Robotics Science and Systems:
Computer Vision

Image segmentation
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Many slides in this lecture are due to Vittorio Ferrari; other authors are credited on the bottom right



Topics of This Lecture

e [Introduction
> Gestalt principles
> Image segmentation

e Segmentation as clustering
» k-Means
> Feature spaces

e Model-free clustering: Mean-Shift

e Interactive Segmentation with GraphCuts

e Reading: F+P chapter 9; Sz 5.3, 5.5



Examples of Grouping in Vision

What things should
be grouped?

What cues
indicate groups?

Determiing image regions

Slide modified from: Kristen Grauman



Similarity in appearance

Slide adapted from Kristen Grauman
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Symmetry

Slide credit: Kristen Grauman

http://seedmagazine.com/news/2006/10/beauty_is_in_the_processingtim.php
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Slide credit: Kristen Grauman



Proximity

Slide credit: Kristen Grauman



Slide credit: Svetlana Lazebnik

The Gestalt School

e Grouping is key to visual perception

 Elements in a collection can have properties that result

from relationships
- “The whole is other than than the sum of its parts”
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http://en.wikipedia.org/wiki/Gestalt psychology

Image source: Steve Lehar



Gestalt Factors
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These factors make intuitive sense, but are very difficult to translate
into algorithms.

Slide credit: B. Leibe Image source: Forsyth & Ponce



The Ultimate Gestalt test

Slide adapted from B. Leibe



Image Segmentation

e Goal: identify groups of pixels that go together

2

Slide credit: Steve Seitz, Kristen Grauman



The Goals of Segmentation

e Separate image into objects

Image Human segmentation

Slide credit: Svetlana Lazebnik



The Goals of Segmentation

e Separate image into objects

e Group together similar-looking pixels for efficiency of
further processing

“superpixels”

X. Ren and J. Malik. Learning a classification model for segmentation. ICCV 2003.

Slide credit: Svetlana Lazebnik



Topics of This Lecture

e Introduction
> Gestalt principles
> Image segmentation

e Segmentation as clustering
» k-Means
> Feature spaces

e Model-free clustering: Mean-Shift

e Interactive Segmentation with GraphCuts



Image Segmentation: Toy Example

3 black pixels
ﬂ 2 ] /

gray
pixels
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input image L

intensity

e These intensities define the three groups.
e We could label every pixel in the image according to

which of these it is.

> i.e. segment the image based on the intensity feature.
e What if the image isn’ t quite so simple?

Slide credit: Kristen Grauman
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Input image

Pixel count
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Slide credit: Kristen Grauman
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e Now how to determine the three main intensities that
define our groups?

e We need to cluster.

Slide credit: Kristen Grauman
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e Goal: choose three “centers” as the representative
intensities, and label every pixel according to which of
these centers it is nearest to.

e Best cluster centers are those that minimize SSD
between all points and their nearest cluster center c;:

> > 1p — ¢il|?

clusters 12 points p in cluster 2

Slide credit: Kristen Grauman



Clustering

e With this objective, it is a “chicken and egg” problem:

- |If we knew the cluster centers, we could allocate points to
groups by assigning each to its closest center.
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- If we knew the group memberships, we could get the centers by
computing the mean per group.
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Slide credit: Kristen Grauman



K-Means Clustering

e Basic idea: randomly initialize the k cluster centers, and
iterate between the two steps we just saw.

1. Randomly initialize the cluster centers, c,, ..., ¢«

2. Given cluster centers, determine points in each cluster
- For each point p, find the closest c,. Put p into cluster i

3. Given points in each cluster, solve for c;
- Set ¢, to be the mean of points in cluster i

4. If c; have changed, repeat Step 2

e Properties
»  Will always converge to some solution

~ Can be a “local minimum”
- Does not always find the global minimum of objective function:

> > 1p — cil|?

clusters 12 points p in cluster 1

Slide credit: Steve Seitz



Segmentation as Clustering

img as_col = double(im(:));
cluster membs = kmeans(img _as_col, K);

labelim =

for i=1l:k
inds = find(cluster membs==i) ;
meanval = mean(img;;s_polumn(inds));
labelim(inds) = meanval;

end

zeros (size (im)) ;

Slide credit: Kristen Grauman



K-Means Clustering

e Java demo:
http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/AppletKM.html




Feature Space

e Depending on what we choose as the feature space, we
can group pixels in different ways.

e Grouping pixels based on
intensity similarity

e Feature space: intensity value (1D)

Slide credit: Kristen Grauman



Feature Space

e Depending on what we choose as the feature space, we
can group pixels in different ways.

e Grouping pixels based
on color similarity

AB

e Feature space: color value (3D)

Slide credit: Kristen Grauman



Segmentation as Clustering

e Depending on what we choose as the feature space, we
can group pixels in different ways.

e Grouping pixels based

on texture similarity =< N[0
~ |\ -
ENNIAE
ENNOEA

A

Filter bank
of 24 filters

e Feature space: filter bank responses (e.g. 24D)

Slide credit: Kristen Grauman



Spatial coherence

e Assign a cluster label per pixel = possible discontinuities

—>
Original Labeled by cluster center’s
intensity
1?

e How can we ensure they
are spatially smooth?

