
Kernel Multi-task Learning using Task-specific Features

Edwin V. Bonilla, Felix V. Agakov, Christopher K. I. Williams
School of Informatics, University of Edinburgh, Edinburgh EH1 2QL, UK

edwin.bonilla@ed.ac.uk, felixa@inf.ed.ac.uk, c.k.i.williams@ed.ac.uk

Abstract

In this paper we are concerned with multi-
task learning when task-specific features are
available. We describe two ways of achiev-
ing this using Gaussian process predictors:
in the first method, the data from all tasks is
combined into one dataset, making use of the
task-specific features. In the second method
we train specific predictors for each reference
task, and then combine their predictions us-
ing a gating network. We demonstrate these
methods on a compiler performance predic-
tion problem, where a task is defined as pre-
dicting the speed-up obtained when applying
a sequence of code transformations to a given
program.

1 INTRODUCTION

In this paper we are concerned with multi-task learn-
ing when task-specific features are available. Thus we
consider M tasks and for each we wish to learn the
mapping gi(x) for i = 1, . . . ,M , where x is a vector
of input features. For each task i we also have a task
descriptor (or task-specific feature vector) f i. Thus
we can also write gi(x) = g(f i,x) for some function
g. This problem was considered by Bakker and Hes-
kes (2003) using neural network predictors. In this
paper we discuss how to address this problem using
kernel machines (specifically, Gaussian process predic-
tors), where we can directly model correlations be-
tween tasks.

In our experiments we will focus on the problem of
compiler performance prediction. There are a large
number of possible code transformations that maintain
the correctness of the program but which can affect its
runtime, e.g. loop unrolling, common subexpression
elimination. These transformations can be combined
into sequences yielding a very large space to explore.

In general, we will have a suite of programs (or bench-
marks) which we wish to evaluate. We will extract
task-specific features from each program, and thus ex-
ploit the multi-task paradigm with task-specific fea-
tures. Our goal will be to have an accurate predictive
model of the speed-up under transformation x for a
new task (program) based on very few runs on this
new task, due to transference across tasks.

Although we will focus on the specific example of
compiler performance prediction, we note that multi-
task learning is a generic problem. For example, it
arises in collaborative filtering, multi-level modelling
in statistics, text categorization with multiple topics,
and speaker-dependent speech recognition, etc.

The structure of this paper is as follows: In section
2 we describe our methods for transfer learning, and
discuss related work. Section 3 covers the details of
the compiler setup, and the extraction of input and
task-specific features. In section 4 we describe the ex-
perimental framework, and the results are presented
in section 5. We conclude with a discussion.

2 THEORY

We give two methods for using kernel machines to per-
form the multi-task problem. In the first we simply
concatenate the input features x and the task-specific
features f to give a vector z (so zT = (xT ,fT)). Now
all the training data from the individual tasks can be
combined into one large training set, and predictions
made using this machine. We call this the combined
method.

If the kernel function k(z,z′) decomposes as k(z,z′) =
kx(x,x′)kf (f ,f ′) then there is a decomposition of the
problem into learning task similarity (as measured by
kf) and input similarity (as measured by kx). The
commonly used Gaussian (or squared exponential) ker-
nel is an example where such a decomposition occurs.
Note the similarity of this combined approach to co-

kriging as used in geostatistics (see e.g. Cressie (1993,
sec. 3.2.3)); the use of task-specific features is one way
to define a kernel which incorporates correlations be-
tween tasks.

Our second approach is based on training a separate
kernel predictor for each task, and then combining
these using a gating network. Specifically, let the pre-
diction for input x on the ith task be denoted pi(s|x)
(where s is the prediction for the target variable).
Then for a new task with task descriptor f , we have

p(s|f ,x) =
M∑
i=1

p(i|f ,x)pi(s|x), (1)

where p(i|f ,x) is a gating network outputting mixing
proportions that sum to 1. We call this the gating
method. It is a specific kind of mixture of experts
architecture (Jacobs et al., 1991) where the individ-
ual experts are trained independently. Details of the
training of the gating network are given in section 4.1.

