗ r , s −→ q ∗ (r ∗ s) L

p, q ∗ r , s −→ p ∗ (q ∗ (r ∗ s)) R

p ∗ (q ∗ r), s −→ p ∗ (q ∗ (r ∗ s)) L

(p ∗ (q ∗ r)) ∗ s −→ p ∗ (q ∗ (r ∗ s)) L
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The sequent calculus

6≤

Counterexample: p ∗ (q ∗ (r ∗ s))
Tam
6≤ (p ∗ (q ∗ r)) ∗ s

p −→ p
q −→ q r −→ r
q, r −→ q ∗ r R

p, q, r −→ p ∗ (q ∗ r) R s −→ s
p, q, r , s −→ (p ∗ (q ∗ r)) ∗ s R

p, q, r ∗ s −→ (p ∗ (q ∗ r)) ∗ s Lamb

p, q ∗ (r ∗ s) −→ (p ∗ (q ∗ r)) ∗ s Lamb

p ∗ (q ∗ (r ∗ s)) −→ (p ∗ (q ∗ r)) ∗ s L
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The sequent calculus

A −→ A id
Θ −→ A Γ,A,∆ −→ B

Γ,Θ,∆ −→ B cut

A,B,∆ −→ C
A ∗ B,∆ −→ C ∗L

Γ −→ A ∆ −→ B
Γ,∆ −→ A ∗ B ∗R

Theorem (Completeness)

If A
Tam
≤ B then A −→ B.

Theorem (Soundness)

If Γ −→ B then φ[Γ]
Tam
≤ B, where

φ[A0, . . . ,An] = ((A0 ∗ A1) · · · ) ∗ An is the left-associated product
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Proof of completeness (easy)

Reflexivity + transitivity: immediate by id and cut.

Monotonicity:
A −→ A′ B −→ B′

A,B −→ A′ ∗ B′ R

A ∗ B −→ A′ ∗ B′ L

Semi-associativity:

A −→ A
B −→ B C −→ C
B,C −→ B ∗ C R

A,B,C −→ A ∗ (B ∗ C) R

A ∗ B,C −→ A ∗ (B ∗ C) L

(A ∗ B) ∗ C −→ A ∗ (B ∗ C) L
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Proof of soundness (mildly satisfying)

Key lemmas about φ[−]:
I “colaxity”: φ[Γ,∆] ≤ φ[Γ] ∗ φ[∆]
I φ[Γ,∆] = φ[Γ] ~ ∆, where the (monotonic) right action
−~ ∆ is defined by A~ (B1, . . . ,Bn) = ((A ∗ B1) · · · ) ∗ Bn

Soundness follows by induction on derivations...

(Case id): by reflexivity.

(Case ∗L): φ[A ∗ B, Γ] = φ[A,B, Γ] ≤ C

(Case ∗R): φ[Γ,∆] ≤ φ[Γ] ∗ φ[∆] ≤ A ∗ B

(Case cut): φ[Γ,Θ,∆] = φ[Γ,Θ] ~ ∆ ≤ (φ[Γ] ∗ φ[Θ]) ~ ∆ ≤
(φ[Γ] ∗ A) ~ ∆ = φ[Γ,A,∆] ≤ B
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Focusing completeness

Definition
A context Γ is said to be reducible if its leftmost formula is
compound, and irreducible otherwise. A sequent Γ −→ A is

I left-inverting if Γ is reducible;
I right-focusing if Γ is irreducible and A is compound;
I atomic if Γ is irreducible and A is atomic.

Definition
A closed derivation D is said to be focused if left-inverting
sequents only appear as the conclusions of ∗L, right-focusing
sequents only as the conclusions of ∗R, and atomic sequents only
as the conclusions of id .
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Focusing completeness

Proposition
A closed derivation is focused iff it is constructed using only ∗L
and the following restricted forms of ∗R and id (and no cut):

A,B,∆ −→ C
A ∗ B,∆ −→ C ∗L

Γirr −→ A ∆ −→ B
Γirr,∆ −→ A ∗ B ∗R foc

p −→ p idatm

Theorem (Focusing completeness)

Every derivable sequent has a focused derivation.

Proof not hard. (Show admissibility of cut, ∗R, and id by standard
inductions – no surprises other than that it works!)
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The coherence theorem

Lemma
For any context Γ and formula A, there is at most one focused
derivation of Γ −→ A.

Corollary (Coherence)

Every derivable sequent has exactly one focused derivation.

One application: a simple decision procedure for A
Tam
≤ B

More exciting application: counting intervals!
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Counting intervals in Tamari lattices

Theorem (Chapoton 2006)

Let In = { (A,B) ∈ Yn×Yn | A
Tam
≤ B }. Then |In| = 2(4n+1)!

(n+1)!(3n+2)! .

For example, Y3 contains 13 intervals:
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Counting intervals in Tamari lattices

The original proof is in:
I F. Chapoton, “Sur le nombre d’intervalles dans les treillis de

Tamari,” Sém. Lothar. Combin., no. B55f, 2006
Chapoton mentions that he found the formula through the OEIS
(see oeis.org/A000260) before he was able to prove it.

The formula itself was first derived over half a century ago by
Bill Tutte, but for a completely different family of objects!

