How to realise arbitrary (in)compatibilities with quantum observables

Tobias Fritz Chris Heunen Ravi Kunjwal Manny Reyes

▶ Not every two observables can be measured jointly

- ▶ Not every two observables can be measured jointly
- ▶ What rules govern joint measurability?

- ▶ Not every two observables can be measured jointly
- What rules govern joint measurability? None!

- ▶ Not every two observables can be measured jointly
- What rules govern joint measurability? None!
- Problem for the church of the larger Hilbert space dilation does not respect joint measurability

- ▶ Not every two observables can be measured jointly
- What rules govern joint measurability? None!
- Problem for the church of the larger Hilbert space dilation does not respect joint measurability

Overview:

- ▶ Yes-no questions: projections
- ► Sharp measurements: projection-valued measures
- ▶ Unsharp measurements: positive operator-valued measures

Yes-no questions

A projection is a bounded operator $p: H \to H$ with $p^2 = p = p^{\dagger}$.

Yes-no questions

A projection is a bounded operator $p: H \to H$ with $p^2 = p = p^{\dagger}$.

Projections are jointly measurable when they commute.

Yes-no questions

A projection is a bounded operator $p: H \to H$ with $p^2 = p = p^{\dagger}$.

Projections are jointly measurable when they commute. Joint measurability is pairwise, so determines graph:

- Vertices are observables
- Edge between vertices when jointly measurable

Realising a graph: label vertices with projections, such that neighbours *if and only if* commute

Realising a graph: label vertices with projections, such that neighbours *if and only if* commute

Theorem 1: Any graph can be realised

▶ First assume all vertices are connected except for two.

Realising a graph: label vertices with projections, such that neighbours *if and only if* commute

Theorem 1: Any graph can be realised

▶ First assume all vertices are connected except for two.

Label vertex x with projection $p_x^{v \not\sim w}$.

Realising a graph: label vertices with projections, such that neighbours *if and only if* commute

Theorem 1: Any graph can be realised

▶ First assume all vertices are connected except for two.

Label vertex x with projection $p_x^{v \not\sim w}$.

► In general, take Hilbert space $\bigoplus_{v \not\sim w} \mathbb{C}^2$. Label vertex x with $\bigoplus_{v \not\sim w} p_x^{v \not\sim w}$

Sharp measurements

Projection-valued measure is covering set of orthogonal projections

$$i \neq j \implies p_i p_j = 0$$
 $\sum p_i = 1$

PVMs are jointly measurable when any p_i commutes with any q_i .

Sharp measurements

Projection-valued measure is covering set of orthogonal projections

$$i \neq j \implies p_i p_j = 0$$
 $\sum p_i = 1$

PVMs are jointly measurable when any p_i commutes with any q_j . Joint measurability is pairwise, so determines graph:

- Vertices are observables
- ▶ Edge between vertices when jointly measurable

Realising graphs with sharp measurements

Theorem 2: any graph can be realised with PVMs

- ▶ Realise with projections, and take PVM $P(x) = \{p_x, 1 p_x\}$
- Can extend to PVMs with n > 2 outcomes: extend Hilbert space to $H \oplus \bigoplus_x \mathbb{C}^{n-2}$ extend P(x) to $\{p_x \oplus 0, (1-p_x) \oplus 0, 0 \oplus |i\rangle\langle i|\}$

Realising graphs with sharp measurements

Theorem 2: any graph can be realised with PVMs

- ▶ Realise with projections, and take PVM $P(x) = \{p_x, 1 p_x\}$
- ► Can extend to PVMs with n > 2 outcomes: extend Hilbert space to $H \oplus \bigoplus_x \mathbb{C}^{n-2}$ extend P(x) to $\{p_x \oplus 0, (1-p_x) \oplus 0, 0 \oplus |i\rangle\langle i|\}$

Kochen-Specker: there is 'a lot of room' in \mathbb{C}^3 But: no fixed dimension d can realise all graphs as PVMs

Unsharp measurements

Positive-operator valued measure is covering set of effects

 $0 \le E(i) \le 1 \qquad \qquad \sum E(i) = 1$

Unsharp measurements

Positive-operator valued measure is covering set of effects

 $0 \le E(i) \le 1 \qquad \sum E(i) = 1$

POVMs are jointly measurable when there is a *joint* POVM E of which they are *marginals*

$$E_1(i_1) = \sum_{i_2, i_3, \dots} E(i_1, i_2, i_3)$$
$$E_2(i_2) = \sum_{i_1, i_3, \dots} E(i_1, i_2, i_3)$$

Hypergraphs

Joint measurability of POVMs is not pairwise!

