Robotics Science and Systems: Computer Vision

Image segmentation

Chris Williams, Oct 2014

Many slides in this lecture are due to Vittorio Ferrari; other authors are credited on the bottom right

Topics of This Lecture

- Introduction
 - Gestalt principles
 - > Image segmentation
- Segmentation as clustering
 - k-Means
 - > Feature spaces
- Model-free clustering: Mean-Shift
- Interactive Segmentation with GraphCuts
- Reading: F+P chapter 9; Sz 5.3, 5.5

Examples of Grouping in Vision

What things should be grouped?

What cues indicate groups?

Determining image regions

Slide modified from: Kristen Grauman

Similarity in appearance

Slide adapted from Kristen Grauman
http://chicagoist.com/attachments/chicagoist_alicia/GEESE.jpg, http://www.delivery.superstock.com/WI/223/1532/PreviewComp/SuperStock_1532R-0831.jpg

Symmetry

Slide credit: Kristen Grauman

http://seedmagazine.com/news/2006/10/beauty_is_in_the_processingtim.php

Common Fate

Image credit: Arthus-Bertrand (via F. Durand)

Proximity

Slide credit: Kristen Grauman http://www.capital.edu/Resources/Images/outside6_035.jpg

The Gestalt School

- Grouping is key to visual perception
- Elements in a collection can have properties that result from relationships
 - "The whole is other than than the sum of its parts"

http://en.wikipedia.org/wiki/Gestalt_psychology

Slide credit: Svetlana Lazebnik Image source: Steve Lehar

Gestalt Factors

These factors make intuitive sense, but are very difficult to translate into algorithms.

Slide credit: B. Leibe Image source: Forsyth & Ponce

The Ultimate Gestalt test

Image Segmentation

• Goal: identify groups of pixels that go together

Slide credit: Steve Seitz, Kristen Grauman

The Goals of Segmentation

• Separate image into objects

Slide credit: Svetlana Lazebnik

The Goals of Segmentation

- Separate image into objects
- Group together similar-looking pixels for efficiency of further processing

"superpixels"

X. Ren and J. Malik. Learning a classification model for segmentation. ICCV 2003.

Slide credit: Svetlana Lazebnik

Topics of This Lecture

- Introduction
 - Gestalt principles
 - > Image segmentation
- Segmentation as clustering
 - k-Means
 - > Feature spaces
- Model-free clustering: Mean-Shift
- Interactive Segmentation with GraphCuts

Image Segmentation: Toy Example

- These intensities define the three groups.
- We could label every pixel in the image according to which of these it is.
 - > i.e. segment the image based on the intensity feature.
- What if the image isn't quite so simple?

- Now how to determine the three main intensities that define our groups?
- We need to cluster.

- Goal: choose three "centers" as the representative intensities, and label every pixel according to which of these centers it is nearest to.
- Best cluster centers are those that minimize SSD between all points and their nearest cluster center c_i :

$$\sum_{\text{clusters } i} \sum_{\text{points p in cluster } i} \|p - c_i\|^2$$

Clustering

- With this objective, it is a "chicken and egg" problem:
 - > If we knew the *cluster centers*, we could allocate points to groups by assigning each to its closest center.

If we knew the *group memberships*, we could get the centers by computing the mean per group.

K-Means Clustering

- Basic idea: randomly initialize the k cluster centers, and iterate between the two steps we just saw.
 - 1. Randomly initialize the cluster centers, $c_1, ..., c_K$
 - 2. Given cluster centers, determine points in each cluster
 - For each point p, find the closest c_i. Put p into cluster i
 - 3. Given points in each cluster, solve for c_i
 - Set c_i to be the mean of points in cluster i
 - 4. If c_i have changed, repeat Step 2

Properties

- > Will always converge to *some* solution
- Can be a "local minimum"
 - Does not always find the global minimum of objective function:

$$\sum_{\text{clusters } i} \sum_{\text{points p in cluster } i} ||p - c_i||^2$$

Slide credit: Steve Seitz

Segmentation as Clustering

K-Means Clustering

• Java demo:

http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/AppletKM.html

Feature Space

- Depending on what we choose as the *feature space*, we can group pixels in different ways.
- Grouping pixels based on intensity similarity

• Feature space: intensity value (1D)

Feature Space

• Depending on what we choose as the feature space, we

can group pixels in different ways.

