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Abstract : Consider a random function f with a separable (or tensor product) covariance
function, i.e. where x is broken into D groups (x1,x2, . . . ,xD) and the covariance function has
the form k(x, x̃) =

∏D
i=1 ki(xi, x̃i). We also require that observations of f are made on a D-

dimensional grid. We show how conditional independences for the Gaussian process prediction
for f(x∗) (corresponding to an off-grid test input x∗) depend on how x∗ matches the observation
grids. This generalizes results on autokrigeability (see, e.g. Wackernagel 1998, ch. 25) to D > 2.
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We consider Gaussian process regression or kriging (see e.g. Rasmussen and Williams,
2006). By way of notation let the dataset of input-output pairs be denoted by D =
{(x1, f1), . . . (xn, fn)}, where x is a p-dimensional vector and f is a scalar value. Let
k(x,x′) be a covariance (kernel) function. If the f ’s are noise-free observations of the
underlying function, then the prediction at a new, unobserved location x∗ has mean and
variance given by

f ∗ = kT
∗ K−1f

def
= αT

∗ f (1)

var(f∗) = k(x∗,x∗)− kT
∗ K−1k∗ (2)

where K is the n × n matrix with entries k(xi,xj), k∗ is the n × 1 vector with entries
k(xi,x∗), f is the vector (f1, . . . , fn)T , and α = K−1k∗.

Now let x be divided into D groups each of length `i, so that
∑D

i=1 `i = p and x =
(x1,x2, . . . ,xD). Note the difference between a superscript (denoting a group in x) and
a subscript (which denotes the name of an observed datapoint). A separable covariance
function has the form

k(x, x̃) =
D∏

i=1

ki(xi, x̃i). (3)

This might also be called a tensor product covariance function (see, e.g. Ritter, 2000,
section VI.2). One example of a separable covariance function is the squared exponential
(or Gaussian) covariance function

k(x, x̃) = exp(−
p∑

i=1

(xi − x̃i)2). (4)

In this case we can choose p groups each with length 1.
Let there be a group of observation locationsOi for each group i, withOi = {xi

1, . . . ,x
i
ni},

where ni is the number of observations in Oi. Let the observation locations in D be de-
fined by the grid O1 ⊗ O2 ⊗ . . . ⊗ OD. Now consider making a prediction at a test point
x∗ = (x1

∗,x
2
∗, . . . ,x

D
∗ ). Which datapoints in D will have non-zero weight (i.e. α coefficient)

will depend on whether xi
∗ ∈ Oi, for i = 1, . . . , D. We will say that xi

∗ matches Oi if
xi
∗ ∈ Oi. Wlog, we order the groups so that xi

∗ ∈ Oi, for i = 1, . . . , i∗, and xi
∗ /∈ Oi, for

i = i∗ + 1, . . . , D, i.e. it is the first i∗ groups that match. If a datapoint xj matches x∗ on
groups 1, . . . , i∗, then we say that datapoint xj matches x∗. (Note that if x∗ matches no
groups, i.e. it differs on all dimensions from the grid, then all datapoints match x∗.)

We can now state our first result:

Proposition 1 For a separable covariance function with a grid design it is only those
datapoints which match x∗ that will have non-zero weights.

Proof: The matrix K can be written as K = K1⊗· · ·⊗KD, where⊗ denotes the Kronecker
product, and Ki is the ni × ni matrix corresponding to the ith factor in the covariance
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function evaluated at the locations in Oi. Similarly k∗ = k1
∗ ⊗ · · · ⊗ kD

∗ . Then using the
identities (A⊗B)(C⊗D) = AC⊗BD, (A⊗B)−1 = A−1⊗B−1 and (A⊗B)T = AT ⊗BT

repeatedly we obtain

kT
∗ K−1 = (k1

∗)
T (K1)−1 ⊗ · · · ⊗ (kD

∗ )T (KD)−1. (5)

Now first consider a group where xi
∗ matches Oi. In this case (ki

∗)
T (Ki)−1 will give rise

to a unit row vector (0, . . . , 0, 1, 0, . . . , 0) with the 1 entry locating which of the entries
in Oi it is that xi

∗ matches. (This is easy to see as it is just one row from the identity
Ki(Ki)−1 = Ini

.) Thus all matched groups will give rise to such a unit vector in the
Kronecker products of eq. 5. For the unmatched groups there is no special structure and
those factors (kj

∗)
T (Kj)−1 for j = i∗+1, . . . , D cannot be simplified. However, it is precisely

the matching groups that give rise to our result as the Kronecker product of the unit vectors
selects exactly those observations in f that match x∗ according to our definition. Thus the
number of points with non-zero weight will be

∏D
j=i∗+1 nj.

Note that the predictive variance has the same dependence structure due to the presence
of the same factor kT

∗ K−1 in eq. 2.

Remark 1: This result is illustrated in Fig. 1(a) and Fig. 2. In Fig. 2(a) the test point
matches O1 and O2, so it is only the datapoints on dimension x3 that have non-zero weights
(shown with larger open circles). In Fig. 2(b) when the test point is moved to a general
position in the top layer, then it still matches against O1, but all datapoints in the top
layer have non-zero weight. In Fig. 2(c) illustrates the fact that a “grid design” may not
look completely grid-like. In this case dimensions x2 and x3 form the second (unmatched)
group x2, and the locations of the datapoints in this group can be arbitrary. However, note
that for every matched datapoint in the upper layer there is a corresponding datapoint in
the lower (unmatched) layer.