One difficulty with neural network models for multi-
task learning (Bakker and Heskes, 2003) is that neural
networks can be quite tricky to train, due to local op-
tima in weight space, choices for the number of hidden
units, etc. In contrast, Gaussian process regression
(and many other kernel prediction methods) are un-
derpinned by convex optimization problems (given the
kernel). This is our motivation to produce a kernel-
based solution to the problem.

2.1 RELATED WORK

There has been a lot of work over in recent years
on multi-task learning (or inductive transfer), see e.g.
Caruana (1997); Thrun (1996) for early references. A
common setup is that there are multiple, related su-
pervised learning problems and the goal is to avoid
tabula rasa learning for a new problem by extracting
information from the problems seen before. We partic-
ularly focus on the case when task-specific features are
available. As mentioned above, this case is discussed in
Bakker and Heskes (2003), but using neural network
predictors. They propose two ways to use the task-
specific features: One is to define a task-specific prior
in weight space (section 4.1 in their paper). The sec-
ond is to use a gating network (although in their case
this only depended on f and not on x). Note that
neither of these methods introduces inter-task corre-
lations in the prior. Yu et al. (2007) have recently
investigated the combined method discussed above un-
der the assumption of factorization of the kernel wrt
x and f features. In their case the setup was as a re-
lational model, e.g. for predicting movie ratings based
on user and movie features.

Figure 1: A schematic illustration of drawing sample
functions in joint x and f space. For fixed values of f
we obtain sample functions (bold lines) as functions of
x. Note that these sample functions for different val-
ues of f are correlated; this is in contrast to indepen-
dent draws over sample functions if the f -dimension
is omitted.

There is also a lot of work on multi-task learning when
there are no task-specific features. In this case one
can make various assumptions about how to induce
transfer between tasks. For example Minka and Pi-
card (1999) assumed that a number of related tasks
shared the same kernel parameters, and these were
optimized on the set of tasks available. In a similar
vein, Yu et al. (2005) induced transfer between tasks
by assuming a common covariance for the tasks, with
a Normal-Inverse-Wishart prior. However, note that
in these cases the different tasks are conditionally in-
dependent given the kernel; in contrast our methods
discussed above are stronger in that they directly in-
duce correlations between the tasks. This is illustrated
in Figure 1, where both x and f are shown schemati-
cally as one-dimensional variables. For fixed values of
f we obtain sample functions (bold lines) as functions
of x. Note that these sample functions for different val-
ues of f are correlated; this is in contrast to indepen-
dent draws over sample functions if the f -dimension
is omitted.

There are also other assumptions one can make about
ways to share information between tasks; for example,
one can consider mixture models for task clustering
(Bakker and Heskes, 2003). Evgeniou et al. (2005)
consider methods for inducing correlations between
tasks based on a correlated prior over linear regres-
sion parameters; this is in fact a special case of co-
kriging. Multi-task modelling is also very prevalent in
statistics, where it goes under the names of multilevel
modelling or hierarchical modelling, see e.g. Goldstein

(2003).

3 THE COMPILER
PERFORMANCE PREDICTION
PROBLEM

Our measure of performance is the speed-up of a pro-
gram under a given sequence of compiler transforma-
tions. This is obtained by computing the ratio of
the execution time of the original program (baseline)
over the execution time of the transformed program.
Therefore, a speed-up greater than one is an improve-
ment in performance and a speed-up between zero and
one indicates that the transformation sequence applied
harmed the performance of the original program by in-
creasing its execution time. The performance predic-
tion task is to predict the speed-up of a given program
under transformation x.

In the remainder of this section we describe the pro-
grams, optimizations and processor architecture used
in our experiments, the input and task-specific features
used, and related compilers work.

