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Abstract

Williams and Titsias (2004) have shown how to carry out
unsupervised greedy learning of multiple objects from im-
ages (GLOMO), building on the work of Jojic and Frey
(2001). In this paper we show that the earlier work on
GLOMO can be greatly speeded up for video sequence data
by carrying out approximate tracking of the multiple objects
in the scene. Our method is applied to raw image sequence
data and extracts the objects one at a time. First, the mov-
ing background is learned, and moving objects are found at
later stages. The algorithm recursively updates an appear-
ance model of the tracked object so that possible occlusion
of the object is taken into account which makes tracking sta-
ble. We apply this method to learn multiple objects in image
sequences as well as articulated parts of the human body.

1. Introduction
We are given as input a set of images containing views of
multiple objects, and wish to learn appearance-based mod-
els of each of the objects. Over the last decade or so a
layer-based approach to this problem has become popular,
where each object is modelled in terms of its appearance
and region of support, see e.g. Wang and Adelson (1994),
Irani et al. (1994). Jojic and Frey (2001) provided a princi-
pled generative probabilistic framework for this task, where
each image must be explained by instantiating a model for
each of the objects present with the correct instantiation pa-
rameters. A major problem with this formulation is that
as the number of objects increases, there is a combinato-
rial explosion of the number of configurations that need
to be considered. If there are

�
possible objects, and that

there are � possible values that the instantiation parame-
ters of any one object can take on, then we will need to
consider �������	� combinations to explain any image. Jo-
jic and Frey (2001) tackled this problem by using a varia-
tional inference scheme, searching over all instantiation pa-
rameters simultaneously. In contrast, Williams and Titsias
(2004) developed a sequential approach to object discov-
ery whereby each model is extracted in turn from the whole
dataset using a robust statistical method. We denote this lat-

ter method greedy learning of multiple objects from images,
or GLOMO. A fuller description of the GLOMO framework
is given in section 2.

Both the method of Jojic and Frey (2001) and the
GLOMO algorithm work on unordered sets of images. In
this case training can be very slow as it is necessary to
search over all possible instantiation parameters of at least a
single object (in the GLOMO case) on every image. How-
ever, for video sequences we could considerably speed up
the training by first tracking the objects before knowing
their full structure. Tracking can approximate the underly-
ing sequence of transformations of an object in the frames
and thus learning can be carried out with a very focused
search over the neighborhood of these transformations or
without search at all when the approximation is accurate.
We have developed an algorithm that works in conjunc-
tion with the GLOMO method so that the stage where
the GLOMO algorithm learns an object (by assuming un-
ordered images) is now speeded up by applying first track-
ing and then learning based on a focused search. First,
the moving background is tracked and learned, and moving
foreground objects are found at later stages. The tracking
algorithm itself recursively updates an appearance model of
the tracked object so that occlusion is taken into account and
approximates the transformations by matching this model
to the frames through the sequence. This provides accu-
rate transformations, e.g. in the experiments in section 5,
we learn the objects without search by using only the trans-
formations found by the tracking algorithm and obtain good
results. Updating a model of the tracked object in a robust
way enables also the algorithm to recover when it loses the
track e.g. due to occlusion of the object.

A second contribution of this paper is that we learn ar-
ticulated parts of the human body from video data using
unsupervised learning. We apply the same algorithm for
learning multiple objects in order to learn articulated parts,
so that the parts are first tracked and then have their full
structure learned. In section 5 we assume that parts can un-
dergo translations and rotations and we extract three parts
(the two arms and the head/torso) from a video sequence of
the upper body.

The structure of the remainder of the paper is as follows:
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In section 2 we describe the method of greedy learning of
multiple objects. In section 3 we discuss the training algo-
rithm based on tracking. Section 4 discusses unsupervised
learning of parts and section 5 gives experimental results.
We conclude with a discussion in section 6.

