

Learning to Optimise Human-Computer Interaction

Oliver Lemon

Senior Research Fellow

olemon@inf.ed.ac.uk

http://homepages.inf.ed.ac.uk/olemon/

www.classic-project.org

Edinburgh, November 2008

Outline

- 1: Who we are.....
- 2: Problems/ history of the field:
 - Robust MultiModal natural language interfaces
 - "What to say and How to say it?"
- 3: Our techniques and results:
 - Context-sensitive recognition
 - Supervised Learning
 - Interaction management as statistical planning
 - (PO)MDPs and Reinforcement Learning
- 4: Open research areas/ what we can learn from this group/ how can we collaborate?

Who we are

Jingying Chen

Paul Crook

Srini Janarthanam

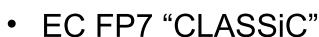
Mary Ellen Foster

(Matthew Frampton)

(Kalliroi Georgila)

Helen Hastie

(Jamie Henderson)


Xingkun Liu

Ivan Meza Ruiz

Johanna Moore

Verena Rieser

• EC FP6 "TALK"

LALK

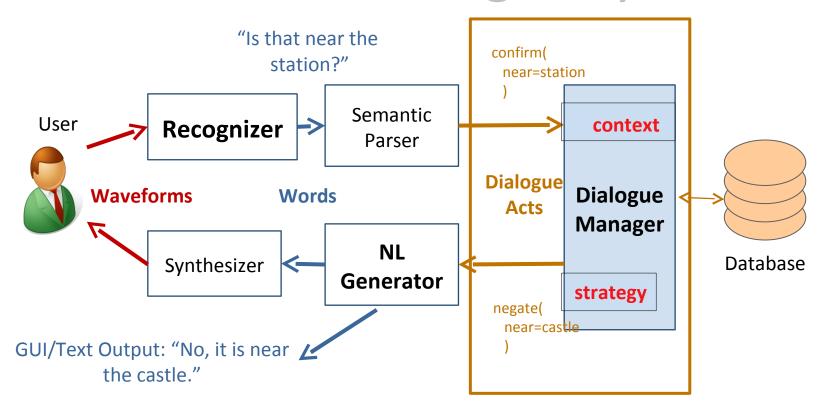
Example problem domains

E DINBU

COMPLEXITY

- Multimodal search (TALK "TownInfo")
- TroubleShooting (CLASSIC)
- Robot control (WITAS)
- Virtual characters (ECHOES)

Example: flight information systems



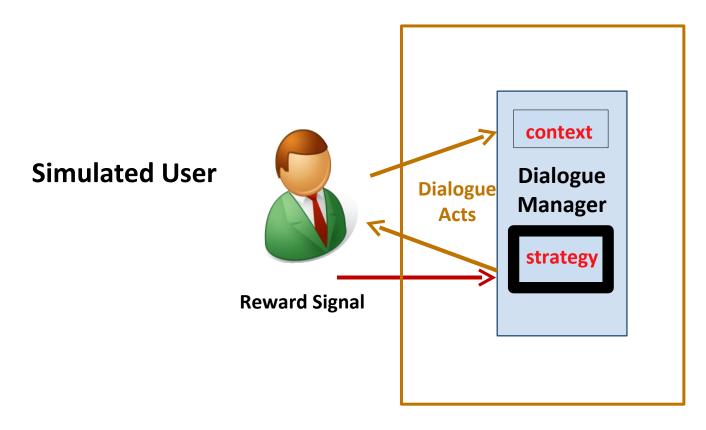
MM & NL Interface problems

- How to handle noisy and ambiguous Input: uncertainty
- How to select a "good" next system action: planning
- Adapting to (uncertain) interaction context:
 - How to interpret user input actions?
 - How to select good output actions? ("trade-offs")
- The problem space is very large:
 - Large number of possible contexts
 - Hand-coded solutions are difficult to design and are not guaranteed to be good
 - Systems are fragile, and Users are often frustrated :

Multimodal Dialogue Systems

Commercial **Dialogue Managers** are deterministic, rule-based, and hand-crafted (Voice XML)

Machine Learning systems can be automatically optimised

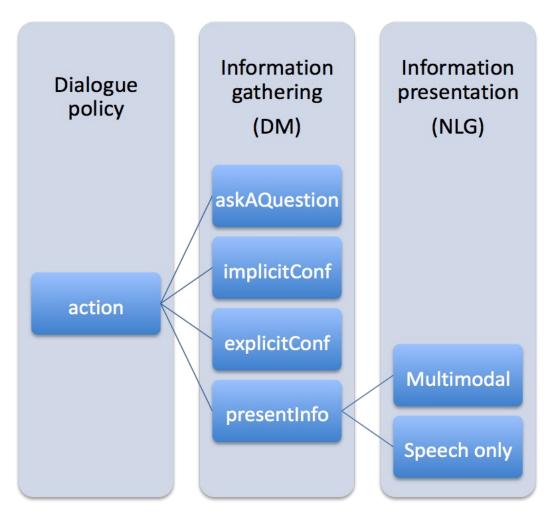


Uses of Machine Learning

- Supervised learning to classify user input in context:
 - Context sensitive speech and gesture recognition
 - To reduce uncertainty and ambiguity
- Reinforcement Learning for output:
 - Planning what to say/do next
 - Optimise the system strategy to reach overall long term goals of the interaction
 - In the presence of noise, ambiguity, uncertainty