2

Slide adapted from Kristen Grauman



Spatial coherence

e Depending on what we choose as the feature space, we
can group pixels in different ways.

e Grouping pixels based on
intensity+position similarity

4 Intensity

&

X
=> Way to encode both similarity and proximity.

Slide adapted from Kristen Grauman



K-Means without spatial information

e K-means clustering based on intensity or color is
essentially vector quantization of the image attributes

~ Clusters don’ t have to be spatially coherent

Image Intensity-based clusters  Color-based clusters

Slide adapted from Svetlana Lazebnik Image source: Forsyth & Ponce



K-Means with spatial information

e K-means clustering based on intensity or color is
essentially vector quantization of the image attributes

.~ Clusters don’ t have to be spatially coherent

e Clustering based on (r,g,b,X,y) values enforces more
spatial coherence

Slide adapted from Svetlana Lazebnik Image source: Forsyth & Ponce



Summary K-Means

e Pros
> Simple, fast to compute
> Converges to local minimum

of within-cluster squared error

e Cons/issues
» Setting k?
» Sensitive to initial centers
» Sensitive to outliers
~ Detects spherical clusters only

» Assuming means can be
computed

Slide credit: Kristen Grauman

(A): Undesirable clusters

outher

) o
ogo 0.-.°
o (4] © [

o Q
(B): Id

deal clusters

(A): Two natural clusters

(B): &-means clusters



Topics of This Lecture

e Introduction
> Gestalt principles
> Image segmentation

e Segmentation as clustering
» k-Means
> Feature spaces

e Model-free clustering: Mean-Shift

e Interactive Segmentation with GraphCuts



Mean-Shift Segmentation

 An advanced and versatile technique for clustering-
based segmentation

Segmented "landscape 1" Segmented "landscape 2"

http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html

D. Comaniciu and P. Meer, Mean Shift: A Robust Approach toward Feature Space Analysis,
PAMI 2002.

Slide credit: Svetlana Lazebnik



Finding Modes

X G(x)\/ X v

Figure credit: Szeliski (2011) Fig 5.17

lx—x. I
—_ K -_ . _— )= !
f(x) E,- (x—x;) K(x-x,) k( % )

Goal: find peaks (modes) of f(x)



Mean-Shift Algorithm
Vi)=Y (x, - x)G(x-x,)=0

ExiG(yk - ‘xi)

]

Vir1 =
! EG(yk_xi)

[

Note: G() is the derivative of K()

Iterative Mode Search
1. Initialize random seed center y for k=0 (can be a data point)
2. Compute the weights G(y, — xi)
3. Calculate weighted mean y,_  as above
4. Repeat steps 2+3 until convergence

Slide adapted from Steve Seitz



Mean-Shift

Region of
interest

Center of
mass

& [ ® Mean Shift
vector

Slide by Y. Ukrainitz & B. Sarel



Mean-Shift

Region of
interest

Center of
mass

& [ ® Mean Shift
vector

Slide by Y. Ukrainitz & B. Sarel
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Slide by Y. Ukrainitz & B. Sarel
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Slide by Y. Ukrainitz & B. Sarel



Real Modal Analysis

Tessellate the space

with windows
Slide by Y. Ukrainitz & B. Sarel

Run the procedure in parallel



Real Modal Analysis

The blue data points were traversed by the windows towards the mode.
Slide by Y. Ukrainitz & B. Sarel



Mean-Shift Clustering

e Cluster: all data points in the attraction basin of a mode

e Attraction basin: the region for which all trajectories
lead to the same mode

Slide by Y. Ukrainitz & B. Sarel



Mean-Shift Clustering/Segmentation

e Choose features (color, gradients, texture, etc)
e |Initialize windows at individual pixel locations
e Start mean-shift from each window until convergence

e Merge windows that end up near the same “peak” or
mode | )

Slide adapted from Svetlana Lazebnik



Mean-Shift Segmentation Results
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http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html
Slide credit: Svetlana Lazebnik
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Slide credit: Svetlana Lazebnik