2. Greedy Learning of Objects
We consider a 
���
�
	� image as a vector � of length 
 ,
where 
���
 � 
 � . Let there be

�
foreground objects in

front of a background. Our goal is to learn an appearance
model ��� and a mask ��� for each object � , and an appear-
ance model � for the background. Note that ��� and ��� are
 -length vectors while � can be larger than the data im-
age size if there is camera motion during the sequence. The
mask defines the extent or support of each object: each en-
try in the mask � � takes on a value in � � �"!$# which indicates
the probability that this pixel is part of the � th object. (The
background does not need a mask as it is taken to be the vec-
tor of ones.). Each object can undergo some transformation
operations, such as translation, rotation, scaling etc., so we
introduce a transformation variable % � for each object with
a transformation matrix &('*) so that e.g. &('*)+��� is the trans-
formed appearance of the � th object. We consider also the
case where the background can move, for example when a
moving camera captures a sequence of frames, so there is
also a transformation %-, . A static background is a special
case of the moving background.

Below we first describe the generative model for multi-
ple objects and then discuss how we can tractably train this
model by using a greedy learning algorithm that extracts the
objects one after the other. The description in this section
largely follows Williams and Titsias (2004).

2.1. Generative model for multiple objects
We first consider the case when there is only one foreground
object with appearance � and mask � . Ignoring for a mo-
ment the effect of transformations we would have. �0/213�4�65(1 .87 �0/21:9<;-1*�>=?�@!BAC521�� . ,D�E/(1@9+FG1�� (1)

where . 7 �E/ 1 9+; 1 �H� IJ�E/ 1 9+; 1 �<KML7 � and . , �E/ 1 9<F 1 �N�IO�E/(1@9+FG1P�<KML, � where IO�E/	9@QR�:K�LD� denotes a Gaussian distri-
bution over / with mean Q and variance K>L . Now assume
that the transformation space for the foreground object has
been discretized to � 7 values, indexed by % 7 . Application
of this transformation to the mask gives a transformed mask& '@S � , and similarly for � . Similarly the background trans-
formation can take on � , values indexed by % , . Thus

. �E�4T % 7 �*%U,+�V� WX1ZY	[ �\�E&2' S ���P1 .(7 �E/21:9"�0&2' S �U�P13�:=�P]^A_& 'PS ��� 1 . , �E/ 1 9"�0& '�` �R� 1 �3#3� (2)

where ] denotes the vector with ones. The likelihood of an
image � is . �0�>�a�cbed S'PSfY	[ b d `' ` Yg[ 
 '@S 
 '�` . �E�4T % 7 �3% , � where
M'P` and 
�'PS are uniform prior probabilities.

The above generative model assumes one foreground
and one background layer, however it can be easily ex-
tended to include

�
foreground objects assigned to

�
depth

layers, see Williams and Titsias (2004) for more details.
Given a data set h"�>i(j , kl�m!n�fofo"o$�:I we can adapt the

parameters pq�r�0�@[-�:�s[t�:KML[ �fo"ofof�<� � �@� � �:KML� �@�u�:KML, � by max-
imizing the log likelihood

� �Epv�w� byxi Yg[(zZ{n| . �0��i>T pn� us-
ing the EM algorithm. However, an exact EM algorithm
requires a search over � �7 � , possibilities which is infeasi-
ble even in case of a single foreground object and a mov-
ing background, and gets exponentially worse as more ob-
jects are added. To deal with this problem Jojic and Frey
(2001) used a variational inference scheme, searching over
all instantiation parameters simultaneously. In contrast the
greedy training algorithm of Williams and Titsias (2004)
(described below) deals separately with each transformation
by learning first the background and then the foreground ob-
jects.

2.2. Learning the background
At this stage we consider images containing a background
and many foreground objects. However, we concentrate on
learning only the background and regarding the foreground
objects as outliers (at this stage). This goal can be achieved
by robustifying the background model described above so
that occlusion can be tolerated.

For a background pixel, the foreground objects are in-
terposed between the camera and the background, thus per-
turbing the pixel value. This can be modelled with a mix-
ture distribution as . , �E/ 1 9+F 1 �O�~} , IO�0/ 1 9<F 1 �:KML, �s=��@!�A} , �:���E/ 1 � , where } , is the fraction of times a background
pixel is not occluded and the robustifying component ���E/ 1 �
is a uniform distribution common for all image pixels.
When the background object pixel is occluded it should be
explained by the uniform component. Such robust models
have been used for image matching tasks by a number of
authors, notably Black and colleagues (Black and Jepson,
1996).