 Grouping pixels based on color similarity

• Feature space: color value (3D)

Segmentation as Clustering

- Depending on what we choose as the *feature space*, we can group pixels in different ways.
- Grouping pixels based on texture similarity

• Feature space: filter bank responses (e.g. 24D)

Spatial coherence

Assign a cluster label per pixel → possible discontinuities

Slide adapted from Kristen Grauman

Spatial coherence

- Depending on what we choose as the *feature space*, we can group pixels in different ways.
- Grouping pixels based on intensity+position similarity

⇒ Way to encode both *similarity* and *proximity*.

Slide adapted from Kristen Grauman

K-Means without spatial information

- K-means clustering based on intensity or color is essentially vector quantization of the image attributes
 - > Clusters don't have to be spatially coherent

Image

Intensity-based clusters

Color-based clusters

Slide adapted from Svetlana Lazebnik

Image source: Forsyth & Ponce

K-Means with spatial information

- K-means clustering based on intensity or color is essentially vector quantization of the image attributes
 - Clusters don't have to be spatially coherent
- Clustering based on (r,g,b,x,y) values enforces more spatial coherence

Slide adapted from Svetlana Lazebnik

Image source: Forsyth & Ponce

Summary K-Means

• Pros

- > Simple, fast to compute
- Converges to local minimum of within-cluster squared error

Cons/issues

- Setting k?
- Sensitive to initial centers
- Sensitive to outliers
- Detects spherical clusters only
- Assuming means can be computed

(B): k-means clusters

Topics of This Lecture

- Introduction
 - Gestalt principles
 - > Image segmentation
- Segmentation as clustering
 - k-Means
 - > Feature spaces
- Model-free clustering: Mean-Shift
- Interactive Segmentation with GraphCuts

Mean-Shift Segmentation

 An advanced and versatile technique for clusteringbased segmentation

http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html

D. Comaniciu and P. Meer, <u>Mean Shift: A Robust Approach toward Feature Space Analysis</u>, PAMI 2002.

Slide credit: Svetlana Lazebnik

Finding Modes

Figure credit: Szeliski (2011) Fig 5.17

$$f(x) = \sum_{i} K(x - x_i) \qquad K(x - x_i) = k \left(\frac{|x - x_i|^2}{h^2}\right)$$

Goal: find peaks (modes) of f(x)

Mean-Shift Algorithm

$$\nabla f(x) = \sum_{i} (x_i - x)G(x - x_i) = 0$$

$$y_{k+1} = \frac{\sum_{i} x_i G(y_k - x_i)}{\sum_{i} G(y_k - x_i)}$$

Note: G() is the derivative of K()

Iterative Mode Search

- 1. Initialize random seed center y for k=0 (can be a data point)
- 2. Compute the weights $G(y_k x_i)$
- 3. Calculate weighted mean y_{k+1} as above
- 4. Repeat steps 2+3 until convergence

Slide by Y. Ukrainitz & B. Sarel

Slide by Y. Ukrainitz & B. Sarel

Real Modal Analysis Tessellate the space Run the procedure in parallel with windows Slide by Y. Ukrainitz & B. Sarel

Real Modal Analysis

The blue data points were traversed by the windows towards the mode.

Mean-Shift Clustering

- Cluster: all data points in the attraction basin of a mode
- Attraction basin: the region for which all trajectories lead to the same mode

Mean-Shift Clustering/Segmentation

- Choose features (color, gradients, texture, etc)
- Initialize windows at individual pixel locations
- Start mean-shift from each window until convergence

• Merge windows that end up near the same "peak" or

mode

Slide adapted from Svetlana Lazebnik

Mean-Shift Segmentation Results

http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html

Slide credit: Svetlana Lazebnik

More Results

Slide credit: Svetlana Lazebnik

Summary Mean-Shift

Pros

- > General, application-independent tool
- Model-free, does not assume any prior shape (spherical, elliptical, etc.) on data clusters
- Just a single parameter (window size h)
 - h has a physical meaning (unlike k-means) == scale of clustering
- > Finds variable number of modes given the same h
- Robust to outliers

Cons

- Output depends on window size h
- Window size (bandwidth) selection is not trivial
- > Computationally rather expensive
- > Does not scale well with dimension of feature space