3.1 PROGRAMS, OPTIMIZATIONS AND
ARCHITECTURE

Eleven different benchmarks from the UTDSP suite
(Lee, 1997) have been used for the experiments. This
set of C programs contains small kernels and larger
applications. These are regarded as compute-intensive
programs by the DSP community, and are continu-
ously used in stream-processing applications. We have
considered source-to-source transformations appli-
cable to C programs by using the restructuring com-
piler framework SUIF 1 (Hall et al., 1996). Using
these transformations, we have investigated a space
composed by 13 transformations (selected by compiler
experts) combined into sequences of up to length 5 in-
cluding loop unrolling with unroll factors 1, 2, 3 and
4. We have not considered sequences that include re-
peated transformations, and also restricted loop un-
rolling to be applied only once, generating a total of
88214 transformation sequences, which we have ex-
haustively enumerated. It takes around 3 days to run
one benchmark over all these sequences.

The experiments were executed on a Texas Instru-
ments C6713 board, a high end floating point DSP
running at 225MHz with 256kB of internal memory.
The programs were compiled using the Texas Instru-
ments’ Code Composer Studio Tools Version 2.21 with
the highest -O3 optimization level. Table 1 shows some
statistics of the speed-ups obtained with the exper-
iments described above for each benchmark. These
results are important as they show that good im-

Table 1: Speed-ups statistics for the benchmarks used:
minimum, maximum, mean and standard deviation.
Those above the horizontal line are kernels, below ap-
plications.

Program Min Max Mean Std
fft 0.98 1.04 1.00 0.01
fir 0.84 1.84 1.31 0.31
iir 1.00 1.19 1.14 0.07
latnrm 0.80 1.00 0.93 0.06
lmsfir 0.29 1.00 0.72 0.21
adpcm 0.77 1.32 1.03 0.12
compress 1.00 1.64 1.28 0.25
edge 1.00 1.05 1.05 0.01
histogram 0.55 1.00 0.85 0.19
lpc 0.94 1.12 1.00 0.04
spectral 0.96 1.08 1.00 0.02

provements were obtained with the experiments and
that the data presents opportunities for learning. Fur-
ther, the speed-ups obtained are very encouraging in
the compiler community, as the compiler used on this
board is believed to produce high quality code for these
types of applications. Finally, it is important to re-
mark that there are transformation sequences that sig-
nificantly degrade performance (see for example lmsfir
and histogram). This motivates building a proxy that
can accurately predict performance speed-ups.

3.2 INPUT FEATURES

We use two different codings of the sequence of trans-
formations into the x-vector of features: a code-
features representation (C) and a transformation-
based representation (T). The code-features represen-
tation is obtained by computing features believed by
compiler experts to be informative about program per-
formance. These are based on three distinct met-
rics: code size, the total number of instructions ex-
ecuted and the parallelism existing among those in-
structions. For each of these metrics, a vector of high-
level machine-independent instructions is derived by
using the SUIF compiler infrastructure (Hall et al.,
1996). Our high-level instructions correspond to the
ones used by the SUIF Intermediate Representation
(IR). A total of 83 features were extracted per pro-
gram. These were reduced to 18 features using PCA,
retaining 95% of the variance. One advantage of the
code-features representation is that these features can
be extracted even if new code transformations are ap-
plied that have not been seen before.

In the training data we consider sequences of up to
length L = 5 using T = 13 possible transforma-
tions. One possible representation of transformation

sequences is to use a L × T -dimensional binary vec-
tor with bits set for the appropriate transformations
applied. However, given the constraints imposed in
our dataset, this will be a very sparse representation
of the input that may require a large amount of data
for training. Therefore, we have preferred a bag-of-
characters representation of length T where we simply
record if each transformation occurs in the sequence or
not. Clearly, this throws away the ordering informa-
tion within a sequence, and one might lose predictive
performance due to this loss of information.

