Machine Learning
in
Statistical Machine Translation

Phil Blunsom
Philipp Koehn

26 November 2008
Machine Translation

• Task: make sense of foreign text like

• AI-hard: ultimately reasoning and world knowledge required

• Statistical machine translation: Learn how to translate from data
Prediction Problem

• Given an input sentence, we have to predict an output translation

Ich gehe ja nicht zum Haus.

↓

I do not go to the house.

• Since the set of possible output sentences is too large, we need to construct the translation according to some decomposition of the translation process
Word-Based Model

Original statistical machine translation models (1990s):
break down translation to the word level
Phrase-Based Model

Current state of the art:
map larger chunks of words (huge mapping tables)
Tree-Based Model

One way forward: generate translation with syntactic structure
Structured Prediction

• A prediction problem
 – given an input
 – predict an output
 – many example (input, output) pairs available

• But: space of possible outputs too large
 – prediction has to be broken down into steps
 – decomposition of the problem is a hidden variable
 – search space too large to explore exhaustively

• Additional trouble
 – there is not a single right translation, many are possible
 – evaluation of machine translation unclear
Learning Problem: Word Alignment

• For many models, an essential first step is establishing the word alignment in the training data

• Very little labeled data available → typically treated as unsupervised learning problem
Learning Problem: Model Parameters

- The output translation from an input sentence is derived over several steps
 - segmentation of the input
 - word and phrase translation
 - reordering

- Each of the steps is modeled by probability distributions or features

- How do we learn the parameters for these models?
Heuristic Generative Model

• The decomposition of the translation process breaks down into steps

• Each step is modeled with a probability distribution

• Phrase translation probability distributions are estimated by maximum likelihood estimation:

\[p(\text{house}|\text{Haus}) = \frac{\text{count}(\text{house},\text{Haus})}{\text{count}(\text{Haus})} \]

• This is a biased ML estimator, we’d like to replace it:
 – Bayesian approach [Blunsom, Cohn and Osborne, 2008]
Discriminatively Combining Local Models

- Sentence translation is a combination of several component models

\[p_{LM} \times p_{TM} \times p_D \]

- These may be weighted

\[p_{LM}^{\lambda_{LM}} \times p_{TM}^{\lambda_{TM}} \times p_D^{\lambda_D} \]

- Many components \(p_i \) with weights \(\lambda_i \)

\[\prod p_i^{\lambda_i} = \exp \sum \lambda_i \log(p_i) \]

- Optimizing the weights \(\lambda_i \) to directly optimize translation performance
Global Discriminative Model

- Where we are now: a unsatisfying mix of local models and global models
- Grand goal: train all parameters discriminatively to optimize translation
- Note:
 - hidden derivation
 - millions of sentence pairs
 - millions of features
 \rightarrow heavy computational problem

- Ongoing work
 - Perceptron, MIRA [Arun and Koehn, 2007]
 - probabilistic model [Blunsom and Osborne, 2008]
Deluge of Data

- Parallel texts: 100s millions of words
 - translation models take up giga-bytes on disk

- Monolingual texts: trillions of words
 - much more than we can currently handle

- Need for efficient data structures and training methods
 - suffix arrays for on-the-fly translation model [Lopez et al., 2008]
 - randomized language models [Talbot and Osborne, 2008]
Related Task: Tools for Translators

Learning task: predicting the next user input

<table>
<thead>
<tr>
<th>Hamburg</th>
<th>Sechs Stunden sprachen sie miteinander.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hamburg</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hamburg market</th>
<th>six members working hours you spoke with</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hamburg accounts</td>
<td>six governments hours ago were they</td>
</tr>
<tr>
<td>- the</td>
<td>concurred time have they are</td>
</tr>
<tr>
<td>- and</td>
<td>all concurred hour there were it each other</td>
</tr>
<tr>
<td>as</td>
<td>six leaders hours in talked they work with each other</td>
</tr>
</tbody>
</table>

It would be hours of it would to each other.
They were speaking together with each other.
Machine Translaton at Edinburgh

- People
 - 2 faculty: Philipp Koehn and Miles Osborne
 - 3 postdocs, 1 research programmer, 7 PhD students

- Funding
 - European projects: EuroMatrix, EuroMatrixPlus
 - DARPA project: GALE
 - EPSRC project: Demeter
 - Industry: Google, Systran

- Resources for the community
 - our open source Moses decoder is standard benchmark for MT community
 - we organize MT evaluation campaigns, open source conventions, workshops

- Online demo: http://demo.statmt.org/webtrans/