Slide adapted from Svetlana Lazebnik

Topics of This Lecture

- Introduction
 - Gestalt principles
 - > Image segmentation
- Segmentation as clustering
 - k-Means
 - > Feature spaces
- Model-free clustering: Mean-Shift
- Interactive Segmentation with GraphCuts

Markov Random Fields

- Allow rich probabilistic models for images
- But built in a local, modular way
 - > Learn local effects, get global effects out
- Addressing the image labelling problem

Slide credit: William Freeman

MRF Nodes as Pixels (or Patches)

Slide adapted from William Freeman

Network Joint Probability

Slide adapted from William Freeman

Energy Formulation

Joint probability

$$P(x,y) = \frac{1}{Z} \prod_{i} \Phi(x_i, y_i) \prod_{i,j} \Psi(x_i, x_j)$$

 Maximizing the joint probability is the same as minimizing the negative log

$$-\log P(x, y) = -\sum_{i} \log \Phi(x_{i}, y_{i}) - \sum_{i,j} \log \Psi(x_{i}, x_{j}) + c$$

$$E(x, y) = \sum_{i} \varphi(x_{i}, y_{i}) + \sum_{i,j} \psi(x_{i}, x_{j})$$

- This is similar to free-energy problems in statistical mechanics (spin glass theory). We therefore draw the analogy and call E an energy function.
- φ and ψ are called *potentials*.

Energy Formulation

Energy function

$$E(x,y) = \sum_{i} \varphi(x_{i}, y_{i}) + \sum_{i,j} \psi(x_{i}, x_{j})$$
Unary
potentials

Pairwise
potentials

- Unary potentials φ
 - > Encode local information about the given pixel/patch
 - How likely is a pixel/patch to be in a certain state? (e.g. foreground/background)?
- Pairwise potentials ψ
 - > Encode neighborhood information
 - How different is a pixel/patch's label from that of its neighbor?
 (e.g. here independent of image data, but later based on intensity/color/texture difference)

Slide adapted from B. Leibe

Energy Minimization

- Goal:
 - > Infer the optimal labeling of the MRF.

- Many inference algorithms are available, e.g.
 - > Gibbs sampling, simulated annealing
 - Iterated conditional modes (ICM)
 - Variational methods
 - Belief propagation
 - > Graph cuts
- Recently, Graph Cuts have become a popular tool
 - > Only suitable for a certain class of energy functions
 - But the solution can be obtained very fast for typical vision problems (~1MPixel/sec).

Slide credit: B. Leibe

Graph Cuts for Optimal Boundary Detection

• Idea: convert MRF into source-sink graph

Minimum cost cut can be computed in polynomial time

(max-flow/min-cut algorithms)

[Boykov & Jolly, ICCV' 01]

Simple Example of Energy

Boundary term

$$E(L) = \sum_{p} D_{p}(L_{p}) + \sum_{pq \in N} w_{pq} \cdot \delta(L_{p} \neq L_{q})$$
t-links n-links

$$L_p\!\in\!\{{\rm S},t\}$$
 (binary segmentation)

Slide credit: Yuri Boykov

Adding Regional Properties

Regional bias example

Suppose I^s and I^t are given "expected" intensities of object and background

$$D_p(s) \propto \exp\left(-\|I_p - I^s\|^2 / 2\sigma^2\right)$$

$$D_p(t) \propto \exp\left(-\|I_p - I^t\|^2 / 2\sigma^2\right)$$

NOTE: hard constrains are not required, in general.

Slide credit: Yuri Boykov & Jolly, ICCV' 01]

Adding Regional Properties

EM-style optimization

Slide credit: Yuri Boykov & Jolly, ICCV' 01]

Adding Regional Properties

 More generally, regional bias can be based on any appearance model of object and background

given object and background intensity histograms

Slide credit: Yuri Boykov & Jolly, ICCV' 01]

How to Set the Potentials? Some Examples

- Color potentials
 - > e.g. modeled with a Mixture of Gaussians

$$\phi(x_i, y_i; \theta_{\pi}) = -\log \sum_{k} P(k \mid x_i) N(y_i; \overline{y}_k, \Sigma_k)$$

- Edge potentials
 - > e.g. a "contrast sensitive Potts model"

$$\psi(x_i, x_j, g_{ij}(y); \theta_{\phi}) = \gamma g_{ij}(y) \delta(x_i \neq x_j)$$

where

$$g_{ij}(y) = e^{-\beta ||y_i - y_j||^2}$$
 $\beta = 2 \cdot avg(||y_i - y_j||^2)$

• Parameters θ_π , θ_ϕ need to be learned, too!