3.3 TASK-SPECIFIC FEATURES

We define task-specific features by selecting a small
number of sequences and recording the corresponding
speed-ups on the given task. We will refer to this set
of sequences as canonical sequences and to their corre-
sponding speed-ups as canonical responses. We select
the set of canonical transformation sequences using the
technique of principal variables (McCabe, 1984).

Here (as in PCA) the dimensionality reduction prob-
lem is formulated as the linear mapping from a high-
dimensional vector (the speedups for all sequences) to
a lower dimensional one. However in this case the lin-
ear mapping simply copies some of the variables and
discards the rest, hence the term “principal variables”.
McCabe considers a number of different criteria for se-
lecting a subset of variables. Here we choose the set
of included variables S(1) so as to maximize |ΣS(1) |.
This may be interpreted as maximization of a Gaussian
approximation to the mutual information I(S(1); T)
which the retained variables S(1) contain about the
identity of the task T . (An alternative criterion is
to minimize tr(ΣS(2)|S(1)

) where S(2) denotes the set
of variables discarded.) As searching for the optimal
partition is computationally expensive, we follow the
suggestion in McCabe (1984) and use a greedy forward
selection strategy to select the subset.

As specified above, the canonical responses would be
extracted using all 88214 sequences on each of the
training problems. However, we have found that us-
ing canonical responses extracted from only 2048 ran-
domly selected sequences yields almost as good per-
formance as extraction from the larger set. In our
experiments we use 8 canonical variables.

The response-based approach is not the only one that
we can consider for defining task-specific features. For
instance we might describe each untransformed pro-
gram with code features (see section 3.2). However,
experimentally we have found that the response-based
method is superior.

3.4 RELATED COMPILERS WORK

Although performance predictors have been previously
proposed in the compilers literature, they are generally
constructed to be program-specific and do not gener-
alize across different benchmarks. (see e.g. Triantafyl-
lis et al. (2005) as a recent reference.) Further, even
if they can potentially be used for predicting perfor-
mance across programs, they rely heavily on expert-
knowledge of specific architectures (such as models
of cache behaviour) that are difficult to adapt to in-
creasingly complex architectures (see e.g. the work in
Karkhanis and Smith (2004)).

Recently, Bonilla et al. (2006) have proposed the con-
struction of predictive search distributions that facil-
itate the transfer of knowledge across different prob-
lem instances. They have applied this framework to
the problem of compiler optimization by modelling
good optimization sequences, i.e. sequences that lead
good speed-ups. However, they only used code fea-
tures from the untransformed program to define pro-
gram features. In this paper we are interested in the
more general task of modelling the actual performance
speed-ups, although our models can also be used for
finding transformation sequences that improve perfor-
mance.

4 EXPERIMENTS

Below we present results for both the combined and
gating methods, using either code features (C) or
transformations (T) as the representation for x.

We have used leave one out cross-validation (LOO-
CV) for evaluating the performance of our models, so
for each LOO-CV experiment there are M = 11− 1 =
10 reference tasks. Obviously it would be impractical
to have a system that relies on exhaustive training data
for making predictions. Therefore, we have sampled
the space of each benchmark and investigated different
sample sizes; below we report results for nr = 256
training points per benchmark.

Note also that in this set up the canonical sequences
were obtained in the LOO-CV framework, so that for
a given test task, the canonicals were extracted from
only the 10 reference tasks.

The measure of performance we have used is the mean
absolute error (MAE) computed over all 88214 exam-
ples in the test problem.

In addition to the data from the reference problems, we
also consider access to varying amounts of data from
the test problem. These points are chosen according
to the ordered list of the canonical sequences. A min-
imum of 8 canonicals are required so as to define the

task-specific features, but more can also be used, as de-
scribed in section 4.1 below. We have considered sizes
of nte = 8, 16, 32, 64 and 128 points from the test
problem. As our goal is to evaluate inter-task trans-
fer, we must also consider what performance can be
obtained using only these small amounts of test data.
To do this we use GP regression, and also consider a
simple baseline predictor based on the median1 of the
speed-ups on the nte canonical sequences. However,
as the choice of canonical sequences depends on the
reference problems, we also compare with the median
speed-up of all the sequences on each test problem.

