Categorical relativistic quantum theory

Chris Heunen Pau Enrique Moliner Sean Tull

- ▶ Hilbert modules: naive quantum field theory
- ► Idempotent subunits: base space in any category
- ► Support: where morphisms live
- ▶ Causal structures: relativistic quantum information

Base space

Let X be locally compact Hausdorff space. $C_0(X) = \{ f \colon X \to \mathbb{C} \text{ cts } | \forall \varepsilon > 0 \exists K \subseteq X \text{ cpt} \colon f(X \setminus K) < \varepsilon \}$

 $C_b(X) = \{ f \colon X \to \mathbb{C} \operatorname{cts} \mid \exists \| f \| < \infty \,\forall t \in X \colon |f(t)| \le \| f \| \}$

Hilbert spaces

$\mathbbm{C}\text{-module}\ H$ with complete $\mathbbm{C}\text{-valued}$ inner product

tensor product over $\mathbb C$	monoidal category
tensor unit $\mathbb C$	tensor unit I
complex numbers $\mathbb C$	scalars $I \to I$
finite dimensional	dual objects
adjoints	dagger
orthonormal basis	commutative dagger Frobenius structure
fin-dim C*-algebra	dagger Frobenius structure

Hilbert modules

 $C_0(X)$ -module H with complete $C_0(X)$ -valued inner product

tensor product over $C_0(X)$	monoidal category
tensor unit $C_0(X)$	tensor unit I
complex numbers $C_b(X)$	scalars $I \to I$
finitely presented	dual objects
adjoints	dagger
finite coverings	commutative dagger Frobenius structure
unif fin-dim C*-bundles	dagger Frobenius structure

'Scalars are not numbers'

Bundles of Hilbert spaces

Bundle $E \twoheadrightarrow X$, each fibre Hilbert space, operations continuous

Bundles of Hilbert spaces

Bundle $E \twoheadrightarrow X$, each fibre Hilbert space, operations continuous, with

Bundles of Hilbert spaces

Bundle $E \twoheadrightarrow X$, each fibre Hilbert space, operations continuous, with

 $\begin{array}{rcl} \text{Hilbert } C_0(X)\text{-modules} &\simeq & \text{bundles of Hilbert spaces over } X\\ \text{sections vanishing at infinity} &\leftarrow & E \twoheadrightarrow X\\ & E &\mapsto & \text{localisation} \end{array}$

Definition: ISub(**C**) = { $s: S \rightarrow I \mid id_S \otimes s: S \otimes S \rightarrow S \otimes I iso$ }/ \simeq

Definition: ISub(**C**) = { $s: S \rightarrow I \mid id_S \otimes s: S \otimes S \rightarrow S \otimes I iso$ }/ \simeq

Analysis: ISub(Hilb_{C0(X)}) = {S ⊆ X open}: 'idempotent subunits are open subsets of base space'

Definition: ISub(**C**) = { $s: S \rightarrow I \mid id_S \otimes s: S \otimes S \rightarrow S \otimes I iso$ }/ \simeq

- Analysis: ISub(Hilb_{C0(X)}) = {S ⊆ X open}: 'idempotent subunits are open subsets of base space'
- Logic: ISub(Sh(X)) = {S ⊆ X open}: 'idempotent subunits are truth values'

Definition: ISub(**C**) = { $s: S \rightarrow I \mid id_S \otimes s: S \otimes S \rightarrow S \otimes I iso$ }/ \simeq

- Analysis: ISub(Hilb_{C0(X)}) = {S ⊆ X open}: 'idempotent subunits are open subsets of base space'
- Logic: ISub(Sh(X)) = {S ⊆ X open}: 'idempotent subunits are truth values'
- ► Order theory: ISub(Q) = {x ∈ Q | x² = x ≤ 1} for quantale Q: 'idempotent subunits are side-effect-free observations'

Definition: ISub(**C**) = $\{s: S \rightarrow I \mid id_S \otimes s: S \otimes S \rightarrow S \otimes I iso\}/\simeq$

- Analysis: ISub(Hilb_{C0(X)}) = {S ⊆ X open}: 'idempotent subunits are open subsets of base space'
- Logic: ISub(Sh(X)) = {S ⊆ X open}: 'idempotent subunits are truth values'
- ► Order theory: ISub(Q) = {x ∈ Q | x² = x ≤ 1} for quantale Q: 'idempotent subunits are side-effect-free observations'
- ► Algebra: $ISub(Mod_R) = \{S \subseteq R \text{ ideal } | S = S^2\}$ 'idempotent subunits are idempotent ideals'

