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Abstract

In this note we consider a n × n kernel matrix Knn and the submatrix Kmm (for
m < n) obtained by selecting m rows/columns of Knn. We show that the Nyström
approximation (Williams and Seeger, 2001) of the top m eigenvectors of Knn is equivalent
to that obtained from a variational argument based on Rayleigh’s principle.

Consider a symmetric positive semidefinite kernel k(x,y) as used, for example, in support
vector machines and Gaussian processes. Given a set of data points Dm = {x1,x2, . . . ,xm}, we
set up the matrix eigenproblem
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where Kmm is a m×m matrix with entries k(xi,xj), and u
(m)
i is the ith eigenvector of this matrix

with eigenvalue λ
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Now consider the case where we have a n × n kernel matrix, based on a dataset Dn =
{x1,x2, . . . ,xn}, where the first m datapoints are the same as in Dm, and the remaining u = n−
m are new, previously unseen datapoints. This matrix will have n eigenvectors and eigenvalues.
We can extend the m eigenvalues/vectors of Kmm up to the full n dimensions using the Nyström
approximation described in Williams and Seeger (2001) to give for i = 1, . . . ,m
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Note that the entries of û
(n)
i for the points in Dm are just rescaled versions of u

(m)
i .

We now consider a very different way to derive the same approximation. Let Vm be a m× q
matrix. It is well known (Rayleigh’s principle) that the solution of

maxVm tr(V T
m KmmVm) such that V T

m Vm = Iq (4)

is that Vm is composed of the top q eigenvectors of Kmm, i.e. those corresponding to the q
largest eigenvalues. The top q eigenvectors are also the solution of

minVm tr(V T
m K−1

mmVm) such that V T
m Vm = Iq; (5)
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notice here that max has been turned into min, and Kmm into K−1
mm.

This variational formulation gives rise to an alternative way to extend an eigenvector to a
new datapoint. Consider the n× n matrix Knn and its inverse K−1

nn . These are partitioned as

Knn =

(
Kmm Kmu

Kum Kuu

)
, K−1

nn

def
=
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)
. (6)

Similarly, we partition the n× q matrix Vn as

Vn =

(
Vm

Vu

)
, (7)

where Vu is u × q. We now fix Vm to be the top q eigenvectors of Kmm and minimize J =
tr(V T

n K−1
nn Vn) with respect to Vu. (We do not impose further constraints, but note that Vm is

already orthogonal.) We obtain

J = tr(V T
m K̃mmVm) + tr(V T

m K̃muVu) + tr(V T
u K̃umVm) + tr(V T

u K̃uuVu). (8)

Minimizing this quadratic form by differentiating this wrt Vu gives

Vu = −K̃−1
uu K̃umVm (9)

Using the partitioned matrix inverse equations (see, e.g. Press et al. (1992, p. 77)) and partic-
ularly K̃um = −K̃uuKumK−1

mm we obtain

Vu = KumK−1
mmVm, or Vn = KnmK−1

mmVm. (10)

This is, of course, just the same solution that we obtained via the Nyström method in equation
3, up to scaling factors.

The variational method used above was inspired by the work of Ham et al. (2005) and Yang
et al. (2006) on eigenmethods in nonlinear dimensionality reduction1. However, note that these
authors were concerned with extending the bottom eigenvectors, i.e. those corresponding to the
smallest eigenvalues. This leads to to a different minimzation problem (based on Knn rather
than K−1

nn ) and thus to a different solution.
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I thank Miguel Carreira-Perpiñán for helpful discussions and for making available an advance
copy of his paper on the Laplacian Eigenmaps Latent Variable Model.

References

Ham, J., Lee, D. D., and Saul, L. K. (2005). Semisupervised Alignement of Manifolds. In
Proceedings of the Tenth International Workshop on Artificial Intelligence and Statistics
(AISTATS 2005).

Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (1992). Numerical
Recipes in C. Cambridge University Press, Second edition.

1There are some errors in the derivations of Yang et al. (2006) concerning missing trace operators, and a
sign error in their eq. 12.

2



Williams, C. K. I. and Seeger, M. (2001). Using the Nyström Method to Speed Up Kernel
Machines. In Leen, T. K., Diettrich, T. G., and Tresp, V., editors, Advances in Neural
Information Processing Systems 13, pages 682–688. MIT Press.

Yang, X., Fu, H., Zha, H., and Barlow, J. (2006). Semi-Supervised Nonlinear Dimensionality
Reduction. In Proceedings of th 23rd International Conference on Machine Learning (ICML
2006).

3