4.1 REGRESSION MODELS

We have used Gaussian process regression (see, e.g.
Rasmussen and Williams (2006)) to model the speed-
ups, i.e. s(v) ∼ GP (0, C(v,v′)), where v denotes the
input representation used for each scenario. A squared
exponential covariance function with Automatic Rel-
evance Determination (ARD) and a noise term was
used:

k(vp,vq) = σ2
s exp

(
−1

2

∑
i

(vp
i − vq

i)2

l2i

)
+σ2

nδpq, (2)

where δpq is the Kronecker delta and the hyperparame-
ters, σ2

s , σ2
n and the length-scales li have been learnt by

maximizing the marginal likelihood of the data from
the reference problems and the nte test points. Predic-
tion with linear regression models was also tried, but
this gave inferior performance to the GPs.

For the “no transfer” case using only nte points from
the test problem there is a danger that the full ARD
model would involve too many parameters and thus
be in danger of overfitting. In this case for nte ≤ 64,
an isotropic covariance function (with all li’s tied) was
used instead of the ARD model. Experiments showed
that the performance of the isotropic-no-transfer GP
predictor was better than or equal to the ARD-no-
transfer model.

For the gating network we set

p(i|x,f) ∝ exp
{
−(αx‖µi − x‖2 + αf‖f − f i‖2

}
,
(3)

where µi ∈ R|x|, αx > 0 and αf > 0 are parame-
ters, and f i is the task-specific feature vector for task
i. Normalization is obtained by summing over all ref-
erence tasks. (Alternatively one could use a softmax
network with input vector z.)

The gating network is trained to maximize the con-
ditional likelihood of the training data (eq. 1) using

1The median is the optimal value to minimize mean
absolute error; the mean is optimal for mean squared error.

gradient-based methods. In addition to the data from
the M reference datasets, we also include the speed-
ups obtained on the canonical sequences of the new
task to train this network; here we have given the new
task equal weight to the other tasks, even though there
is less training data, so as to emphasize the importance
of the task-specific data.

In contrast to the conditional likelihood training of
mixture-of-experts models (Jacobs et al., 1991; Ras-
mussen and Ghahramani, 2002), our assumption is
that the experts pi(s|x) have been trained separately
from the gating network p(i|x,f). The intuition is
that by learning the parameters of the gating network
we can utilize the information about previously solved
related problems for solving new tasks, even when the
training data for the new task might be quite limited.
Note that our approach is also attractive computa-
tionally, as it allows us to quickly mix heterogeneous
experts without a need of expensive approximations.

5 RESULTS

Figure 2 shows results for the case when nte = 8, i.e. we
use a very small amount of data from the test problem.
The four methods T-combined, C-combined, T-gating
and C-gating are shown, along with the two baselines
median (of the 8 canonical responses) and median (of
all test data). Note that there are error bars on the
four transfer methods due to the random selection of
the nr = 256 training points from each of the refer-
ence problems; 10 repetitions were used to assess this
variability. The median of the test data gives the best
possible MAE for a given test problem without looking
at the x data; it defines a reference point but requires
all 88214 speed-ups to compute it, rather than the 8
which are available to the transfer methods (and me-
dian canonicals).

In Figure 2 we see the general trend that those prob-
lems with higher variability (as reflected in the stan-
dard deviation column in Table 1) generally have a
larger error. T-gating generally performs worse than
T-combined. For the code features representation, we
observe that C-gating generally performs better than
C-combined. The best performing transfer method
on average is T-combined. This gives some signifi-
cant improvements over the median predictors, partic-
ularly on problems compress, fir, histogram, latnrm,
and lmsfir, and gives similar performance to the medi-
ans for the other problems. Its average MAE perfor-
mance is 0.0576 compared to 0.1162 for the average of
the median canonicals. Note that Bakker and Heskes
(2003) only present results which are aggregated over
all tasks, rather than a more detailed decomposition
like the one given here.

