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Sensorimotor Control

Noise 1}

= Motor Command _| Biomechanical
< _J‘> Controller >
o Q Plant
A S 2
®] cT) @] Q
g £ © S
Z 0 \ 4 Sensory
L : Data Sensor
4 \ -| Estimator [€ i
' ' _1.”|__Apparatus

Motor v .
command / Noise

9 & 4
/

Sensory
feedback




Sense, Plan, Move

Interesting Machine Learning Challenges in each domain
Sensing
Incomplete state information
Unknown causal structure
Noise
Planning
Redundancy resolution
Incomplete knowledge of appropriate optimization cost function
Moving
Incomplete knowledge of (hard to model) nonlinear dynamics
Dynamically changing motor functions: wear and tear/loads



Learning to Viove




Feedforward Control

Control Policy
No Feedforward Component
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Ugp = kp (Xcur B Xdes) + kd (Xcur - Xdes)




Data from Motor Babbling

= f(0,0,0)

High Dimensional

Sampled at 500 Hz

Need for real time results 6 2084 by \ | ; \

Kinesthetic demo using a dynamic target



Local Weighted Learning

Approximate non-linear functions with a combination of multiple weighted

linear models
predictions from the 1
diffgrent linear models  Wii — exp( - E (Xi - Xq @ Xi — Xq ))
A\ ‘//

X'WX)"X'WY

A T
yk = Xqu

L Few Linear Models Many linear Models __‘ y= Z W, Y, /Z W,
(no overlap) (strong overlap) k K

Solve this problem for high dimensional space: LWPR

Sethu Vijayakumar, Aaron D'Souza and Stefan Schaal, Online Learning in High Dimensions, Neural Computation, vol. 17, pp. 2602-2634 (2005)




Online Learning with LWPR

Learning the Internal Dynamics Learning the Task Dynamics

Stefan Klanke, Sethu Vijayakumar and Stefan Schaal, A Library for Locally Weighted Projection Regression, Journal of Machine Learning
Research (JMLR), vol. 9. pp. 623--626 (2008).




Learning to Sense




Bayesian Structure Inference

Cue integration under uncertain causal structure

Infer variables and structure

e.g., AV localisation @ o @
Visible?

Audible?

Current state (Location) e e

Hospedales and Vijayakumar, Structure Inference for Bayesian Multi-sensory Scene Understanding, IEEE Transactions on Pattern Analysis

and Machine Intelligence (PAMI), Vol. 99, No.1 (2008)



Multi-object Inference

Hospedales and Vijayakumar, Structure Inference for Bayesian Multi-sensory Scene Understanding, IEEE Transactions on Pattern Analysis
and Machine Intelligence (PAMI), Vol. 99, No.1 (2008)




Systematic Testing
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Who said what?

User 1 vi 'ble. User 1 silent.
User 2"ible. User 2 silent.
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Hospedales and Vijayakumar, Structure Inference for Bayesian Multi-sensory Scene Understanding, IEEE Transactions on Pattern Analysis

and Machine Intelligence (PAMI), Vol. 99, No.1 (2008)




Unifying the Sensory & Motor

Components of Adaptation

Motor disturbance affects

disturbances { hand position
Yt = Ut T Tt + €
motor command .
Sensory disturbances affect
observations
. L v v
hand position fUt — yt —t fr‘t —4 Gt
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Pt = Yt T Ty T €
visual observation
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Theory driven experiments

Test whether force field exposure leads to
sensory adaptation

Experimental setup and design:

Reaches in a single direction
LCD screen
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Some interesting results

Sensory and motor adaptation are NOT
independent

Motor adaptation leads to sensory recalibration
(after-effects) even without introducing any
sensory discrepancy

Adrian Haith, Carl Jackson, Chris Miall and Sethu Vijayakumar, Unifying the Sensory and Motor Components of Sensorimotor

Adaptation, Proc. Advances in Neural Information Processing Systems (NIPS '08), Vancouver, Canada (2008).



Learning to P'an




Optimal Feedback Control (OFC)

for planning

Known: Start & end states, fixed-time horizon T and system dynamics

dx = f(x,u)dt + F(x,u)d .

Control as a result of an optimisation process of some cost function.

T

h(x(T)) +/ ((r,x(7),m(7,x(7)))dT

t

™ (t,x) = E

Aim: find control law rt* that minimizes v™ (0, x,).



iILQG-L(earned) D(ynamics)

ILQG-LD uses a LWPR-learned forward dynamic model of the plant.

cost function L, X feedback |
(incl. target) | ‘ controller perturbation
: /L
learned _ U T+8u
' >t > lant
dynamics model ILQG ) p
\L u |
\
X, dX

Djordje Mitrovic, Stefan Klanke and Sethu Vijayakumar, Optimal control with adaptive internal dynamics models, In: Robotics

Challenges for Machine Learning, Neural Information Processing Systems (NIPS 2007), Whistler, Canada (2007).



iILQG-LD: Advantages

Can predict the “ideal
observer” adaptation
behaviour under complex
force fields due to the ability
to work with adaptive
dynamics

Cost Function:

Constant Unidirectional Force Field
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iILQG-LD: Advantages

Reproduces the “trial-to-trial” variability in the uncontrolled
manifold, 1.e., exhibits the minimum intervention principle
that is characteristic of human motor control.

DLR LWR Il Simulink Model Minimum intervention principle




iLQG-LD in Variable Impedance Actuators

Preliminary results suggest iLQG-LD can be used as an effective control
strategy in redundant, co-actuated, variable stiffness actuators.
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Djordje Mitrovic, Stefan Klanke, Sethu Vijayakumar, Adaptive Optimal Control for Redundantly Actuated Arms, Proc. Tenth International

Conference on the Simulation of Adaptive Behavior (SAB '08), Osaka, Japan (2008)



Learning from demonstration

Learning to Wash a Car

Variable Constraint Direct Policy Learning

Matthew Howard, Stefan Klanke, Michael Gienger
Christian Goerick, Sethu Vijayakumar
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Why do we care?

Rehabilitation Robotics
Entertainment Robotics

Exoskeletons

QQQQQ

... involve much closer human-robot interactions !!



Sense, Plan, Move

Interesting Machine Learning Challenges in each domain
Sensing
Incomplete state information
Unknown causal structure
Noise
Planning
Redundancy resolution
Incomplete knowledge of appropriate optimization cost function
Moving
Incomplete knowledge of (hard to model) nonlinear dynamics
Dynamically changing motor functions: wear and tear/loads
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