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Quantum (in)compatibilities

◮ Not every two observables can be measured jointly

◮ What rules govern joint measurability?
None!

◮ Problem for the church of the larger Hilbert space
dilation does not respect joint measurability

Overview:

◮ Yes-no questions: projections

◮ Sharp measurements: projection-valued measures

◮ Unsharp measurements: positive operator-valued measures
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Yes-no questions

A projection is a bounded operator p : H → H with p2 = p = p†.
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Realising graphs with yes-no questions

Realising a graph: label vertices with projections,
such that neighbours if and only if commute
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Realising graphs with yes-no questions

Realising a graph: label vertices with projections,
such that neighbours if and only if commute

Theorem 1: Any graph can be realised

◮ First assume all vertices are connected except for two.

0 0

|0〉〈0| |+〉〈+|

Label vertex x with projection pv 6∼w
x .

◮ In general, take Hilbert space
⊕

v 6∼w C
2.

Label vertex x with
⊕

v 6∼w pv 6∼w
x
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Sharp measurements

Projection-valued measure is covering set of orthogonal projections

i 6= j =⇒ pipj = 0
∑

pi = 1

PVMs are jointly measurable when any pi commutes with any qj .
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Projection-valued measure is covering set of orthogonal projections

i 6= j =⇒ pipj = 0
∑

pi = 1

PVMs are jointly measurable when any pi commutes with any qj .
Joint measurability is pairwise, so determines graph:

◮ Vertices are observables

◮ Edge between vertices when jointly measurable
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Realising graphs with sharp measurements

Theorem 2: any graph can be realised with PVMs

◮ Realise with projections, and take PVM P (x) = {px, 1− px}
◮ Can extend to PVMs with n > 2 outcomes:

extend Hilbert space to H ⊕⊕
xC

n−2

extend P (x) to {px ⊕ 0, (1− px)⊕ 0, 0⊕ |i〉〈i|}
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Realising graphs with sharp measurements

Theorem 2: any graph can be realised with PVMs

◮ Realise with projections, and take PVM P (x) = {px, 1− px}
◮ Can extend to PVMs with n > 2 outcomes:

extend Hilbert space to H ⊕⊕
xC

n−2

extend P (x) to {px ⊕ 0, (1− px)⊕ 0, 0⊕ |i〉〈i|}

Kochen-Specker: there is ‘a lot of room’ in C
3

But: no fixed dimension d can realise all graphs as PVMs
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Unsharp measurements
Positive-operator valued measure is covering set of effects

0 ≤ E(i) ≤ 1
∑

E(i) = 1

8 / 18



Unsharp measurements
Positive-operator valued measure is covering set of effects

0 ≤ E(i) ≤ 1
∑

E(i) = 1

POVMs are jointly measurable when there is a joint POVM E of
which they are marginals

E1(i1) =
∑

i2,i3,...

E(i1, i2, i3)

E2(i2) =
∑

i1,i3,...

E(i1, i2, i3)
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Hypergraphs

Joint measurability of POVMs is not pairwise!

E1(±) = 1

2
1± η

2
X · (1, 0, 0)

E2(±) = 1

2
1± η

2
Y · (0, 1, 0)

E3(±) = 1

2
1± η

2
Z · (0, 0, 1)

◮ Pairwise measurable ⇐⇒ η ≤ 1/
√
2

◮ Triplewise measurable ⇐⇒ η ≤ 1/
√
3
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Dilation

Theorem (Neumark dilation): For a POVM {E(i)} on H, there are

◮ a Hilbert space K

◮ an isometry V : H → K

◮ and a PVM {P (i)} on K

satisfying
E(i) = V † P (i) V .
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Dilation

Theorem (Neumark dilation): For a POVM {E(i)} on H, there are

◮ a Hilbert space K

◮ an isometry V : H → K

◮ and a PVM {P (i)} on K

satisfying
E(i) = V † P (i) V .

“Church of larger Hilbert space”:
can always make unsharp observables sharp (on larger space)

But: this need not reflect joint measurability relations!
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Hypergraphs

Hypergraph:

◮ Vertices are observables

◮ Hyperedge between vertices when jointly measurable

•

•

•
6=

•

•

•
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Hypergraphs

Hypergraph:

◮ Vertices are observables

◮ Hyperedge between vertices when jointly measurable

•

•

•
6=

•

•

•

In fact: abstract simplicial complex

◮ If set of observables jointly measurable, so is any subset

◮ Hyperedges have finite number of vertices
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Realising hypergraphs with unsharp measurements

Theorem 3: any hypergraph can be realised with POVMs

Proof:

1. Analyse when POVMs are(n’t) jointly measurable

2. Realise simplest interesting hypergraph

3. Reduce arbitrary hypergraph to combination of simple ones
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Step 1: Clifford algebra
A Clifford algebra consists of a finite set of hermitian matrices
Γ1, . . . ,ΓN satisfying

ΓjΓk + ΓkΓj = 2δjk1.

It follows that Tr(Γi) = 0. They describe spinors and Dirac equation.

Construction:

◮ For N = 1: set Γ1 = 1 on H = C

◮ For higher N :

H  H ⊗ C
2

Γi  Γi ⊗ Z

ΓN+1 = 1⊗X

ΓN+2 = 1⊗ Y
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Step 2: Minimal incompatible sets

◮ Set Ei(±) = 1

2
(1± ηΓi).

◮ Then {Ei(±)} jointly measurable ⇐⇒ η ≤ 1/
√
N

◮ Observe this does not rely on any ordering of the Γi

◮ So can realize hypergraph with N vertices where every N − 1
vertex subset is jointly measurable, but not all N vertices
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Step 3: Put it all together

◮ Identify minimal incompatible sets of vertices

◮ Realise each one on Hi; assign vertices outside the set 1

◮ Take H =
⊕

Hi
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Step 3: Put it all together

◮ Identify minimal incompatible sets of vertices

◮ Realise each one on Hi; assign vertices outside the set 1

◮ Take H =
⊕

Hi

Works because:

◮ For edge e, compatible on each Hi, so on H

◮ If e′ not an edge, contained in some minimal incompatible set,
so incompatible on Hi, so incompatible on H
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Example

A1

A4 A2 B4 B2

B3

C1

C3

A1 =
1

2
(1+ Z/

√
2) B1 = {0,1} C1 =

1

2
(1+ Z)

A2 =
1

2
(1+X/

√
2) B2 =

1

2
(1+ Z/

√
2) C2 = {0,1}

A3 = {0,1} B3 =
1

2
(1+X/

√
2) C3 =

1

2
(1+X)

A4 =
1

2
(1+ Y/

√
2) B4 =

1

2
(1+ Y/

√
2) C4 = {0,1}

Ei(±) = Ai(±)⊕Bi(±)⊕ Ci(±)
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Conclusion

Can realise any:

◮ Graph with projections

◮ Graph with PVMs

◮ Hypergraph with POVMs

Further:

◮ Optimal dimension?

◮ Homology?

◮ Protocols?
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