Remark 2: One extreme version of this result is when all groups match so that x∗ is equal
to one of the x’s in the training set; in this case (due to the noise-free observations) it is
only the corresponding f that counts. At the other extreme, when x∗ matches no groups
then all datapoints (in general) have non-zero weight.

Proposition 2 Proposition 1 still holds even if the non-matching points are only sparsely
observed wrt the grid.

Proof: A simple proof comes from the fact that even if the non-matching points on the
grid were fully observed they would not have any effect on the prediction of f(x∗). There
should be no difference between not observing a f -value at an unmatched grid point and
observing a f -value there but then giving it zero weight.

Remark 3: This result is illustrated in Fig. 1(b), where non-matching datapoints have
been thinned. However, Fig 1(c) illustrates that this thinning cannot be carried out on
the matched points. Here the matched point at (x1

2, x
2
2) has been removed and this means

that all datapoints now have non-zero weight. The sparsely-observed grid design could be
restored by deleting datapoints (x1

1, x
2
2) and (x1

3, x
2
2).
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Figure 1: The observed data points are shown as black circles, and the test point is shown
with an small open circle. Panel (a): The test point matches x1

2 but not O2 so it is
the datapoints indicated with a large open circles that have non-zero weights. Panel (b)
illustrates the fact that unobserved datapoints in the grid do not change the result if
they are unmatched. Panel (c) illustrates the crucial importance of a grid design for our
results; if the matched point at (x1

2, x
2
2) is removed from panel (b), then the conditional

independence no longer holds and all datapoints have non-zero weight.
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Figure 2: A 3-dimensional set up. The observed data points are shown as black circles,
and the test point is shown with an small open circle. Panel (a): The test point matches
O1 and O2, so it is only the datapoints on dimension x3 that have non-zero weights; these
are shown with larger open circles. Panel (b): When the test point is moved to a general
position in the top layer, then it still matches against O1, but all datapoints in the top
layer have non-zero weight. Panel (c) illustrates the fact that a “grid design” may not look
completely grid-like. In this case dimensions x2 and x3 form the second (unmatched) group
x2, and the locations of the datapoints in this group can be arbitrary. However, note that
for every matched datapoint in the upper layer there is a corresponding datapoint in the
lower (unmatched) layer.

Related Work

These results are known in the geostatistics literature for the case of D = 2 groups under
the name of autokrigeability (Wackernagel, 1998, ch. 25). Here the set up is cokriging,
where there is a m-variate stochastic process Y(x) = (Y 1(x), . . . , Y m(x))T , where x is (say)
a spatial variable and Y i(x) denotes the ith variable at location x. (We might imagine
measuring the concentration of minerals bearing copper, lead and zinc as the different
variables.) The proportional correlation model defines the covariance cov(Y i(x), Y j(x′)) =
Vijk(x,x′), where Vij is the i, jth element of a positive definite matrix V . This is equivalent
to the separable covariance function defined above if we let x here be x1 and consider only
a discrete set of m locations for x2. Under the proportional correlation model it is known
that autokrigeability holds for isotopic data, i.e. if all variables are measured at the same
sample locations then the prediction of Y i(x∗) depends only on the observations of Y i and
not on the other Y j’s with j 6= i (Wackernagel, 1998, ch. 25).

O’Hagan (1998) defines the symmetric Markov property as

k((x1,x2), (x̃1, x̃2)) k((x1, x̃2), (x1, x̃2)) = k((x1,x2), (x1, x̃2)) k((x1, x̃2), (x̃1, x̃2)) (6)

for all x1, x̃1 ∈ O1 and for all x2, x̃2 ∈ O2. He then shows that the symmetric Markov
property holds if and only if the covariance structure of the random variables f(x1,x2)
has a Kronecker product form. This property also states that f(x1

i ,x
2
j) is independent of

f(x1
i′ ,x

2
j′) given either f(x1

i′ ,x
2
j) or f(x1

i ,x
2
j′), for i′ 6= i and j′ 6= j. Taking Figure 1(a) as
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an example, we have that f(x1
2,x

2
∗) is independent of f(x1

i ,x
2
j) given f(x1

2,x
2
j), for i = 1, 3,

j = 1, 2, 3, 4; independence is made evident by the location of the zero-weights. Note that
the symmetric Markov property is defined only wrt the case of two groups, i.e. D = 2.

Discussion

Our interest in this area came about from considering a multi-task learning problem,
where k1(x1, x̃1) models similarity corresponding to inputs x1 and x̃1, while x2 is a task
descriptor, so that k2(x2, x̃2) models the similarity between tasks. We initially rediscovered
the autokrigeability result, which in that context means that given a grid design, for
prediction on task i there is no benefit on making observations on task j 6= i, and then
generalized it for D > 2.

Note that if the observations are noisy, these independence results will fail to hold and
all datapoints will contribute to the prediction of f∗.
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