ADP COM EDG FFT FIR HIS IIR LAT LMS LPC SPE AVG
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
M

A
E

[T] COMBINED
[T] GATING
[C] COMBINED
[C] GATING
MEDIAN CANONICALS
MEDIAN TEST

0.540
(0.007)

Figure 2: Mean absolute error (MAE) plotted on each of the 11 problems and the average, for the 4 methods
T-combined, C-combined, T-gating and C-gating and the two baselines median (canonical) and median (of all
test data). The error bars denote one standard deviation. The error bars for the averages are computed as the
average of the standard deviations over all 11 problems. Recall that C denotes the code-features representation
and T the transformations representation. For C-combined on LMS the MAE is 0.54, with standard deviation
of 0.007.

Figure 3 shows in more detail the performance of vari-
ous methods as a function of nte. It shows the per-
formance of the T-combined and two T-no-transfer
methods, along with the median (canonicals) base-
line for each of the 11 problems; the bottom right-
hand panel shows the averages. The T-no-transfer-
canonicals method uses a GP predictor trained on
only the nte canonical sequences; consequently there
are no error bars for these curves. In contrast T-no-
transfer-random is trained on a set randomly selected
datapoints of size nte. Generally the performance of
T-no-transfer-canonicals is superior to T-no-transfer-
random. The plots in Figure 3 reinforce the message
of Figure 2. They also show that for those problems
where transfer is significant, this advantage tends to
disappear when nte reaches higher values of around
128. However, note that for the compilers application
it is desirable to make as few runs as possible on the
test problem, so it is definitely the small nte values
that are most relevant in this case. Thus we can con-
clude that for the T-combined method transfer learn-
ing generally either improves performance or leaves it
about the same in comparison to the T-no-transfer-
canonicals method.

One reason why the gating network approach may be
limited is that as the component predictors are trained
on the individual reference tasks, it may not be ex-

pected to generalize well if the pattern of speed-ups
on the test problem is very different from those of the
reference problems. This might be overcome by joint
training of the component predictors and the gating
network, as in the mixture of experts architecture.

It is possible to quantify the amount of inter-task
transfer that is taking place when making predictions
for the T-combined setup. For a Gaussian process pre-
dictor the mean prediction for a test point z∗ is given
by s̄(z∗) = hT (z∗)s, where s is the vector of speedups
on the training tasks and h(z∗) is the weight function
(see e.g. Rasmussen and Williams 2006, sec. 2.6). If
we order the training points according to the task
they belong to, then h can be partitioned as hT (z) =
(h1

1, . . . , h
1
nr

, . . . , hM
1 , . . . , hM

nr
, hM+1

1 , . . . , hM+1
nte

) and
similarly for s, where the superscript identifies the
task, and task M + 1 is the test task, for which
we have only nte points. We can now measure the
contribution of task i for test point z∗ by computing
ri(z∗) = |hi(z∗)|/|h(z∗)|. Averaging ri(z∗) over
test points gives a summary measure r̄i for the
contribution of task i to the test problem. We prefer
this measure as compared to looking directly at
Kf (whose entries are [Kf]ij = kf (f i,f j)), as the
interpretation of Kf is complicated by the inversion
of the kernel matrix in GP prediction. Figure 4
shows the r̄ values for each of the test tasks, for