I W. T. Tutte, “A census of planar triangulations,” Canad. J.
Math., vol. 14, pp. 21–38, 1962

Tutte proved that 2(4n+1)!
(n+1)!(3n+2)! is the number of rooted

3-connected triangulations of the sphere with 3(n + 1) edges.
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Counting intervals in Tamari lattices
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Counting intervals in Tamari lattices

Chapoton’s observation sparked combinatorialists to look for (and
find) bijective explanations (and extensions) of these connections
between planar maps and Tamari intervals, see e.g.:

I O. Bernardi and N. Bonichon, “Intervals in Catalan lattices
and realizers of triangulations,” J. Combin. Theory Ser. A,
vol. 116, no. 1, pp. 55–75, 2009.

I F. Chapoton, G. Châtel, and V. Pons, “Two bijections on
Tamari intervals,” In Proceedings of the 26th International
Conference on Formal Power Series and Algebraic
Combinatorics, pp. 241–252, 2014.

I W. Fang, “Planar triangulations, bridgeless planar maps and
Tamari intervals,” arXiv:1611.07922, 2016.

24 / 30



Counting intervals in Tamari lattices

Outline of our proof of Chapoton’s theorem (|In| = 2(4n+1)!
(n+1)!(3n+2)!):

1. Observe # intervals = # focused derivations (by coherence)
2. Consider generating functions L(z , x) and R(z , x) counting

focused derivations of Γ→ A (resp. Γirr → A) by size(A) and
length(Γ). The following eqns are essentially immediate:

L(z , x) = (L(z , x)− xL1(z))/x + R(z , x)

= x R(z , x)− R(z , 1)
x − 1 (1)

R(z , x) = zR(z , x)L(z , x) + x (2)

3. Use “off-the-shelf” algebraic combinatorics to solve (1) & (2),
obtaining the Tutte–Chapoton formula for coeff. of zn in

R(z , 1) = 1 + z + 3z2 + 13z3 + 68z4 + 399z5 + . . .
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Aside: the surprising combinatorics of linear lambda calculus

My original motivation for this work was wanting to better
understand an apparent link between the Tamari order and lambda
calculus, inferred indirectly via their mutual connection to the
combinatorics of embedded graphs.4

4I’ll be speaking about this a lot more tomorrow at the LFCS seminar!
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Aside: the surprising combinatorics of linear lambda calculus

family of lambda terms family of rooted maps OEIS
linear terms1,4 trivalent maps A062980
planar terms4 planar trivalent maps A002005
unit-free linear4 bridgeless trivalent A267827
unit-free planar4 bridgeless planar trivalent A000309
normal linear terms/∼3 (combinatorial) maps A000698
normal planar terms2 planar maps A000168
normal unit-free linear/∼5 bridgeless maps A000699
normal unit-free planar bridgeless planar A000260

1. Olivier Bodini, Danièle Gardy, and Alice Jacquot, TCS 502, 2013.
2. Z, Alain Giorgetti, LMCS 11(3:22), 2015.
3. Z, arXiv:1509.07596, 2015.
4. Z, JFP 26(e21), 2016.
5. Julien Courtiel, Karen Yeats, and Z, arXiv:1611.04611, 2017.
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Aside: the surprising combinatorics of linear lambda calculus

An explicit (albeit somewhat roundabout) bijection between
unit-free normal planar terms and Tamari intervals was given in an
earlier, longer version of the paper (arXiv:1701.02917).

Conceptually, this link seems closely related to the duality between
skew-monoidal categories and skew-closed categories.

I Kornél Szlachányi. Skew-monoidal categories and
bialgebroids. Advances in Math., 231(3–4):1694–1730, 2012.

I Ross Street. Skew-closed categories. J. Pure and Appl. Alg.,
217(6):973–988, 2013.
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Conclusions and questions

We have a natural encoding of semi-associativity in sequent
calculus, with a surprising application to combinatorics.

The simplicity of the solution suggests natural questions and
directions for research:

I Is the SC helpful for understanding lattice structure of Yn?
I Interaction with other connectives.5

I Formalizing categorical coherence theorems (cf. Uustalu 2014)
I Linguistic motivations? (cf. Lambek ’58 & ’61.) Applications

to (LL/LR) parsing? (cf. Thielecke ’12 & ’13.)
I Other bridges between proof theory and combinatorics?

5Cf. Jason Reed’s “Queue logic: An undisplayable logic?” (unpublished
manuscript, April 2009), jcreed.org/papers/queuelogic.pdf.
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Postscript: a missed connection

From “Sur quelques problèmes d’associativité” (Tamari, 1964):
En 1951, après sa thèse [21] et après la publication de
[12],6 l’auteur a proposé à LAMBEK un travail commun,
pour mettre en évidence le rôle prépondérant joué par
l’associativité générale. Malheureusement, par suite de
circonstances extérieures, ce travail n’a jamais été écrit.

In 1951, after his thesis [21] and after the publication of
[12], the author proposed to Lambek joint work, to
highlight the important role played by general
associativity. Unfortunately, due to external
circumstances, this work has never been written.

6[12] = J. Lambek, “The immersibility of a semigroup into a group”,
Canad. J. of Math., vol. 3, pp. 34–43, 1951.
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