How Does it Work? The s-t-Mincut Problem

Graph (V, E, C)

Vertices V =
$$\{v_1, v_2 ... v_n\}$$

Edges E = $\{(v_1, v_2)\}$
Costs C = $\{c_{(1, 2)}\}$

The s-t-Mincut Problem

Slide credit: Pushmeet Kohli

What is an st-cut?

An st-cut (S,T) divides the nodes between source and sink.

What is the cost of a st-cut?

Sum of cost of all edges going from S to T

The s-t-Mincut Problem

Slide credit: Pushmeet Kohli

What is an st-cut?

An st-cut (S,T) divides the nodes between source and sink.

What is the cost of a st-cut?

Sum of cost of all edges going from S to T

What is the st-mincut?

st-cut with the minimum cost

History of Maxflow Algorithms

Augmenting Path and Push-Relabel

year	discoverer(s)	bound
1951	Dantzig	$O(n^2mU)$
1955	Ford & Fulkerson	$O(m^2U)$
1970	Dinitz	$O(n^2m)$
1972	Edmonds & Karp	$O(m^2 \log U)$
1973	Dinitz	$O(nm \log U)$
1974	Karzanov	$O(n^3)$
1977	Cherkassky	$O(n^2m^{1/2})$
1980	Galil & Naamad	$O(nm\log^2 n)$
1983	Sleator & Tarjan	$O(nm \log n)$
1986	Goldberg & Tarjan	$O(nm\log(n^2/m))$
1987	Ahuja & Orlin	$O(nm + n^2 \log U)$
1987	Ahuja et al.	$O(nm\log(n\sqrt{\log U}/m))$
1989	Cheriyan & Hagerup	$E(nm + n^2 \log^2 n)$
1990	Cheriyan et al.	$O(n^3/\log n)$
1990	Alon	$O(nm + n^{8/3} \log n)$
1992	King et al.	$O(nm + n^{2+\epsilon})$
1993	Phillips & Westbrook	$O(nm(\log_{m/n} n + \log^{2+\epsilon} n))$
1994	King et al.	$O(nm\log_{m/(n\log n)}n)$
1997	Goldberg & Rao	$O(m^{3/2}\log(n^2/m)\log U)$
		$O(n^{2/3}m\log(n^2/m)\log U)$

n: #nodes

m: #edges

 $U\!\!:\!$ maximum edge weight

Algorithms assume non-negative edge weights

Slide credit: Andrew Goldberg

How to Compute the s-t-Mincut?

Solve the dual maximum flow problem

Compute the maximum flow between Source and Sink

Constraints

Edges: Flow < Capacity

Nodes: Flow in = Flow out

Min-cut/Max-flow Theorem

In every network, the maximum flow equals the cost of the st-mincut

Flow = 0

Augmenting Path Based Algorithms

- 1. Find path from source to sink with positive capacity
- 2. Push maximum possible flow through this path
- 3. Repeat until no path can be found

Algorithms assume non-negative capacity

Flow = 0

Augmenting Path Based Algorithms

- 1. Find path from source to sink with positive capacity
- 2. Push maximum possible flow through this path
- 3. Repeat until no path can be found

Algorithms assume non-negative capacity

Flow =
$$0 + 2$$

Augmenting Path Based Algorithms

- 1. Find path from source to sink with positive capacity
- 2. Push maximum possible flow through this path
- 3. Repeat until no path can be found

Algorithms assume non-negative capacity

Flow = 2

Augmenting Path Based Algorithms

- 1. Find path from source to sink with positive capacity
- 2. Push maximum possible flow through this path
- 3. Repeat until no path can be found

Algorithms assume non-negative capacity

Flow = 2

Augmenting Path Based Algorithms

- 1. Find path from source to sink with positive capacity
- 2. Push maximum possible flow through this path
- 3. Repeat until no path can be found

Algorithms assume non-negative capacity

Flow = 2

Augmenting Path Based Algorithms

- 1. Find path from source to sink with positive capacity
- 2. Push maximum possible flow through this path
- 3. Repeat until no path can be found