The background can be learned by maximizing the log
likelihood

� , � b xi Y	[(z\{�| b '�` 
 '�` . �E��i�T % , � where

. �0�4T % , �V� WX1ZY	[ . , �E/ 1 9D�E& '�` �R� 1 � (3)

and . ,"�E/(1@9D�E&2' ` �R�P13� has been robustified as explained above.
The maximization of the likelihood over �E�u�:K>L, � can be
achieved by using the EM algorithm and searching over � ,
transformations of the background. For example, the update
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equation of the background � is

��� x�i Y	[ d `�' ` Y	[ 
��\% , T � i �f� &��'�` �E� i �Z% , �>�a� i ��#*o��
x�i Y	[ d `�'P`�Y	[ 
��Z% , T � i �f� &��'�` � i �Z% , �3#3� (4)

where ����� and �4o��t� denote the element-wise product and
element-wise division between two vectors � and � , respec-
tively. In (4) the quantity 
��\% , T �>� is the posterior probabil-
ity of the transformation given the image � and the vector���\% , � stores the value� 1 �Z% , �4� } , IO�E/ 1 9D�E& '�` �R� 1 �:K L, �}�,<IO�E/(1@9D�E&2'�`<�R�P1:�:K L, �>=e�P!BAC}g,+�:���E/213� (5)

for each image pixel � , which is the probability that the �*�@�
image pixel is part of the background (and not some outlier
due to occlusion) given % , .

The update for the background appearance � is very in-
tuitive. For example consider the case when % , represents
translations and for the training image �	i�
��Z% , T ��i��V��! for% , ��%vi, and � otherwise. For pixels which are ascribed to
non-occluded background (i.e. � i1 �Z%vi, �^��! ) the values of��i are transformed by & �':�` which maps the 
g��
�
	� image��i into a larger image of the size of � so that �	i is located
in the position specified by %�i, and the rest of image pixels
are filled with zero values. Thus, the non-occluded pixels
found in each training image are located properly into the
big panorama image and averaged to produce � .

2.3. Learning the foreground objects
Imagine that the background � and the most probable trans-
formations h+%�i, j in all training set images are known. What
we wish to do next is to learn the first foreground object and
ignore the rest objects (at this stage).

Since multiple objects can exist in our images, a dif-
ferent object from the one being modelled may be inter-
posed between the foreground object we model and the
camera, so that we again have a mixture model . 7 �E/ 1 9+; 1 �4�} 7 IO�E/ 1 9+; 1 �<KML7 �G=��P!�A�} 7 �:���0/ 1 � where } 7 is the fraction of
times a foreground pixel is not occluded. Having made this
robustification, the model described with one foreground
object plus a background (which is already known) can be
trained using EM and maximizing (7) with respect to only
this object.

A second foreground object is learned by removing those
pixels explained by the first foreground object. On image��i we infer transformation %�i[ , and at pixel � we obtain the
posterior probability (or responsibility)� i1 �Z% i[ �4� } 7 IO�E/(i1 9"�0&�' �� ��[f�P1:�:KML[ �} 7 IO�E/ i1 9"�0&2':�� �P[$�P1:�:K L[ �>=e�P!BA�} 7 �:���E/ i1 � � (6)

and compute �>i[ ���E& ':�� � [ ���g�-i��\%ni[ � . �Mi[ will roughly give
values close to ! only for the non-occluded object pixels
of image ��i , and these are the pixels that we wish to re-
move from consideration. Thus we construct a re-weighted
objective function involving � i [ and run the robust learn-
ing again. This procedure is then repeated, removing more
pixels as more objects are learned.

Formally the greedy algorithm maximizes a lower bound
on the log likelihood of the full layer-based probabilistic
generative model for images with multiple objects. The
algorithm is described in detail in Williams and Titsias
(2004); below we provide a summary.

