The geometry of Boolean algebra

Chris Heunen
Boolean algebra: example
Boole’s algebra
Boolean algebra ≠ Boole’s algebra

AN INVESTIGATION
OF
THE LAWS OF THOUGHT,
on which are founded
THE MATHEMATICAL THEORIES OF LOGIC
AND PROBABILITIES.

BY
GEORGE BOOLE, LL.D.
FELLOW OF TRINITY COLLEGE, CAMBRIDGE,
AND PROFESSOR OF MATHEMATICS IN QUEEN’S COLLEGE, CORK.

LONDON:
WALTON AND MABERLY,
UPPER GOWER-STREET, AND IVY-LANE, PATERNOSTER-ROW.
CAMBRIDGE: MACMILLAN AND CO.
1854.

CHAPTER V.

OF THE FUNDAMENTAL PRINCIPLES OF SYMBOLICAL REASONING, AND
OF THE EXPANSION OR DEVELOPMENT OF EXPRESSIONS INVOLVING
LOGICAL SYMBOLS.

1. THE previous chapters of this work have been devoted to
 the investigation of the fundamental laws of the operations
 of the mind in reasoning; of their development in the
 laws of the symbols of Logic; and of the principles of expression,
 by which that species of propositions called primary may be represen-
 ted in the language of symbols. These inquiries have been
 in the strictest sense preliminary. They form an indispensable
 introduction to one of the chief objects of this treatise—the con-
 struction of a system or method of Logic upon the basis of an
 exact summary of the fundamental laws of thought. There are
 certain considerations touching the nature of this end, and the
 means of its attainment, to which I deem it necessary here to
 direct attention.

 2. I would remark in the first place that the generality of a
 method in Logic must very much depend upon the generality of
 its elementary processes and laws. We have, for instance, in the
 previous sections of this work investigated, among other things,
 the laws of that logical process of addition which is symbolized
 by the sign +. Now those laws have been determined from the
 study of instances, in all of which it has been a necessary condi-
 tion, that the classes or things added together in thought should
 be mutually exclusive. The expression $x + y$ seems indeed un-
 interpretable, unless it be assumed that the things represented
 by x and the things represented by y are entirely separate;
 that they embrace no individuals in common. And conditions
 analogous to this have been involved in those acts of conception
 from the study of which the laws of the other symbolical opera-
 tions have been ascertained. The question then arises, whether
Boolean algebra = Jevon's algebra

PURE LOGIC

OR THE

LOGIC OF QUALITY APART FROM QUANTITY:

WITH

REMARKS ON BOOLE'S SYSTEM AND

ON THE RELATION OF LOGIC AND MATHEMATICS.

BY

W. STANLEY JEVONS, M.A.

LONDON:

EDWARD STANFORD, 6 CHARING CROSS.

1884.

26

PURE LOGIC.

Use of brackets.

67. Let a plural term enclosed in brackets (.), and placed beside another term, mean that it is combined with it, as one single term is with another:

Thus \(A (B + C) = AB + AC \).

Combination of plural terms.

68. One plural term is combined with another by combining each alternative of the one separately with each of the other. Each combined alternative may then be combined with each alternative of a third plural term, and so on:

Thus \((D + E)(B + C) = B(D + E) + C(D + E) = BD + BE + CD + CE\).

Law of unity.

69. It is in the nature of thought and things that same alternatives are together same in meaning, as any one taken singly.

Thus, what is the same as \(A \) or \(A \) is the same as \(A \), a self-evident truth.

\[A + A = A \quad A + A = A \quad A + A + B = A + B \]

This law is correlative to the Law of Simplicity, (§ 39), and is perhaps of equal importance and frequent use. It was not recognised by Professor Boole, when laying down the principles of his system.

70. In a plural term, any alternative may be removed, of which a part forms another alternative.

Thus the term \(\text{either } B \text{ or } BC \) is the same in meaning with \(B \) alone, or \(B + BC = B \). For it is a self-evident truth (§ 39) that \(B \) standing alone is either the same as \(BC \), or as \(B \text{ not-} C \). Thus

\[B + BC = B \text{ not-} C + BC + BC = B \text{ not-} C + BC = B. \]
Boole’s Algebra Isn’t Boolean Algebra

A description, using modern algebra, of what Boole really did create.