Semilattice

Proposition: ISub(**C**) is a semilattice, $\wedge = \otimes$, $1 = id_I$

Caveat: C must be firm, i.e. $s \otimes id_T$ monic, and size issue

Semilattice

Proposition: ISub(**C**) is a semilattice, $\wedge = \otimes$, $1 = id_I$

Caveat: **C** must be firm, i.e. $s \otimes id_T$ monic, and size issue

Spatial categories

Say $s \in \text{ISub}(\mathbf{C})$ supports $f \colon A \to B$ when $A \xrightarrow{f} f \qquad \uparrow \cong$ $B \otimes S \xrightarrow{f} B \otimes I$

Say $s \in \text{ISub}(\mathbf{C})$ supports $f \colon A \to B$ when $A \xrightarrow{f} f \qquad \uparrow \simeq$ $B \otimes S \xrightarrow{id \otimes s} B \otimes I$

Say $s \in \text{ISub}(\mathbf{C})$ supports $f \colon A \to B$ when $A \xrightarrow{f} f \qquad \uparrow \simeq$ $B \otimes S \xrightarrow{i} B \otimes I$

Monoidal functor: $\operatorname{supp}(f) \wedge \operatorname{supp}(g) \leq \operatorname{supp}(f \otimes g)$ $f \longmapsto \{s \mid s \text{ supports } f\}$ $\mathbf{C^2} \xrightarrow{\operatorname{supp}} \operatorname{Pow}(\operatorname{ISub}(\mathbf{C}))$

Say $s \in \text{ISub}(\mathbf{C})$ supports $f: A \to B$ when $A \xrightarrow{f} f \qquad \uparrow \simeq$ $B \otimes S \xrightarrow{id \otimes s} B \otimes I$

Monoidal functor: $\operatorname{supp}(f) \wedge \operatorname{supp}(g) \leq \operatorname{supp}(f \otimes g)$

universal with $F(f) = \bigvee \{F(s) \mid s \in ISub(\mathbb{C}) \text{ supports } f \}$

Restriction

Full subcategory $\mathbf{C}|_s$ of A with $\mathrm{id}_A \otimes s$ invertible:

- monoidal with tensor unit S
- $\blacktriangleright \text{ coreflective: } \mathbf{C} \big|_{s} \underbrace{\longleftarrow}_{\langle -- \stackrel{\frown}{=} -- \stackrel{\frown}{=} \mathbf{C}} \mathbf{C}$
- ▶ tensor ideal: if $A \in \mathbf{C}$ and $B \in \mathbf{C}|_s$, then $A \otimes B \in \mathbf{C}|_s$
- monocoreflective: counit ε_I monic (and $\operatorname{id}_A \otimes \varepsilon_I$ iso for $A \in \mathbb{C}|_s$)

Restriction

Full subcategory $\mathbf{C}|_s$ of A with $\mathrm{id}_A \otimes s$ invertible:

- monoidal with tensor unit S
- $\blacktriangleright \text{ coreflective: } \mathbf{C} \big|_{s} \underbrace{\longleftarrow}_{\langle -- \stackrel{\frown}{=} -- \stackrel{\frown}{=} \mathbf{C}} \mathbf{C}$
- ▶ tensor ideal: if $A \in \mathbf{C}$ and $B \in \mathbf{C}|_s$, then $A \otimes B \in \mathbf{C}|_s$
- monocoreflective: counit ε_I monic (and $\operatorname{id}_A \otimes \varepsilon_I$ iso for $A \in \mathbb{C}|_s$)

Proposition: $ISub(\mathbf{C}) \simeq \{monocoreflective tensor ideals in \mathbf{C}\}\$

Localisation

A graded monad is a monoidal functor $\mathbf{E} \to [\mathbf{C}, \mathbf{C}]$ $(\eta \colon A \to T(1), \ \mu \colon T(t) \circ T(s) \to T(s \otimes t))$ Lemma: $s \mapsto \mathbf{C}|_s$ is an ISub(**C**)-graded monad

Localisation

A graded monad is a monoidal functor $\mathbf{E} \to [\mathbf{C}, \mathbf{C}]$ $(\eta: A \to T(1), \mu: T(t) \circ T(s) \to T(s \otimes t))$ Lemma: $s \mapsto \mathbf{C}|_{\circ}$ is an ISub(**C**)-graded monad

universal property of localisation for $\Sigma = { id_E \otimes s \mid E \in \mathbf{C} }$