1. Learn the background and infer the most probable
transformation %�i, for each image �>i .

2. Initialize the vectors �vi  �c] for k���!n�fofo"o$�:I .

3. For �B��! to
�

(a) Learn the �$¡0¢ object parameters hD�*�"�:�a�D�:KML� j by
maximizing £>� (see equation (7)) using the EM
algorithm.

(b) Infer the most probable transformation h+% i� j and
update the weights �ni� �¤��i�<¥M[ ���@]qA���i� � where�>i� is computed as described above.

where

£ � � x�i Y	[ d S�'3)�Y	[ ¦ i �\% � �-
§ W� 1\Y	[ �0� i�<¥M[ �P1 zZ{n| �\�E&2' ) ���+�@1 .87 ) �E/(1:9D�E&2' ) ���+�@1*�=e�P]¨A�&2' ) ���+�@1 . ,f�0/21:9"�E&2' �` �R�P13�3#(A z\{�| ¦ i �Z%f�+�D©go (7)

During the optimization of £ � , ¦ iM�Z% � � is proportional toª$«­¬ of the quantity in braces hnj in equation (7) (not includ-
ing the A zZ{n| ¦ iM�Z% � � term), normalized to sum to one. This
optimization is carried out by EM where in the ® -step the
quantities, ¦ iM�\% � � , �-i��Z% � � and ¯DiM�Z% � � are computed, and in
the ° -step we update the parameters �E� � �:� � �:KML� � . ¯"iM�\% � �
stores the values ± i1 �Z% � � given by�0& '3) 5 � � 1 . 7 ) �E/ i1 9"�0& '3) � � � 1 ��E&2'*)<���+�@1 .87 )U�E/ i1 9"�0&�'3)<���G�P13�>=?�@]¨A�&�'3):���G�P1 . ,"�E/ i1 9"�0&�':�` ���@1�� o
For example the updates of � � and � � are

� � � x�i Y	[ d S�' ) Y	[ ¦ i �\% � ��&²�'3) � � i�<¥M[ �u¯ i �Z% � ��#*o��x�i Y	[ d S�'3)3Yg[ ¦ i �\%$�G�$� & �' ) � i�:¥�[ #3� (8)
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���u� x�i Yg[ d S�'*)�Y	[ ¦ i �Z%f�G��&��'*) � � i�:¥�[ �u¯ i �\%f�+�>�a� i �Z%f�$���a� i #3o��x�i Y	[ d S�'*)PY	[ ¦ i �Z% � ��&��'*) � � i�<¥M[ �u¯ i �\% � �>�a� i �Z% � �3#3o (9)

The above updates are very intuitive. Consider, for ex-
ample, the �$¡0¢ appearance model � � when ¦ i(�\% � �e�³!
for % � �´%vi� and � otherwise. For pixels which are as-
cribed to the �f¡0¢ foreground and are not occluded (i.e.�0��i�<¥M[ ��¯"i8�\%ni� �>�a�-i��Z%vi� �@� 1 �r! ), the values in ��i are trans-
formed by & �':�) . This removes the effect of the transforma-
tion and thus allows the foreground pixels found in each
training image to be averaged to produce �3� .
3. Speed-up using tracking
In this section we present a robust tracking algorithm
that applies to a sequence of frames �0� [ �fo"ofof�:� x � and
approximates the corresponding set of transformations�Z% [ �"ofofo"�*% x � that describe the motion of a single object.
The algorithm is combined with the GLOMO method so
that we track and learn all the differently moving objects
sequentially. We start by tracking the background, while
the foreground objects are ignored (using robust statistics)
at this stage. Once the transformation of the background in
all frames has been approximated we learn its full structure
through a focused search. Note that this procedure simply
replaces the step 1 of the greedy algorithm. Given that we
know the background enables us to track and learn fore-
ground objects, so that step 3(a) of the greedy algorithm is
modified suitably.

Section 3.1 discusses how we can track the background
while section 3.2 describes tracking of the foreground ob-
jects. In Section 3.3 we discuss related work.