Theodore Hailperin
Lehigh University
Bethlehem, PA 18015

To Boole and his mid-nineteenth century contemporaries, the title of this article would have been very puzzling. For Boole’s first work in logic, *The Mathematical Analysis of Logic*, appeared in 1847 and, although the beginnings of modern abstract algebra can be traced back to the early part of the nineteenth century, the subject had not fully emerged until towards the end of the century. Only then could one clearly distinguish and compare algebras. (We use the term *algebra* here as standing for a formal system, not a structure which realizes, or is a model for, it—for instance, the algebra of integral domains as codified by a set of axioms *versus* a particular structure, e.g., the integers, which satisfies these axioms.) Granted, however, that this later full degree of understanding has been attained, and that one can conceptually distinguish algebras, is it not true that Boole’s “algebra of logic” is Boolean algebra?
Contextuality
Orthoalgebra: definition

An orthoalgebra is a set A with

- a *partial* binary operation $\oplus : A \times A \rightarrow A$
- a unary operation $\neg : A \rightarrow A$
- distinguished elements $0, 1 \in A$

such that

- \oplus is commutative and associative
- $\neg a$ is the unique element with $a \oplus \neg a = 1$
- $a \oplus a$ is defined if and only if $a = 0$
Orthoalgebra: example
Orthodomain: definition

Given a piecewise Boolean algebra A, its orthodomain $\text{BSub}(A)$ is the collection of its Boolean subalgebras, partially ordered by inclusion.
Orthodomain: example

Example: if A is

then $\text{BSub}(A)$ is
Orthoalgebra: pitfalls

- subalgebras of a Boolean orthoalgebra need not be Boolean
- intersection of two Boolean subalgebras need not be Boolean
- two Boolean subalgebras might have no meet
- two Boolean subalgebras might have upper bound but no join
Different kinds of atoms

If $A = \{1, 2, 3, 4\}$, then $\text{BSub}(A) = \cdots$
Different kinds of atoms
Principal pairs

Reconstruct pairs \((x, \neg x)\) of \(A\):

- *principal ideal subalgebra* of \(A\) is of the form

- they are the elements \(p\) of \(\text{BSub}(A)\) that are *dual modular* and

\[(p \lor m) \land n = p \lor (m \land n)\]

for \(n \geq p\)

atom or *relative complement* \(a \land m = a, a \lor m = A\) for atom \(a\)
Principal pairs

Reconstruct pairs \((x, \neg x)\) of \(A\):

- **principal ideal subalgebra** of \(A\) is of the form

- they are the elements \(p\) of \(B\text{Sub}(A)\) that are **dual modular** and
 \[(p \lor m) \land n = p \lor (m \land n)\] for \(n \geq p\)

Reconstruct elements \(x\) of \(A\):

- **principal pairs** of \(A\) are \((p, q)\) with atomic meet

\[
\begin{array}{c}
\text{1} \\
\downarrow & \downarrow \\
x & \neg x \\
\downarrow & \downarrow \\
0 & 0
\end{array}
\]
Principal pairs

Reconstruct pairs \((x, \neg x)\) of \(A\):

- \textit{principal ideal subalgebra} of \(A\) is of the form

- they are the elements \(p\) of \(\text{BSub}(A)\) that are \textit{dual modular} and \((p \lor m) \land n = p \lor (m \land n)\) for \(n \geq p\)

- atom or \textit{relative complement} \(a \land m = a, a \lor m = A\) for atom \(a\)

Reconstruct elements \(x\) of \(A\):

- \textit{principal pairs} of \(A\) are \((p, q)\) with atomic meet

\textbf{Theorem:} \(A \simeq \text{Pp}(\text{BSub}(A))\) for Boolean algebra \(A\) of size \(\geq 4\)

\(D \simeq \text{BSub}(\text{Pp}(D))\) for Boolean domain \(D\) of size \(\geq 2\)
Directions

If A is

then $\text{BSub}(A)$ is
Directions

If A is

\[\begin{array}{cccc}
\neg v & \neg w & \neg x & \neg y & \neg z \\
v & w & x & y & z
\end{array} \]

or

\[\begin{array}{cccc}
\neg v & \neg w & \neg x & \neg y & \neg z \\
x & y & z
\end{array} \]

then $\text{BSub}(A)$ is

\[\begin{array}{cccc}
\neg v & \neg w & \neg x & \neg y & \neg z \\
v & w & x & y & z
\end{array} \]
Directions