Algorithms assume non-negative capacity

Flow =
$$2 + 4$$

Augmenting Path Based Algorithms

- 1. Find path from source to sink with positive capacity
- 2. Push maximum possible flow through this path
- 3. Repeat until no path can be found

Algorithms assume non-negative capacity

Flow = 6

Augmenting Path Based Algorithms

- 1. Find path from source to sink with positive capacity
- 2. Push maximum possible flow through this path
- 3. Repeat until no path can be found

Algorithms assume non-negative capacity

Flow = 6

Augmenting Path Based Algorithms

- 1. Find path from source to sink with positive capacity
- 2. Push maximum possible flow through this path
- 3. Repeat until no path can be found

Algorithms assume non-negative capacity

Flow = 6 + 1

Augmenting Path Based Algorithms

- 1. Find path from source to sink with positive capacity
- 2. Push maximum possible flow through this path
- 3. Repeat until no path can be found

Algorithms assume non-negative capacity

Flow = 7

Augmenting Path Based Algorithms

- 1. Find path from source to sink with positive capacity
- 2. Push maximum possible flow through this path
- 3. Repeat until no path can be found

Algorithms assume non-negative capacity

Sink

Augmenting Path Based Algorithms

- 1. Find path from source to sink with positive capacity
- 2. Push maximum possible flow through this path
- 3. Repeat until no path can be found

Algorithms assume non-negative capacity

Maxflow in Computer Vision

- Specialized algorithms for vision problems
 - Grid graphs
 - Low connectivity (m ~ O(n))

• Dual search tree augmenting path algorithm

[Boykov and Kolmogorov PAMI 2004]

- Finds approximate shortest augmenting paths efficiently
- > High worst-case time complexity
- Empirically outperforms other algorithms on vision problems

Efficient code available on the web http://www.adastral.ucl.ac.uk/~vladkolm/software.html

When Can s-t Graph Cuts Be Applied?

Regional term

Boundary term

$$E(L) = \sum_{p} E_{p}(L_{p}) + \sum_{pq \in N} E(L_{p}, L_{q})$$

$$\text{t-links} \quad \text{n-links} \quad L_{p} \in \{s, t\}$$

• s-t graph cuts can only globally minimize binary energies that are submodular. [Boros & Hummer, 2002, Kolmogorov & Zabih, 2004]

E(L) can be minimized by s-t graph cuts
$$E(s,s) + E(t,t) \le E(s,t) + E(t,s)$$
 Submodularity ("convexity")

- Non-submodular cases can still be addressed with some optimality guarantees.
 - > Current research topic

GraphCut Applications: "GrabCut"

- Interactive Image Segmentation [Boykov & Jolly, ICCV' 01]
 - > Rough region cues sufficient
 - > Segmentation boundary can be extracted from edges
- Procedure
 - ▶ User marks foreground and background regions with a brush → get initial segmentation → correct by additional brush strokes

User segmentation cues

Slide adapted from Matthieu Bray

GrabCut: Data Model

Global optimum of the unary energy

- Obtained from interactive user input
 - > User marks foreground and background regions with a brush
 - > Alternatively, user can specify a bounding box

Slide adapted from Carsten Rother

GrabCut: Coherence Model

• An object is a coherent set of pixels:

$$\psi(x,y) = \gamma \sum_{(m,n) \in C} \delta[x_n \neq x_m] e^{-\beta \|y_m - y_n\|^2}$$

How to choose γ ?

Slide credit: Carsten Rother

Iterated Graph Cuts

Result

Color model (Mixture of Gaussians)

Slide credit: Carsten Rother

GrabCut: Example Results

Summary: Graph Cuts Segmentation

Pros

- > Powerful technique, based on probabilistic model (MRF).
- > Applicable for a wide range of problems.
- > Very efficient algorithms available for vision problems.
- > Becoming a de-facto standard for many segmentation tasks.

Cons/Issues

- > Graph cuts can only solve a limited class of models
 - Submodular energy functions
 - Can capture only part of the expressiveness of MRFs
- > Only approximate algorithms available for multi-label case

Slide credit: B. Leibe

Summary

Introduction
Gestalt principles
Image segmentation

Segmentation as clustering k-Means Feature spaces

Model-free clustering: Mean-Shift

Interactive Segmentation with GraphCuts

Reading: F+P chapter 9; Sz 5.3, 5.5