3.1. Tracking the background
We wish first to track the background and ignore all the
other motions related to the foreground objects. To intro-
duce the idea of our tracking algorithm assume that we
know the appearance of the background � as well as the
transformation % [, that associates � with the first frame.
Since motion between successive frames is expected to be
relatively small we can determine the transformation %­L, for
the second frame by searching over a small discrete set of
neighboring transformations centered at % [, and inferring the
most probable one (i.e. the one giving the highest likelihood
(3), assuming a uniform prior). This procedure can be ap-
plied recursively to determine the sequence of transforma-
tions in the entire video.

However, the background � is not known in advance,
but we can still apply roughly the same tracking algorithm
by suitably initializing and updating the background � as

we process the frames. More specifically, we initialize �
so that the centered part of it will be the first frame � [ in
the sequence. The rest values of � take zero values and
are considered as yet not-initialized which is indicated by a
mask µ of the same size as � that takes value ! for initial-
ized pixels and � otherwise. The transformation of the first
frame % [, is the identity, which means that the first frame
is untransformed. The transformation of the second frame
and in general any frame �a=�! , ��¶·! , is determined by
evaluating the posterior¸ �Z% ¡E¹ [, �Vº ª$«­¬�» W� 1ZYg[ �0& ':¼\½ �` µ ¡ � 1 zZ{n| . , �E/ ¡E¹ [1 9"�E& ':¼¾½ �` � ¡ � 1 �t¿

(10)
over the set of possible % ¡E¹ [, values around the neighbor-
hood of %v¡, . Note that the quantity in the ª$«­¬ hnj in (10) is
similar to the log of the likelihood (3) with the only differ-
ence that pixels of the background that are not initialized
yet are removed from consideration. Once we know % ¡E¹ [,
we use all the frames up to the frame �>¡E¹ [ to update � ac-
cording to

� ¡E¹ [ � ¡E¹ [�
i Y	[ � &��':�` �E� i �\% i, ���a� i �3#3o�� ¡E¹

[�
i Y	[ � &²�':�` � i �\% i, ��#*o (11)

where the � i �Z% i, � vectors have been updated according to
(5) for the old value ��¡ of the background. Notice that
the above update is given by equation (4) in the GLOMO
method, by considering only the first �V=À! frames as the
training data and assuming that the found transformation
values hG% [, �"ofo"of�*% ¡E¹ [, j take all the probability ( 
��Z% 1, T � 1 �¨�! , �4�Á!��"ofofof�@�>=e! ). The mask µ is also updated so that it
always indicates the pixels of � that are explored so far.

As we process the frames the background � is adjusted
so that any occluding foreground object is blurred reveal-
ing the background behind it. Having tracked the back-
ground we can then learn its full structure assuming a fo-
cused search over the neighborhood of the approximated
transformations.

3.2. Tracking the foreground objects
Assume that the background is now known. The pixels
which are explained by the background in each image �	¡
are flagged by the background responsibilities �t¡$�\%�¡, � (com-
puted by equation (5)). Clearly the mask � ¡ �Z%n¡, �4�c]8As�U¡$�Z%n¡, �
roughly indicates all the pixels of frame � ¡ that belong to
the foreground objects. By focusing only on these pixels we
wish to start tracking one of the foreground objects through
the entire video sequence and ignore for the moment the rest
foreground objects.

Our algorithm tracks the first object by simultaneously
updating its mask � [ and appearance � [ . The mask and the
appearance are initialized so that � [ �ÃÂ�o�Ä�� � ¡ �Z%n¡, � and
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� [ �Å� [ , where Â�o�Ä denotes the vector with � o�Æ values1.
Due to this initialization we know that the first frame is un-
transformed, i.e. % [[ is the identity transformation. To deter-
mine the transformation of the second frame and in general
the transformation % ¡E¹ [[ , with �Ç¶À! , of the frame � ¡E¹ [ we
find the most probable value of % ¡E¹ [[ according to the poste-
rior

¸ �Z% ¡E¹ [[ �Vº ªf«­¬ h W� 1\Y	[ �EÈ ¡E¹ [[ � 1 z\{�| �\�E& ':¼¾½ �� � [ � 1 
.(7 �0/ ¡E¹ [1 9"�0& ':¼\½ �� �P["�P13�D=��@]�A¨& ':¼\½ �� �²[f�P1<�P!(Aq}g,<�:���E/ ¡E¹ [1 ��#�j
(12)

where È ¡E¹ [[ � � ¡E¹ [ �\% ¡E¹ [, � . ¸ �Z% ¡E¹ [[ � measures the good-
ness of the match at those pixels of frame �>¡E¹ [ which are
not explained by the background. Note that as the ob-
jects will, in general, be of different sizes, the probability¸ �\% ¡E¹ [[ � over the transformation variable will have greater
mass on transformations relating to the largest object. Re-
call that . 7 �E/ ¡E¹ [1 9D�E& ':¼¾½ �� � [ � 1 � includes an outlier component
so that some badly misfit pixels can be tolerated.