$$E_{1}(\pm) = \frac{1}{2}\mathbf{1} \pm \frac{\eta}{2}X \cdot (1,0,0)$$

$$E_{2}(\pm) = \frac{1}{2}\mathbf{1} \pm \frac{\eta}{2}Y \cdot (0,1,0)$$

$$E_{3}(\pm) = \frac{1}{2}\mathbf{1} \pm \frac{\eta}{2}Z \cdot (0,0,1)$$

- Pairwise measurable $\iff \eta \le 1/\sqrt{2}$
- Triplewise measurable $\iff \eta \le 1/\sqrt{3}$

Dilation

Theorem (Neumark dilation): For a POVM $\{E(i)\}$ on H, there are

- \blacktriangleright a Hilbert space K
- an isometry $V \colon H \to K$
- \blacktriangleright and a PVM $\{P(i)\}$ on K

satisfying

$$E(i) = V^{\dagger} P(i) V.$$

Dilation

Theorem (Neumark dilation): For a POVM $\{E(i)\}$ on H, there are

- \blacktriangleright a Hilbert space K
- an isometry $V \colon H \to K$
- ▶ and a PVM $\{P(i)\}$ on K

satisfying

$$E(i) = V^{\dagger} P(i) V.$$

"Church of larger Hilbert space": can always make unsharp observables sharp (on larger space)

Dilation

Theorem (Neumark dilation): For a POVM $\{E(i)\}$ on H, there are

- \blacktriangleright a Hilbert space K
- an isometry $V \colon H \to K$
- ▶ and a PVM $\{P(i)\}$ on K

satisfying

$$E(i) = V^{\dagger} P(i) V.$$

"Church of larger Hilbert space": can always make unsharp observables sharp (on larger space) But: this need **not** reflect joint measurability relations!

Hypergraphs

Hypergraph:

- Vertices are observables
- ▶ Hyperedge between vertices when jointly measurable

Hypergraphs

Hypergraph:

- Vertices are observables
- ▶ Hyperedge between vertices when jointly measurable

In fact: abstract simplicial complex

- ▶ If set of observables jointly measurable, so is any subset
- ► Hyperedges have finite number of vertices

Realising hypergraphs with unsharp measurements

Theorem 3: any hypergraph can be realised with POVMs Proof:

- 1. Analyse when POVMs are(n't) jointly measurable
- 2. Realise simplest interesting hypergraph
- 3. Reduce arbitrary hypergraph to combination of simple ones

Step 1: Clifford algebra

A Clifford algebra consists of a finite set of hermitian matrices $\Gamma_1, \ldots, \Gamma_N$ satisfying

 $\Gamma_j \Gamma_k + \Gamma_k \Gamma_j = 2\delta_{jk} \mathbf{1}.$

It follows that $Tr(\Gamma_i) = 0$. They describe *spinors* and *Dirac equation*.

Construction:

- For N = 1: set $\Gamma_1 = \mathbf{1}$ on $H = \mathbb{C}$
- For higher N:

 $H \rightsquigarrow H \otimes \mathbb{C}^2$ $\Gamma_i \rightsquigarrow \Gamma_i \otimes Z$ $\Gamma_{N+1} = \mathbf{1} \otimes X$ $\Gamma_{N+2} = \mathbf{1} \otimes Y$

Step 2: Minimal incompatible sets

- Set $E_i(\pm) = \frac{1}{2}(\mathbf{1} \pm \eta \Gamma_i)$.
- Then $\{E_i(\pm)\}$ jointly measurable $\iff \eta \le 1/\sqrt{N}$
- Observe this does not rely on any ordering of the Γ_i
- ▶ So can realize hypergraph with N vertices where every N 1 vertex subset is jointly measurable, but not all N vertices

Step 3: Put it all together

- ▶ Identify minimal incompatible sets of vertices
- Realise each one on H_i ; assign vertices outside the set **1**
- Take $H = \bigoplus H_i$

Step 3: Put it all together

- ▶ Identify minimal incompatible sets of vertices
- Realise each one on H_i ; assign vertices outside the set **1**
- Take $H = \bigoplus H_i$

Works because:

- For edge e, compatible on each H_i , so on H
- If e' not an edge, contained in some minimal incompatible set, so incompatible on H_i , so incompatible on H

Example

Conclusion

Can realise any:

- Graph with projections
- ▶ Graph with PVMs
- ▶ Hypergraph with POVMs

Further:

- Optimal dimension?
- ► Homology?
- ▶ Protocols?

COMBINING VIEWPOINTS IN QUANTUM THEORY

19-22 MARCH 201

WORKSHOP ON

ABOUT

PROGRAMME

TRAVEL

REGISTRATION

SUPPORT

SPONSOR