Spacetime

What if X is more than just space? Lorentzian manifold with time orientation: $s \ll t$: there is future-directed timelike curve $s \to t$ $s \prec t$: there is future-directed non-spacelike curve $s \to t$

	chronological	causal
future	$I^+(t) = \{s \in X \mid t \ll s\}$	$J^+(t) = \{s \in X \mid t \prec s\}$
past	$I^-(t) = \{s \in X \mid s \ll t\}$	$J^-(t) = \{s \in X \mid s \prec t\}$

Spacetime

What if X is more than just space? Lorentzian manifold with time orientation: $s \ll t$: there is future-directed timelike curve $s \to t$ $s \prec t$: there is future-directed non-spacelike curve $s \to t$

	chronological	causal
future	$I^+(t) = \{s \in X \mid t \ll s\}$	$J^+(t) = \{s \in X \mid t \prec s\}$
past	$I^{-}(t) = \{s \in X \mid s \ll t\}$	$J^-(t) = \{s \in X \mid s \prec t\}$

If $S \subseteq X$ open, then $I^+(S) = \bigcup_{s \in S} I^+(s) = \bigcup_{s \in S} J^+(s) = J^+(S)$ I^+ and I^- give 'future' and 'past' operators

Causal structure

Closure operator on partially ordered set P is function $C: P \to P$:

- if $s \leq t$, then $C(s) \leq C(t)$;
- $\blacktriangleright \ s \leq C(s);$
- $\blacktriangleright C(C(s)) \le C(s).$

Causal structure on **C** is pair C^{\pm} of closure operators on ISub(**C**)

Causal structure

Closure operator on partially ordered set P is function $C: P \to P$:

- if $s \leq t$, then $C(s) \leq C(t)$;
- $s \leq C(s);$
- $\blacktriangleright C(C(s)) \le C(s).$

Causal structure on **C** is pair C^{\pm} of closure operators on ISub(**C**)

Proposition: if $r \in \text{ISub}(\mathbf{C})$ and C is closure operator on \mathbf{C} , then $D(s) = C(s) \wedge r$ is closure operator on $\mathbf{C}|_r$ 'Causal structure restricts'

Teleportation

'Restriction = propagation'

compact category + support + causal structure

teleportation only successful on intersection of future sets

Further

- ▶ relativistic quantum information protocols
- causality
- proof analysis
- control flow
- ▶ data flow
- ► concurrency
- ▶ graphical calculus

Complements

Subunit is split when id $\bigcirc S \xrightarrow{s} I$ SISub(**C**) is a sub-semilattice of ISub(**C**) (don't need firmness)

Complements

Subunit is split when id $\bigcirc S \xrightarrow{s} I$ SISub(**C**) is a sub-semilattice of ISub(**C**) (don't need firmness)

If **C** has zero object, $ISub(\mathbf{C})$ has least element 0 s, s^{\perp} are complements if $s \wedge s^{\perp} = 0$ and $s \vee s^{\perp} = 1$

Complements

Subunit is split when id $\subset S \xrightarrow{s} I$ SISub(**C**) is a sub-semilattice of ISub(**C**) (don't need firmness)

If **C** has zero object, $ISub(\mathbf{C})$ has least element 0 s, s^{\perp} are complements if $s \wedge s^{\perp} = 0$ and $s \vee s^{\perp} = 1$

Proposition: when **C** has finite biproducts, then $s, s^{\perp} \in \text{SISub}(\mathbf{C})$ are complements if and only if they are biproduct injections

> **Corollary**: if \oplus distributes over \otimes , then SISub(C) is a Boolean algebra (universal property?)

Linear logic

if $T: \mathbb{C} \to \mathbb{C}$ monoidal monad, $\operatorname{Kl}(T)$ is monoidal semilattice morphism $\{\eta_I \circ s \mid s \in \operatorname{ISub}(\mathbb{C}), T(s) \text{ is monic in } \mathbb{C}\} \to \operatorname{ISub}(\operatorname{Kl}(T))$ is not injective, nor surjective

Linear logic

if $T: \mathbf{C} \to \mathbf{C}$ monoidal monad, $\operatorname{Kl}(T)$ is monoidal semilattice morphism $\{\eta_I \circ s \mid s \in \operatorname{ISub}(\mathbf{C}), T(s) \text{ is monic in } \mathbf{C}\} \to \operatorname{ISub}(\operatorname{Kl}(T))$ is not injective, nor surjective

model for linear logic: *-autonomous category **C** with finite products, monoidal comonad !: $(\mathbf{C}, \otimes) \rightarrow (\mathbf{C}, \times)$ (then Kl(!) cartesian closed) if ε epi, then ISub $(\mathbf{C}, \times) \simeq$ ISub $(\text{Kl}(!), \times)$ (but hard to compare to ISub (\mathbf{C}, \otimes))