Once we determine % ¡E¹ [[ we update mask and appear-
ance ��[ and �P[ . These updates are similar to those given
by (8) and (9), with the only difference that we use only the
first �a=r! frames and the approximate transformations to
obtain posterior probabilities 
��Z%�¡[ T �M¡@�Ç�m! . Note that the
updates are robust to occlusion (because of the semantics
of � i �\% i[ � ) so that occlusion of the tracked object can be
tolerated. This makes tracking reliable even for the video
frames the object is occluded. Note also that as the frames
are processed tracking becomes more stable since � [ ap-
proximates the mask of a single object and the � [ will con-
tain a sharp and clear view for only the one object being
tracked while the rest of the objects will be blurred. See
Figure 1 for an illustrative example.

Once this first object model has been learned we can go
through the images to find which pixels are explained by
this model, and update the � vector accordingly as explained
in section 2. We can now run the same tracking algorithm
again by updating È ¡� ¹ [ ( ��¶�! ) as by È ¡� ¹ [ �É� ¡� ��È ¡�
which allows tracking a different object on the ��=�! th it-
eration. Note also that the new mask � � ¹ [ is initialized toÂ�o�Äq�BÈ�¡� ¹ [ while the appearance � � ¹ [ is always initialized
to the first frame � [ .
3.3. Related Work
There is a huge literature on motion analysis and tracking
in computer vision, and there is indeed much relevant prior
work. Note that our goals are to extract appearance models

1The value of 0.5 is chosen to express our uncertainty about whether
these pixels will ultimately be in the foreground mask or not.

from a whole sequence of images, rather than, say, to carry
out motion segmentation from just a pair of images.

In terms of layer-based models, Wang and Adelson
(1994) showed how to cluster optical flow vectors into lay-
ers using affine motion models, and Ê -means clustering.
They then built this information up into layer models us-
ing inverse warping and median filtering. The method of
Irani et al. (1994) also uses optical flow information, but
subtracts out motions sequentially. The representation of a
tracked object develops though time, although they do not
take into account issues of occlusion, so that if a tracked ob-
ject becomes occluded for some frames, it may be lost. The
major limitation of optical-flow based methods concerns re-
gions of low texture where flow information can be sparse,
and when there is large inter-frame motion.

The work of Tao et al. (2000) is also relevant in that it
deals with a background model and object models defined
in terms of masks and appearances. However, note that
the mask is assumed to be of elliptical shape (parameter-
ized as a Gaussian) rather than a general mask. The mask
and appearance models are dynamically updated. However,
the initialization of each model is handled by a “separate
module”, and is not obtained automatically. For the aerial
surveillance example given in the paper initialization of the
objects can be obtained by simple background subtraction,
but that is not sufficient for the examples we consider. Later
work by Jepson et al. (2002) uses a polybone model for
the support instead of the Gaussian, but this still has lim-
ited representational capacity in comparison to our general
mask. Jepson et al. also use more complex tracking meth-
ods which include the birth and death of polybones in time,
as well as temporal tracking proposals.

The idea of focusing search when carrying our
transformation-invariant clustering has also been used be-
fore, e.g. by Fitzgibbon and Zisserman (2002) in their work
on automatic cast listing of movies. However, in that case
prior knowledge that faces were being searched for meant
that a face detector could be run on the images to produce
candidate locations, while this is not possible in our case as
we do not know what objects we are looking for apriori.