If A is

$$
\begin{array}{cccccc}
1 & \quad & \quad & \quad & \quad & \quad \\
\neg v & \quad & \neg w & \quad & \neg x & \quad \neg y & \quad \neg z \\
\quad v & \quad w & \quad x & \quad y & \quad z \\
0 & \quad & \quad & \quad & \quad &
\end{array}
$$

or

$$
\begin{array}{cccccc}
1 & \quad & \quad & \quad & \quad & \quad \\
\neg v & \quad & \neg w & \quad & \neg x & \quad \neg y & \quad \neg z \\
\quad v & \quad w & \quad x & \quad \neg y & \quad \neg z \\
0 & \quad & \quad & \quad & \quad &
\end{array}
$$

then $\text{BSub}(A)$ is

$$
\begin{array}{cccccc}
 & \quad & \quad & \quad & \quad & \\
 & \quad & \quad & \quad & \quad & \\
 & \quad & \quad & \quad & \quad & \\
 & \quad & \quad & \quad & \quad & \\
 & \quad & \quad & \quad & \quad & \\
 & \quad & \quad & \quad & \quad & \\
 & \quad & \quad & \quad & \quad & \\
0 & \quad & \quad & \quad & \quad &
\end{array}
$$

A direction for a Boolean domain is a map $d: D \rightarrow D^2$ with

- $d(1) = (p, q)$ is a principal pair
- $d(m) = (p \land m, q \land m)$
Directions

If A is

then $BSub(A)$ is

A direction for a orthodomain is a map $d: D \rightarrow D^2$ with

- if $a \leq m$ then $d(m)$ is a principal pair with meet a in m
- $d(m) = \bigvee \{(m, m) \land f(n) \mid a \leq n\}$
- if m, n cover a, $d(m) = (a, m)$, $d(n) = (n, a)$, then $m \lor n$ exists
Orthoalgebras and orthodomains

Lemma: If an atom in an orthodomain has a direction, then it has exactly two directions

Theorem:

- \(A \simeq \text{Dir}(\text{BSub}(A)) \) for orthoalgebra \(A \) whose blocks have > 4 elements
- \(D \simeq \text{BSub}(\text{Dir}(D)) \) for orthodomain \(D \) that has enough directions and is tall
Orthohypergraphs

An orthohypergraph is consists of a set of points, a set of lines, and a set of planes. A line is a set of 3 points, and a plane is a set of 7 points where the restriction of the lines to these 7 points is as:

```
```

\[\begin{array}{c}
\text{points are Boolean subalgebras of size 4} \\
\text{lines are Boolean subalgebras of size 8} \\
\text{planes are Boolean subalgebras of size 16}
\end{array} \]
Orthohypergraphs

An orthohypergraph is consists of a set of points, a set of lines, and a set of planes. A line is a set of 3 points, and a plane is a set of 7 points where the restriction of the lines to these 7 points is as:

![Diagram of an orthohypergraph with points and lines]

Every orthoalgebra/orthodomain gives rise to an orthohypergraph:
- points are Boolean subalgebras of size 4
- lines are Boolean subalgebras of size 8
- planes are Boolean subalgebras of size 16
Projective geometry

- Any two lines intersect in at most one point.
- Any two points lie on a line or plane.
- For orthomodular posets: if it looks like a plane, it is a plane.
Orthohypergraph morphisms

Morphism of orthohypergraphs is partial function such that:

- none defined
- point image
- isomorphism

- none defined
- point image
- line image
- isomorphism

If lines l, m intersect in point p, and lines $\alpha(l) \neq \alpha(m)$ in plane t' intersect in edge point $\alpha(p)$, then l, m lie in plane t that is mapped isomorphically to t':
Orthodomains and orthohypergraphs

Theorem: functor that sends orthoalgebra to its orthohypergraph:
- is essentially surjective on objects
- is injective on objects except on 1- and 2-element orthoalgebras
- is full on *proper* morphisms
- is faithful on *proper* morphisms

So for all intents and purposes is equivalence
Conclusion

- Orthoalgebra: Boolean algebra as Boole intended
- Orthodomain: shape of parts enough to determine whole
- Orthohypergraph: (projective) geometry of contextuality
References

 Boolean subalgebras of orthoalgebras

- Heunen, ICALP 2014
 Piecewise Boolean algebras and their domains

 Noncommutativity as a colimit

 On the lattice of subalgebras of a Boolean algebra,

 The problem of hidden variables in quantum mechanics

- Sachs, Canad. J. Math. 1962
 The lattice of subalgebras of a Boolean algebra