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Idea

I Hilbert modules: naive quantum field theory

I Idempotent subunits: base space in any category

I Support: where morphisms live

I Causal structures: relativistic quantum information
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Base space

Let X be locally compact Hausdorff space.
C0(X) = {f : X → C cts | ∀ε > 0∃K ⊆ X cpt : f(X \K) < ε}

C

X
ε

f

K

Cb(X) = {f : X → C cts | ∃‖f‖ <∞∀t ∈ X : |f(t)| ≤ ‖f‖}

3 / 15



Hilbert spaces

modules

C-module H with complete C-valued inner product

tensor product over C monoidal category
tensor unit C tensor unit I
complex numbers C scalars I → I
finite dimensional dual objects
adjoints dagger
orthonormal basis commutative dagger Frobenius structure
fin-dim C*-algebra dagger Frobenius structure

‘Scalars are not numbers’
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Bundles of Hilbert spaces

Bundle E � X, each fibre Hilbert space, operations continuous

, with

E

X
t

Et

Hilbert C0(X)-modules ' bundles of Hilbert spaces over X
sections vanishing at infinity ←[ E � X

E 7→ localisation

5 / 15



Bundles of Hilbert spaces

Bundle E � X, each fibre Hilbert space, operations continuous, with

E

X
t

Et

Hilbert C0(X)-modules ' bundles of Hilbert spaces over X
sections vanishing at infinity ←[ E � X

E 7→ localisation

5 / 15



Bundles of Hilbert spaces

Bundle E � X, each fibre Hilbert space, operations continuous, with

E

X
t

Et

Hilbert C0(X)-modules ' bundles of Hilbert spaces over X
sections vanishing at infinity ←[ E � X

E 7→ localisation

5 / 15



Idempotent subunits

Definition: ISub(C) = {s : S � I | idS ⊗ s : S ⊗ S → S ⊗ I iso}/'

I Analysis: ISub(HilbC0(X)) = {S ⊆ X open}:
‘idempotent subunits are open subsets of base space’

I Logic: ISub(Sh(X)) = {S ⊆ X open}:
‘idempotent subunits are truth values’

I Order theory: ISub(Q) = {x ∈ Q | x2 = x ≤ 1} for quantale Q:
‘idempotent subunits are side-effect-free observations’

I Algebra: ISub(ModR) = {S ⊆ R ideal
∣∣ S = S2}

‘idempotent subunits are idempotent ideals’
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Semilattice

Proposition: ISub(C) is a semilattice, ∧ = ⊗, 1 = idI

T

S

I

Caveat: C must be firm, i.e. s⊗ idT monic, and size issue

SemiLat FirmCat⊥
ISub

id
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Spatial categories

Call C spatial when ISub(C) is frame

SemiLat

FirmCat

Frame

SpatCat

⊥

ISuba

⊥

ISuba

(C,⊗) ([Cop,Set]supp,⊗Day)
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Support

Say s ∈ ISub(C) supports f : A→ B when

A B

B ⊗ S B ⊗ I

f

id ⊗ s

'

Monoidal functor: supp(f) ∧ supp(g) ≤ supp(f ⊗ g)

C2 Pow(ISub(C))
supp

f {s | s supports f}

Q ∈ Frame

F F̂

universal with F (f) =
∨
{F (s) | s ∈ ISub(C) supports f}

9 / 15



Support

Say s ∈ ISub(C) supports f : A→ B when

A B

B ⊗ S B ⊗ I

f

id ⊗ s

'

Monoidal functor: supp(f) ∧ supp(g) ≤ supp(f ⊗ g)

C2 Pow(ISub(C))
supp

f {s | s supports f}

Q ∈ Frame

F F̂

universal with F (f) =
∨
{F (s) | s ∈ ISub(C) supports f}

9 / 15



Support

Say s ∈ ISub(C) supports f : A→ B when

A B

B ⊗ S B ⊗ I

f

id ⊗ s

'

Monoidal functor: supp(f) ∧ supp(g) ≤ supp(f ⊗ g)