As well as methods based on masks and appearances,
there are also feature-based methods for tracking objects in
image sequences, see e.g. Torr (1998), Wills et al. (2003).
These attempt to track features through a sequence and clus-
ter these tracks using different motion models. We believe
that these methods are of considerable interest, particularly
when combined with new ideas on features that are sta-
ble to various transformations such as scaling and rotation
(Lowe, 2003). However, preliminary work on our example
sequences (see below) suggests that it is difficult to obtain
the long tracks of features through a sequence that are re-
ally needed to make this method work well; it is hard to
“tie together” short, broken tracks into objects. This may
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well be different for other image sequences, e.g. of moving
man-made objects rather than people.

4. Learning about Parts
For the recognition of complex objects that contain sev-
eral parts that can take on different configurations relative
to each other, it has long been recognized that a strategy
based on the recognition of the individual parts and their
relationships is likely to be advantageous; see e.g. Bieder-
man (1987) on recognition-by-components. Much work in
computer vision along this track uses manually identified
parts; recent examples of such work are Felzenszwalb and
Huttenlocher (2000) and Schneiderman and Kanade (2004)
which consider people and cars, and faces and cars respec-
tively. In contrast we are interested in learning parts from
data. Much less work has been done on this topic, but some
specific contributions are discussed below in section 4.1.

Although it is possible to use clues from single images
to break up objects into parts, the view we take in this paper
is that if two putative parts do not vary their relative rela-
tionship throughout the dataset we regard them as a single
part. Here we focus on articulated objects (e.g. a human
body) where the decomposition into parts is intuitive and
clear cut.

4.1. Related Work
Perona and co-workers have developed important work on
unsupervised learning of objects and parts through a series
of papers. Their general approach (as described in Weber
et al., 2000) is as follows: First an interest operator is used
to locate keypoints, then graylevel descriptors of these key-
points are extracted. These features are then clustered to
give a number of “part” types; note that there can be sev-
eral detections of a given part type in a given image. A
model is then built that puts some number of part types in
particular spatial relationships. The learning of this model
is slow as one has to deal with the combinatorics of the as-
signment of all part type detections in an image to the part
types in the model. Note that in the end the model only
prescribes the feature appearance at certain locations in the
image, and does not provide a full appearance model of the
object. However, an important aspect of this work is that
object classes (e.g. cars) can be learned, not just specific
objects.

Shams and von der Malsburg (1999) have also developed
a method for learning parts by matching images in a pair-
wise fashion, trying to identify corresponding regions in the
two images. These candidate image patches were then clus-
tered to compensate for the effect of occlusions. We make
the following observations on their work: (i) in their method
the background must be removed otherwise it would give
rise to large match regions; (ii) their data (although based

on realistic CAD-type models) is synthetic, and designed
to focus learning on shape related features by eliminating
complicating factors such as background, surface markings
etc.

Lee and Seung (1999) described a non-negative matrix
factorization method to tackle part decompositions. How-
ever, this interesting work does not deal with the problem
of parts undergoing transformations, and so could not ex-
tract the kinds of parts found by our method.

5. Experiments
We demonstrate our method on two video se-
quences: the Frey-Jojic (FJ) sequence available from
http://www.psi.toronto.edu/layers.html
and a human upper body sequence.

In terms of computational time, the GLOMO method re-
quires ���P�MI_°�� operations per learning an object, where� is the number of transformations, I the number of frames
and ° the number of EM iterations needed for conver-
gence. Here one operation consists of computing . ,"�E/21:9<F$1��
or .(7 �E/(1@9+;-13� for all image pixels. The algorithm using
tracking needs roughly ���0ËD[fI¤=�IÌL8=�Ë L I_° L � operations
per pixel, where ËD[ is the number of transformations con-
sidered for searching to find the transformation of the next
frame as we track the object through the sequence, Ë L is
the number of transformations of the focused search in the
learning stage, and ° L is the corresponding number of EM
iterations. The IÍL term is due to updates of the mask and
appearance during tracking, since at each time we consider
all the so far processed frames. Notice that � 7^Î Ë [ �4Ë L so
the tracking algorithm should enjoy considerable speedups.