8 16 32 64 128
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16
ADPCM

TEST SAMPLES INCLUDED FOR TRAINING

M
A

E

[T] COMBINED
[T] NO TRANSFER RANDOM
[T] NO TRANSFER CANONICALS
MEDIAN CANONICALS

8 16 32 64 128
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
COMPRESS

TEST SAMPLES INCLUDED FOR TRAINING

M
A

E

[T] COMBINED
[T] NO TRANSFER RANDOM
[T] NO TRANSFER CANONICALS
MEDIAN CANONICALS

8 16 32 64 128
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
EDGE_DETECT

TEST SAMPLES INCLUDED FOR TRAINING

M
A

E

[T] COMBINED
[T] NO TRANSFER RANDOM
[T] NO TRANSFER CANONICALS
MEDIAN CANONICALS

8 16 32 64 128
0

0.02

0.04

0.06

0.08

0.1

0.12
FFT_256

TEST SAMPLES INCLUDED FOR TRAINING

M
A

E

[T] COMBINED
[T] NO TRANSFER RANDOM
[T] NO TRANSFER CANONICALS
MEDIAN CANONICALS

8 16 32 64 128
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
FIR_256_64

TEST SAMPLES INCLUDED FOR TRAINING

M
A

E

[T] COMBINED
[T] NO TRANSFER RANDOM
[T] NO TRANSFER CANONICALS
MEDIAN CANONICALS

8 16 32 64 128
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
HISTOGRAM

TEST SAMPLES INCLUDED FOR TRAINING

M
A

E

[T] COMBINED
[T] NO TRANSFER RANDOM
[T] NO TRANSFER CANONICALS
MEDIAN CANONICALS

8 16 32 64 128
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16
IIR_4_64

TEST SAMPLES INCLUDED FOR TRAINING

M
A

E

[T] COMBINED
[T] NO TRANSFER RANDOM
[T] NO TRANSFER CANONICALS
MEDIAN CANONICALS

8 16 32 64 128
0

0.02

0.04

0.06

0.08

0.1

0.12
LATNRM_32_64

TEST SAMPLES INCLUDED FOR TRAINING

M
A

E

[T] COMBINED
[T] NO TRANSFER RANDOM
[T] NO TRANSFER CANONICALS
MEDIAN CANONICALS

8 16 32 64 128
0

0.05

0.1

0.15

0.2

0.25

0.3
LMSFIR_32_64

TEST SAMPLES INCLUDED FOR TRAINING

M
A

E

[T] COMBINED
[T] NO TRANSFER RANDOM
[T] NO TRANSFER CANONICALS
MEDIAN CANONICALS

8 16 32 64 128
0

0.02

0.04

0.06

0.08

0.1

0.12
LPC

TEST SAMPLES INCLUDED FOR TRAINING

M
A

E

[T] COMBINED
[T] NO TRANSFER RANDOM
[T] NO TRANSFER CANONICALS
MEDIAN CANONICALS

8 16 32 64 128
0

0.02

0.04

0.06

0.08

0.1

0.12
SPECTRAL_ESTIMATION

TEST SAMPLES INCLUDED FOR TRAINING

M
A

E

[T] COMBINED
[T] NO TRANSFER RANDOM
[T] NO TRANSFER CANONICALS
MEDIAN CANONICALS

8 16 32 64 128
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

TEST SAMPLES INCLUDED FOR TRAINING

M
A

E

ALL BENCHMARKS

[T] COMBINED
[T] NO TRANSFER RANDOM
[T] NO TRANSFER CANONICALS
MEDIAN CANONICALS

Figure 3: Plots showing the performance of the T-combined and T-no-transfer methods and median (canonicals)
as a function of nte on all 11 problems. The bottom right panel shows the average performances. The error bars
denote one standard deviation.

ADP COM EDG FFT FIR HIS IIR LAT LMS LPC SPE

SPE

LPC

LMS

LAT

IIR

HIS

FIR

FFT

EDG

COM

ADP

Figure 4: Hinton diagram indicating the r̄ values for
each task. Each row corresponds to the r̄ values for
the test tasks labelled on the left. The order of the
tasks is adp, com, edg, fft, fir, his, iir, lat, lms, lpc, spe.

nr = 256 and nte = 8. We see that the contribution
from the test benchmarks is in general significant for
making predictions, considering that we have used
only nte = 8 test points. However, predictions are
also helped by the contribution of other tasks. For
example, predictions on fir rely heavily on training
data from benchmark compress. Similarly, predictions
on all benchmarks except histogram are only weakly
related to training data from benchmark lmsfir.

