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“Information, physics, quantum: the search for links”
Complexity, Entropy, and the Physics of Information (Zurek), 1990.

It from bit symbolizes the idea that every item of the physical
world has at bottom – a very deep bottom, in most instances –
an immaterial source and explanation; that which we call
reality arises in the last analysis from the posing of yes-no
questions and the registering of equipment-evoked responses;
in short, that all things physical are information-theoretic in
origin and that this is a participatory universe.
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Yes if traditional setting is generalized to operational probabilistic
theories by retaining only probabilistic data as convex structure.

“Quantum theory from five reasonable axioms”
arXiv:quant-ph/0101012, 2001.

“A derivation of quantum theory from physical requirements”
New Journal of Physics 13(6):063001, 2011.

“Informational derivation of quantum theory”
Physical Review A 84(1):012311, 2011.
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Yes if retain only the algebraic structure of interaction between
classical and quantum systems.

“Characterizing quantum theory in terms of
information-theoretic constraints”

Foundations of Physics 33(11):1561–1591, 2003.
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“Elegance and Enigma: the quantum interviews”
ed: M. Schlosshauer, p. 204, 2011.

The characterization theorem we proved assumes a
C*-algebraic framework for physical theories, which I would
now regard as not sufficiently general in the relevant sense,
even though it includes a broad class of classical and quantum
theories, including field theories, and hybrid theories with
superselection rules.
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information theory quantum theory
no broadcasting ⇔ noncommutativity

no bit commitment ⇔ nonlocality

no signalling ⇔ kinematic independence
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Are there physical means for broadcasting unknown quantum
states, pure or mixed, onto two separate quantum systems?

Tr1(B(ρ)) = ρ = Tr2(B(ρ))
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Are there physical means for committing to a bit value,
with the ability to reveal the choice later, securely?

reveal(commit(x, s)) = x
cheat(commit(x, s)) = cheat(commit(y, s))
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Are there physical means for signalling
classical information faster than light?

P(bx|A0) = P(bx|A1)
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“Notation which is useful in private must be
given a public value and that it should be
provided with a firm theoretical foundation”

I Morphisms f : A→ B depicted as boxes f
B

A

I Composition: stack boxes vertically

I Tensor product: stack boxes horizontally

I Dagger: turn box upside-down
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Sound: isotopic diagrams represent equal morphisms

f

g h

k

= (k⊗ id) ◦ (g⊗ h†) ◦ f =

f

g
h

k

Complete: diagrams isotopic iff equal in category of Hilbert spaces
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A relation A R B between sets is a subset R ⊆ A× B

A B
R

; =

B C
S

A C
S ◦ R
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Draw for multiplication A⊗ A→ A

= = =

Frobenius law:

=
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Any connected diagram built from the components of a special
( = ) Frobenius structure equals the following normal form:

In particular:

= =

14 / 33



= =

So any Frobenius structure is self-dual

A

A∗

A

=
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I Let G be the set of objects of a small groupoid.

{∗} 7→ {idA | A ∈ G} (f , g) 7→

{
{f ◦ g} if f ◦ g is defined
∅ otherwise

Any dagger Frobenius structure in Rel is of this form.

I Let G be the set of objects of a finite groupoid.

1 7→
∑
A∈G

idA f ⊗ g 7→

{
f ◦ g if f ◦ g is defined
0 otherwise

Any dagger Frobenius structure in (F)Hilb is of this form.

16 / 33



I Let G be the set of objects of a small groupoid.

{∗} 7→ {idA | A ∈ G} (f , g) 7→

{
{f ◦ g} if f ◦ g is defined
∅ otherwise

Any dagger Frobenius structure in Rel is of this form.

I Let G be the set of objects of a finite groupoid.

1 7→
∑
A∈G

idA f ⊗ g 7→

{
f ◦ g if f ◦ g is defined
0 otherwise

Any dagger Frobenius structure in (F)Hilb is of this form.

16 / 33



Mixed state of dagger Frobenius structure is I m A with

m

A

A

=

√
m

√
m

A

A

X
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A morphism f : (A, )→ (B, ) is completely positive
when f ⊗ id preserves mixed states.