The FJ sequence consists of 44 !�!DÏw
�Ð-ÑvÏ images (ex-
cluding the black border); it was also used by Williams
and Titsias (2004) in their experiments. The results in Fig-
ure 1(bottom) were obtained using a !DÆÌ
?!DÆ window of
translations in units of one pixel during the tracking stage
( Ë [ �ÃÐ�ÐnÆ ) and a !�
?! window ( Ë L �Ò! ), i.e. without
search, around the approximated location during the learn-
ing stage. This learning stage requires EM which converged
in about ° L �rÓ�� iterations. Figure 1 also shows the evo-
lution of the initial mask and appearance ( �^�É! ) through
frames 10 and 20 as we track the first object (Frey). Note
that as we process the frames the mask focuses on only one
of the two objects and the appearance remains sharp only
for this object.

The algorithm with tracking needs a total of !"Ó��f!UÆtÔ op-
erations to find an object. The original GLOMO algorithm,
considers all !n!"Ï�
?Ð-ÑvÏ possible translations i.e. � 7 �ÐtÕvÐtÔtÑ and also requires °Ö[B��×-� iterations to reach conver-
gence. Thus the total number of operations required by the
GLOMO is Õ����f!"ÓnÓ �"!DÐt� , which implies that we gain a speed
up over Ô�ÏvÆt� per learning a single object. The real running
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data �V��! �R��!"� �V�eÐt�

Figure 1: Top: The left hand column shows two data frames from the FJ sequence. The evolution of the mask and the
appearance at frames 1, 10 and 20 is also shown. Notice how the mask becomes focused on one of the objects (Frey) and
how the appearance remains clear and sharp only for Frey. Bottom: The final masks and the element-wise product of the
mask and appearance model ( ���u� ) learned for Frey and Jojic.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2: The first two panels (a) and (b) show two frames of the video sequence. Panels (c) and (d) show the learned mask
and the element-wise product of the mask and appearance model for the head/torso, and the pair of panels (e)-(f) and (g)-(h)
provide the same information for the two arms.
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times of our MATLAB implementations roughly confirm
the above, since the GLOMO method learns the whole se-
quence in Ï�� hours, while the algorithm using tracking runs
in Ó minutes.

We demonstrate our method for learning parts of human
body using a sequence of ×tÔ�
y!DÆ ! images. Two frames
of this sequence are shown in Figure 2. To learn the artic-
ulated parts we consider both translations and rotations so
that the transformation matrix &(' ) that applies to ��� and ���
implements a combination of a translation and a rotation.
Particularly, & '*) is written as & '3) �6&s¡EØ'*) &�Ø<Ù@¡'3) so that we first
rotate � expressing the vector �_�6&�Ø<Ù@¡'3) � � and then translate� to obtain the transformed foreground. Note that the trans-
lations are in units of one pixel (as in the FJ sequence) while
the rotations are implemented using the MATLAB nearest
neighbor algorithm.

The tracking method uses a !UÆ�
6!DÆ window of trans-
lations and Ð�Ó rotations (at ÐnÙ spacing) so that totally it
searches over Ë [ �ÅÆ­!-×tÆ transformations. After tracking
a part we use a focused search around a !�
y!Ú
y! win-
dow (i.e. no search) to learn its full structure. Figures 2(c)-
(h) shows the three parts discovered by the algorithm i.e.
the head/torso and the two arms. Note that the ambiguity
of the masks and appearances around the joints of the two
arms with the torso which is due to the deformability of
the clothing in these areas. The total real running time for
learning this sequence was roughly 3 hours. Notice also
that running the original GLOMO method on this sequence
is infeasible in practice. In particular the GLOMO method
requires consideration of all possible ×-ÔÛ
�!UÆ­! translations
combined with, say, Ðt�n� rotations which immediately gives
a very large number of transformations ( � 7 �ÁÐ­�+ÐtÕnÆ �<Ð���� )
that should be considered.

6. Discussion
Above we have shown how to use a tracking method to
greatly speed up GLOMO. We have also demonstrated that
this method can identify articulated parts of objects, as in
the human body example.

Some issues for further work include the identifying
when a detected model is a part or an independent object
(using mutual information), dealing with parts/objects that
have internal variability and finding non-articulated parts.
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