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Projects

Neonatal Condition Monitoring

Prediction with Gaussian Processes

Visual object class recognition and localization

Unsupervised learning of multiple objects from images

Automated detection of spurious objects in astronomical
catalogues

Chorale harmonization (HMM Bach)

Dynamic trees for image segmentation

Generative Topographic Mapping (GTM)

+ Outlook
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Machine Learning and Probabilistic Modelling

Supervised Learning
model p(y |x): regression, classification, etc

Unsupervised Learning
model p(x): not just clustering!

Reinforcement Learning
Markov decision processes, POMDPs, planning.
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1. Premature Baby Monitoring

with John Quinn, Neil McIntosh
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Why model this data?

Artifact corruption, leading to false alarms

Our aim is to determine the baby’s state of health despite
these problems
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Overview of Baby Monitoring

Factors

Factorial switching Kalman filter

Inference

Parameter estimation

Results

Modelling novel regimes
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Probes

1. ECG, 2. arterial line, 3. pulse oximeter 4. core temperature, 5.
peripheral temperature, 6. transcutaneous probe.
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Factors affecting measurements

The physiological observations are affected by different
factors.
Factors can be artifactual or physiological.
An arterial blood sample (artifact):
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Common factor examples

Transcutaneous probe recalibration (artifact)
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Common factor examples

Bradycardia (physiological)
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Factorial Switching Kalman Filter

Artifactual state

Physiological state

Observations

Physiological factors 

Artifactual factors
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FSKF notation

st is the switch variable, which indexes factor settings, e.g.
‘blood sample occurring and first stage of TCP recalibration’.

xt is the hidden continuous state at time t. This contains
information on the true physiology of the baby, and on the
levels of artifactual processes.

y1:t are the observations.
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Factor interactions
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Factor interactions
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Factor interactions
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Factor interactions

Chris Williams Factorial Switching Kalman Filters for Condition Monitoring in Neonatal Intensive Care



Premature Baby Monitoring Unknown conditions Gaussian Processes

Factor interactions
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Related work

Switching linear dynamical models have been studied by many
authors, e.g. Alspach and Sorenson (1972), Ghahramani and
Hinton (1996).

Applications include fault detection in mobile robots (de
Freitas et al., 2004), speech recognition (Droppo and Acero,
2004), industrial monitoring (Morales-Menedez et al., 2002).

A two-factor FSKF was used for speech recognition by Ma
and Deng (2004). Factorised SKF also used for musical
transcription (Cemgil et al., 2006).

There has been previous work on condition monitoring in the
ICU, though we are unaware of any studies that use a FSKF.
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Kalman filtering

Continuous hidden state affects some observations:

xt ∼ N (Axt−1,Q)

yt ∼ N (Cxt ,R)

Kalman filter equations can be used to work compute
p(x1:t |y1:t)

Done iteratively by predicting and updating

Chris Williams Factorial Switching Kalman Filters for Condition Monitoring in Neonatal Intensive Care
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Switching dynamics

The switch variable st selects the dynamics for a particular
combination of factor settings:

xt ∼ N (A(st)xt−1,Q
(st))

yt ∼ N (C(st)xt ,R
(st))

For each setting of st , the Kalman filter equations give a
predictive distribution for xt .
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Inference

For this application, we are interested in filtering, inferring
p(st , xt |y1:t).

Exact inference is intractable.

Using two inference methods:

Gaussian Sum (Alspach and Sorenson, 1972), analytical
approximation
Rao-Blackwellised particle filtering.
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Gaussian Sum approximation

st−1= n

st−1= 1
. .

 .
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Gaussian Sum approximation

st−1= n

st−1= 1
. .

 .
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Gaussian Sum approximation

st−1= n

st−1= 1
. .

 .
st = 1
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Parameter estimation

We need to estimate a dynamical model for each continuous
state variable for each setting of the factors

We use AR/ARMA/ARIMA modelling, e.g. an AR(p) process

xi (t) =

p∑
j=1

αijxi (t − j) + εt

Fortunately, annotated training data is available
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The hidden continuous state in this application is
interpretable, and domain knowledge can be used to help
parameterize the dynamical models for each factor.
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Parameter estimation example
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For example, we know that the falling temperature
measurements caused by a probe disconnection will follow an
exponential decay

Therefore we can model these dynamics as an AR(1) process,
and set parameters by solving the Yule-Walker equations.
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Learning stable physiological dynamics

Each observation channel has different dynamics when the
baby is ‘stable’ (self regulating) and no artifactual factors are
active

By analysing examples of stable data, dynamical models can
be found for each channel with the Box-Jenkins approach and
EM.

For example, a hidden ARIMA(2,1,0) model is a good fit to
baseline heart rate data.

Chris Williams Factorial Switching Kalman Filters for Condition Monitoring in Neonatal Intensive Care
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Known factor classification demo
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Inference results

Inference of bradycardia and incubator open factors. Note
that heart rate variation while incubator is open is attributed
to handling of the baby (BR factor suppressed)

BR

Time (s)

IO
0 500 1000 1500

50

100

150

200

H
R

 (
bp

m
)

65

70

75

80

85

H
um

id
ity

 (
%

)

Chris Williams Factorial Switching Kalman Filters for Condition Monitoring in Neonatal Intensive Care



Premature Baby Monitoring Unknown conditions Gaussian Processes

Inference results

Can examine variance variance of estimates of true physiology
x̂t , e.g. for blood sample (left) and temperature probe
disconnection (right):
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Quantitative Evaluation

3-fold cross validation on 360 hours of monitoring data from
15 babies.