I Evolution along unitary A→ A
I Preparation of mixed state I→ A
I Measurement is A→ (Cn, )

If and only if CP condition:

f

B

A B

A

=

√
f

√
f

X

A B

A B
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I CP[C] = Frobenius structures in C
and morphisms in C satisfying CP condition

I CP[FHilb] = finite-dimensional C*-algebras
and completely positive maps

I CP[Rel] = small groupoids
and inverse-respecting relations

19 / 33



Broadcasting map for (A, ) in CP[C] is morphism B : A→ A⊗A with

B = = B
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I If (A, ) in CP[C] is commutative, then it is broadcastable

I If C*-algebra in CP[FHilb] is broadcastable, it is commutative

I If groupoid in CP[Rel] is broadcastable, it is totally disconnected
(the only morphisms are endomorphisms)

I In general: no broadcasting ⇒: noncommutativity

I Classicality: biproduct of I ⇒: commutative ⇒: broadcastable
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I states H,T : I→ A⊗ B of CP[C]
I monomorphism unveil : A⊗ B→ A⊗ B in CP[C]
I classical (A⊗ B, ) in C with copyable states H 6= T

Sound when unveil ◦ H = H and unveil ◦ T = T
Binding when (u⊗ idB) ◦ H 6= T for all u : A→ A in CP[C]

Concealing when H = T
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Alice cannot cheat: if

cheat

cheatH

unveil

A B

=
H

A B

cheat

cheatT

unveil

A B

=
T

A B

then not binding:

H

cheatH

cheatT

BA

=

cheat

cheatT

BA

=
T

A B
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I Secure bit commitment is impossible in CP[FHilb]

I Secure bit commitment is possible in CP[Rel]

A = discrete groupoid on {0,1,2}
B = discrete groupoid on {x, y}
H = {(0, x), (1, y), (2, y)} ⊆ A× B
T = {(1, y), (0, x), (2, x)} ⊆ A× B
= Z3 + Z3 ' H + T
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An object in CP[C] admits entanglement if there is state I→ A⊗ B
not of the form (f ⊗ g) ◦ ψ for ψ : I→ A′ ⊗ B′ with A′,B′ classical.
The category C is nonlocal when every object admits entanglement.

I CP[FHilb] is nonlocal

I CP[Rel] is nonlocal

I In general: no bit commitment ;
: nonlocality
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Let (C, ) be a dagger Frobenius structure in C.
A subsystem is another dagger Frobenius structure (A, ) with a
unital ∗-homomorphism i : A→ C satisfying i† ◦ i = idA.
If is broadcastable, it is a classical context.

I If C = A⊗ B, both A and B are subsystems

I If C = FHilb, subsystems are C*-subalgebras

I If C = Rel, subsystems are wide subgroupoids
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Let (A, ) be a dagger Frobenius structure in C.
A measurement on (A, ) is a morphism A→ A of the form

EE

A

A

X

with E† ◦ E = idX .

I If C = FHilb, measurements are POVMs

I If C = Rel, measurements are conjugacy classes
(relations {(g, g−1 ◦ f ◦ h) | g, h ∈ Ei} for disjoint families Ei ⊆ G)
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Two subsystems (A, ) and (B, ) of (C, ) are
kinematically independent when

C

iA iB

A B

=

C

iA iB

A B

I If C = FHilb: commuting C*-subalgebras

I If C = Rel: commuting totally disconnected wide subgroupoids
(a ◦ b = b ◦ a for endomorphisms a ∈ A, b ∈ B on same object)
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Two subsystems (A, ) and (B, ) of (C, ) are
no signalling when

iB

iA iA
E E

=
iB

iA

iB iB
F F

=
iA

for all measurements E on A and F on B.

I If C = A⊗ B, then always no signalling

I If C = FHilb, usual notion of no signalling

30 / 33



no signalling ⇐⇒ kinematic independence

31 / 33



no broadcasting ⇒
: noncommutativity

no bit commitment ;
: nonlocality

no signalling ⇔ kinematic independence
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So, can quantum theory be characterized
in terms of information-theoretic constraints?

Yes. No. Er, well, it depends.

Yes if you think probabilities are information-theoretic.

1

No if you think information is purely compositional.

3

1 Well, at least if you accept foundational axioms like tomographic locality.2

2 Or if you prefer practicable protocols and think linearity is information-theoretic.
3 Well, at least not in this way.

But maybe there is another protocol that is equivalent to nonlocality more practical than GHZ game ... ?
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