6 DISCUSSION

In this paper we have introduced two approaches for
using kernel machines for transfer learning with task-
specific features, the combined and gating methods.
We believe that it is useful to use kernel methods in-
stead of neural networks due to the difficulties asso-
ciated in training neural networks.

We have evaluated the performance of these methods
on a compiler performance prediction problem, using
two kinds of x-representation. The results have shown
the T-combined method to be the most effective, and
that it outperforms the same method without trans-
ference. We are currently investigating if the method
can be improved by incorporating ideas such as task-
specific noise levels, or more radically by considering
combined covariance functions that do not factor as
the product of kf and kx.

Acknowledgements

We thank Christophe Dubach and John Cavazos for
help in defining and extracting the code features, and
Kai Yu for helpful discussions. This work is supported
under EPSRC grant GR/S71118/01 and in part by the
IST Programme of the European Community, under
the PASCAL Network of Excellence, IST-2002-506778.
This publication only reflects the authors’ views.

References

Bakker, B. and Heskes, T. (2003). Task Clustering and
Gating for Bayesian Multitask Learning. Journal of Ma-
chine Learning Research, 4:83–99.

Bonilla, E. V., Williams, C. K., Agakov, F., Cavazos, J.,
Thomson, J., and O’Boyle, M. F. P. (2006). Predictive
Search Distributions. In ICML.

Caruana, R. (1997). Multitask Learning. Machine Learn-
ing, 28(1):41–75.

Cressie, N. A. C. (1993). Statistics for Spatial Data. Wiley,
New York.

Evgeniou, T., Micchelli, C. A., and Pontil, M. (2005).
Learning Multiple Tasks with Kernel Methods. Jour-
nal of Machine Learning Research, 6:615–637.

Goldstein, H. (2003). Multilevel Statistical Models. Hodder
Arnold.

Hall, M. W., Anderson, J.-A. M., Amarasinghe, S. P., Mur-
phy, B. R., Liao, S.-W., Bugnion, E., and Lam, M. S.
(1996). Maximizing multiprocessor performance with
the SUIF compiler. IEEE Computer, 29(12).

Jacobs, R. A., Jordan, M. I., Nowlan, S. J., and Hinton,
G. E. (1991). Adaptive Mixtures of Local Experts. Neu-
ral Computation, 3(1).

Karkhanis, T. S. and Smith, J. E. (2004). A first-order
superscalar processor model. In ISCA.

Lee, C. (1997). UTDSP benchmark suite.
http://www.eecg.toronto.edu/~corinna/.

McCabe, G. P. (1984). Principal variables. Technometrics,
26(2):137–144.

Minka, T. P. and Picard, R. W. (1999). Learn-
ing How to Learn is Learning With Point
Sets. http://research.microsoft.com/~minka/
papers/point-sets.html.

Rasmussen, C. E. and Ghahramani, Z. (2002). Infinite
Mixtures of Gaussian Process Experts. In Advances in
Neural Information Processing Systems 14.

Rasmussen, C. E. and Williams, C. K. I. (2006). Gaussian
Processes for Machine Learning. MIT Press.

Thrun, S. (1996). Is Learning the n-th Thing Any Easier
Than Learning the First? In NIPS 8.

Triantafyllis, S., Vachharajani, M., and August, D. I.
(2005). Compiler optimization-space exploration. The
Journal of Instruction-Level Parallelism, 7.

Yu, K., Chu, W., Yu, S., Tresp, V., and Xu, Z. (2007).
Stochastic Relational Models for Discriminative Link
Prediction. In Advances in Neural Information Process-
ing Systems 19.

Yu, K., Tresp, V., and Schwaighofer, A. (2005). Learning
Gaussian Processes from Multiple Tasks. In ICML.