FHMM has the same factor structure as the FSKF, with no
hidden continuous state.

Inference type Incu. open Core temp. Blood sample Bradycardia
auc 0.87 0.77 0.96 0.88

GS
eer 0.17 0.34 0.14 0.25
auc 0.77 0.74 0.86 0.77

RBPF
eer 0.23 0.32 0.15 0.28
auc 0.78 0.74 0.82 0.66

FHMM
eer 0.25 0.32 0.20 0.37
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Comparison with FHMM model

FSKF can handle drift in baseline levels:
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Novel dynamics

There are many other factors influencing the data: drugs,
sepsis, neurological problems...
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Known Unknowns

Add a factor to represent abnormal dynamics
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Known Unknowns

Add a factor to represent abnormal dynamics
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X-factor for static 1-D data

For static data, we can use a model M∗ representing
‘abnormal’ data points.

y
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y|

s)

The high-variance model wins when the data is not well
explained by the original model
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X-factor with known factors

The X-factor can be applied to the static data in conjunction
with known factors (green):
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X-factor for dynamic data

xt ∼ N (Axt−1,Q)

yt ∼ N (Cxt ,R)

Can construct an ‘abnormal’ dynamic regime analogously:

Normal dynamics: {A,Q,C,R}

X-factor dynamics: {A,ξQ,C,R}, ξ > 1.

Chris Williams Factorial Switching Kalman Filters for Condition Monitoring in Neonatal Intensive Care
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Spectral view of the X-factor

f

S y(f)

0 1/2

Plot shows the spectrum of a hidden AR(5) process, and
accompanying X-factor

More power at every frequency

Dynamical analogue of the static 1-D case
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X-factor demo
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More inference results

Classification of periods of clinically significant cardiovascular
disturbance:
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EM for novel regimes
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Summary

FSKF successfully applied to complex physiological monitoring
data

FSKF can be applied more generally to condition monitoring
problems

Interpretable structure

Knowledge engineering used to parameterize dynamic models

Allows monitoring of known and novel dynamics (supervised
and unsupervised learning)
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2. Gaussian Processes

A non-parametric
Bayesian prior over
functions

Mean function E[f (x)],
set = 0

Covariance function
E[f (x)f (x′)] = k(x, x′)

Although GPs are
infinite-dimensional
objects, prediction from a
finite dataset is O(n3)
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k(x , x ′) = σ2
0 + σ2

1xx
′ k(x , x ′) = exp−|x − x ′|

k(x , x ′) = exp−(x − x ′)2
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Gaussian Process Regression

Dataset D = (xi , yi )
n
i=1, Gaussian likelihood p(yi |fi ) ∼ N(0, σ2)

f̄ (x) =
n∑

i=1

αik(x, xi )

where
α = (K + σ2I )−1y

var(f (x)) = k(x, x)− kT (x)(K + σ2I )−1k(x)

in time O(n3), with k(x) = (k(x, x1), . . . , k(x, xn))
T
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Automatic Relevance Determination

kSE (x, x′) = σ2
f exp

(
− 1
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Dealing with hyperparameters

Marginal likelihood p(y|X ,θ)

For the regression case

log p(y|X ,θ) = −1

2
yT (K + σ2I )−1y − 1

2
|K + σ2I | − n

2
log 2π

Optimize by gradient descent (etc) on objective function

Can also use LOO-CV:
∑n

i=1 log p(yi |y−i ,X ,θ)

Note that SVMs do not generally have good methods for
kernel selection
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Classification: binary, multiclass, e.g. handwritten digit
classification

SVMs (Vapnik, 1995): non-probabilistic, use “kernel trick”
and quadratic programming

Regularization framework (Tikhonov and Arsenin, 1977;
Poggio and Girosi, 1990); MAP rather than fully probabilistic

Challenges:

Design of kernels
Approximation methods for large datasets
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Carl Edward Rasmussen and Chris
Williams, MIT Press, 2006
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3. Outlook

Scaling Learning Algorithms towards AI (Bengio and LeCun, 2007;
sec. 2)

The AI-set: those tasks involved in intelligent behaviour, e.g.
visual perception, auditory perception, planning, control ...

For successful learning we need priors over functions

Prior knowledge can be embedded by specifying:

Data representation (pre-processing, feature extraction)
Architecture of the machine
Loss function and regularizer

Shallow vs Deep architectures
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Three strategies

Defeatism: No good parameterization of the AI-set is
currently available. Therefore do careful hand-design of
pre-processing, architecture and regularizer for each task.

Denial: Kernel machines (or indeed nearest neighbour
methods) can approximate any function: why would we need
anything else? The issue is that they can efficiently represent
only a small subset of functions.

Optimism: “Let’s look for learning models that can be applied
to the largest possible subset of the AI-set, while requiring the
smallest possible amount of hand-coded knowledge for each
specific task in the AI-set.”

Chris Williams Factorial Switching Kalman Filters for Condition Monitoring in Neonatal Intensive Care
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Bengio and LeCun emphasize that the “main challenge is to
design learning algorithms that can discover representations of
the data that compactly describe regularities in it.”

They argue that such representations will need multiple levels
of composition of simpler functions

Note that learning such representations will be facilitated by
multi-task learning

AI as involving learning, representation and inference
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Models for stable physiology

A fitted model can be verified by comparing real physiological
data against a sample from that model, e.g. for heart rate:
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