C2 Pow(ISub(C))
supp

f {s | s supports f}

Q ∈ Frame

F F̂

universal with F (f) =
∨
{F (s) | s ∈ ISub(C) supports f}

9 / 15



Support

Say s ∈ ISub(C) supports f : A→ B when

A B

B ⊗ S B ⊗ I

f

id ⊗ s

'

Monoidal functor: supp(f) ∧ supp(g) ≤ supp(f ⊗ g)

C2 Pow(ISub(C))
supp

f {s | s supports f}

Q ∈ Frame

F F̂

universal with F (f) =
∨
{F (s) | s ∈ ISub(C) supports f}

9 / 15



Restriction

Full subcategory C
∣∣
s

of A with idA ⊗ s invertible:

I monoidal with tensor unit S

I coreflective: C
∣∣
s C⊥

I tensor ideal: if A ∈ C and B ∈ C
∣∣
s
, then A⊗B ∈ C

∣∣
s

I monocoreflective: counit εI monic (and idA⊗ εI iso for A ∈ C
∣∣
s
)

Proposition: ISub(C) ' {monocoreflective tensor ideals in C}
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Localisation

A graded monad is a monoidal functor E→ [C,C]
(η : A→ T (1), µ : T (t) ◦ T (s)→ T (s⊗ t))

Lemma: s 7→ C
∣∣
s

is an ISub(C)-graded monad

universal property of localisation for Σ = {idE ⊗ s | E ∈ C}

C C
∣∣
s

= C[Σ−1]

D

(−)⊗ S

F inverting Σ
'
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Spacetime

What if X is more than just space?
Lorentzian manifold with time orientation:

s� t: there is future-directed timelike curve s→ t
s ≺ t: there is future-directed non-spacelike curve s→ t

chronological causal

future I+(t) = {s ∈ X | t� s} J+(t) = {s ∈ X | t ≺ s}
past I−(t) = {s ∈ X | s� t} J−(t) = {s ∈ X | s ≺ t}

If S ⊆ X open, then I+(S) =
⋃

s∈S I
+(s) =

⋃
s∈S J

+(s) = J+(S)
I+ and I− give ‘future’ and ‘past’ operators
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Causal structure

Closure operator on partially ordered set P is function C : P → P :

I if s ≤ t, then C(s) ≤ C(t);

I s ≤ C(s);

I C(C(s)) ≤ C(s).

Causal structure on C is pair C± of closure operators on ISub(C)

Proposition: if r ∈ ISub(C) and C is closure operator on C,
then D(s) = C(s) ∧ r is closure operator on C

∣∣
r

’Causal structure restricts’
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Teleportation

’Restriction = propagation’

pair creation

Alice

Bob

compact category + support + causal structure
=

teleportation only successful on intersection of future sets
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Further

I relativistic quantum information protocols

I causality

I proof analysis

I control flow

I data flow

I concurrency

I graphical calculus
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Complements

Subunit is split when S I
s

id
SISub(C) is a sub-semilattice of ISub(C)

(don’t need firmness)

If C has zero object, ISub(C) has least element 0
s, s⊥ are complements if s ∧ s⊥ = 0 and s ∨ s⊥ = 1

Proposition: when C has finite biproducts,
then s, s⊥ ∈ SISub(C) are complements

if and only if they are biproduct injections

Corollary: if ⊕ distributes over ⊗,
then SISub(C) is a Boolean algebra

(universal property?)
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Linear logic

if T : C→ C monoidal monad, Kl(T ) is monoidal
semilattice morphism

{ηI ◦ s | s ∈ ISub(C), T (s) is monic in C} → ISub(Kl(T ))
is not injective, nor surjective

model for linear logic: ∗-autonomous category C with finite
products, monoidal comonad ! : (C,⊗)→ (C,×)

(then Kl(!) cartesian closed)
if ε epi, then ISub(C,×) ' ISub(Kl(!),×)

(but hard to compare to ISub(C,⊗))
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