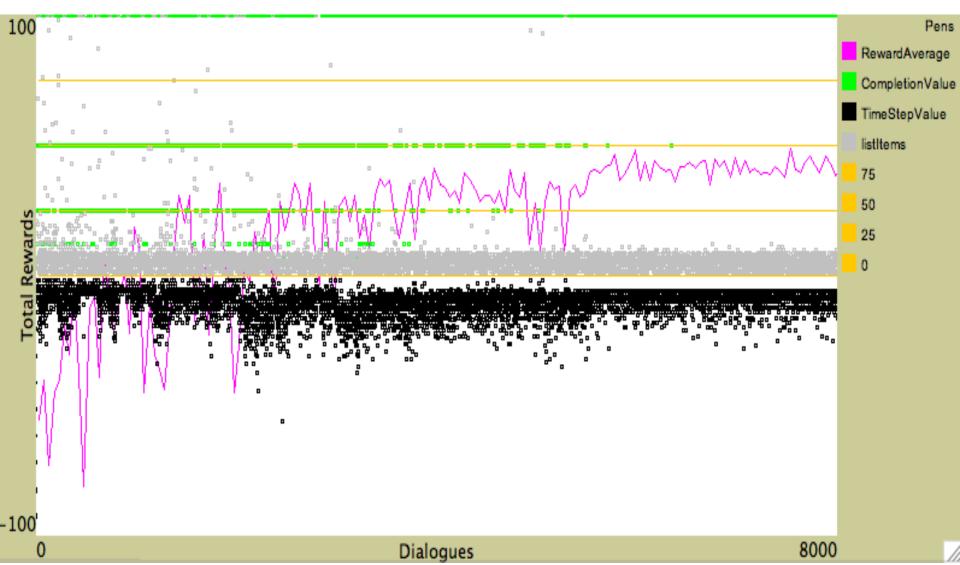
RL for MultiModal Interaction

- Users trained from real data
- noise is simulated
- optimise User Satisfaction


Reward is defined based on analysis of real data: by regression

Dialogue Manager decisions are optimised over 10000s of simulated dialogues

A strategy learning problem



What have we achieved?

- Significant reductions in Word Error Rate using contextsensitive speech recognition
- A fully data-driven methodology for optimising dialogue systems (Rieser & Lemon, ACL 2005-8)
 - Significantly outperforming hand-coded rule-based systems (e.g. COMMUNICATOR) in real user trials
 - (Henderson, Lemon, Georgila Computational Linguistics 2008)
- New methods for User Simulation
- Use of very large state spaces via function approximation
- Feature engineering: importance of Dialogue Acts
 - (Frampton & Lemon ACL, 2006/8)

Interactive multimodal search

Some Hot topics

- Lack of dialogue data: (Rieser & Lemon, ACL 2005-8)
 - Bootstrapping from small datasets
 - Simulated Users & evaluation
 - Data driven Reward modelling
- Partial Observability & very large state spaces:
 - Linguistically motivated features (e.g. DAs)
 - Feature Engineering
 - State Generalisation methods
- Extending and scaling up the techniques:
 - More complex Multimodal interaction
 - Complex tasks (troubleshooting, tutorials, robots..)

Our current projects & challenges

- **EPSRC**: fully statistical dialogue systems, using POMDP dialogue managers
 - State generalization techniques, POMDP feature engineering for tractability & scalability
 - User simulations to re-rank ASR hypotheses
- CLASSIC (EC FP7): Reinforcement Learning for Natural Language Generation (NLG)
 - Hierarchical MDPs to model levels/stages of NLG
 - Data collection, bootstrapping from small datasets
 - User simulations responsive to NLG decisions

Our current projects & challenges

- DUDE: commercialisation of the technology
 - Bringing ML techniques into mainstream commercial development
 - "Real world" demo systems:
- ECHOES (ESRC/EPSRC Technology Enhanced Learning): interacting with virtual characters in multimodal interfaces
 - Classifying user gestures, gaze, etc ... from live video
 - Learning Adaptive behaviours for virtual characters
 - Optimizing for educational value/learning gain

How can we collaborate???

- Bootstrapping from small datasets:
 - Simulated Users & evaluation...
 - Reward modelling
- Partial Observability & very large state spaces:
 - Linguistically motivated features
 - Generalisation methods
 - Feature Engineering
- Extending to:
 - Rich Multimodal interfaces (gesture, video,...)
 - Complex tasks (troubleshooting, tutorials, robots..)

Recent References

- http://www.classic-project.org/publications
- Verena Rieser and Oliver Lemon, "Learning Effective Multimodal Dialogue Strategies from Wizard-of-Oz data: Bootstrapping and Evaluation", Proc. ACL 2008
- James Henderson, Oliver Lemon, and Kallirroi Georgila, "Hybrid Reinforcement / Supervised Learning of Dialogue Policies from Fixed Datasets", Computational Linguistics 34:4 (in press)
- Verena Rieser and Oliver Lemon, "Does this list contain what you were searching for? Learning adaptive dialogue strategies for Interactive Question Answering", Natural Language Engineering (to appear)
- Oliver Lemon, "Adaptive Natural Language Generation in Dialogue using Reinforcement Learning", SEMdial (LONdial) 2008
- Matthew Frampton and Oliver Lemon, "Using Dialogue Acts to learn better repair strategies for Spoken Dialogue Systems", ICASSP 2008