Summary Mean-Shift

e Pros
» General, application-independent tool

» Model-free, does not assume any prior shape (spherical,
elliptical, etc.) on data clusters

> Just a single parameter (window size h)

- h has a physical meaning (unlike k-means) == scale of clustering
» Finds variable number of modes given the same h
~ Robust to outliers

e Cons
> Output depends on window size h
» Window size (bandwidth) selection is not trivial
» Computationally rather expensive
- Does not scale well with dimension of feature space

Slide adapted from Svetlana Lazebnik



Topics of This Lecture

e Introduction
> Gestalt principles
> Image segmentation

e Segmentation as clustering
» k-Means
> Feature spaces

e Model-free clustering: Mean-Shift

e Interactive Segmentation with GraphCuts



Markov Random Fields

e Allow rich probabilistic models for images

e But built in a local, modular way
~ Learn local effects, get global effects out

e Addressing the image labelling problem

Observed evidence

Hidden “true states”

Neighborhood relations

Slide credit: William Freeman



MRF Nodes as Pixels (or Patches)

Image pixels

Slide adapted from William Freeman



Network Joint Probability

P(x,y
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Slide adapted from William Freeman



Energy Formulation

e Joint probability
1
P(x,p)= }nd)(xj,yl.)n W(r,r )
) -
e Maximizing the joint probability is the same as
minimizing the negative log
—log P(x, y)= —Elog O(x,p,)- Elog lIl(xl.,x/.) +c

F(x,p)= Eqp(xl.,)/l.) + Eq}(xl.,x/.)

e This is similar to free-energy problems in statistical
mechanics (spin glass theory). We therefore draw the
analogy and call £ an energy function.

 gpand vy are called potentials.
Slide credit: B. Leibe



Energy Formulation

e Energy function

Ex)= Dpx.5)  + Dw(.x)

) A )

@(x,, ;)

Unary Pairwise
potentials potentials

e Unary potentials ¢

» Encode local information about the given pixel/patch

> How likely is a pixel/patch to be in a certain state ?
(e.g. foreground/background)?

e Pairwise potentials y

» Encode neighborhood information

- How different is a pixel/patch’s label from that of its neighbor?
(e.g. here independent of image data, but later based on

intensity/color/texture difference)
Slide adapted from B. Leibe



Energy Minimization

e Goal:
> Infer the optimal labeling of the MRF.

e Many inference algorithms are available, e.g.
~ Gibbs sampling, simulated annealing
» Iterated conditional modes (ICM)
» Variational methods
~ Belief propagation
> Graph cuts

e Recently, Graph Cuts have become a popular tool
> Only suitable for a certain class of energy functions

» But the solution can be obtained very fast for typical vision
problems (~1MPixel/sec).

Slide credit: B. Leibe



Graph Cuts for Optimal Boundary Detection

e |dea: convert MRF into source-sink graph

hard 4 s a cut
. constraint
) o O
.0
<: OO
hard
constraint
A\

Minimum cost cut can be
computed in polynomial time

(max-flow/min-cut algorithms)

Slide adapted from Yuri Boykov [Boykov & Jolly, ICCV’ 01]



Simple Example of Energy

Regional term Boundary term
E(L) = 2D(L)+ EW -8(L, = L))
t-links n-links

Al
Twpq= exp{—zapj}

t
Dp(t)! <>
. o
o
j D, (s) L, E{s,t}
S o o

(binary segmentation)

Slide credit: Yuri Boykov



Adding Regional Properties

Regional bias example

Suppose [° and ['are given P
“expected” intensities D, (s) < exp (_” [,-I"|" /20 )
of object and background D (1) « exp (— \1,-1I'|’ /202)

NOTE: hard constrains are not required, in general.

Slide credit: Yuri Boykov [Boykov & Jolly, ICCV’ 01]



Adding Regional Properties

D, (1)

A t-link

“expected” intensities of o

object and background D, (s) o exp o I,-I'|’ 120 )
S t

[’ and [ Dp(z)ocexp(—H[p—]t ||2 /20’2)

can be re-estimated

EM-style optimization
[Boykov & Jolly, ICCV’ 01]

Slide credit: Yuri Boykov



Adding Regional Properties

e More generally, regional bias can be based on any
appearance model of object and background

L a cut D (L,)=-logPr(/, |L))

g/

given object and background intensity
histograms

Slide credit: Yuri Boykov [Boykov & Jolly, ICCV’ 01]



How to Set the Potentials? Some Examples

e Color potentials
> e.g. modeled with a Mixture of Gaussians

O(x,,7,;30,)==log ¥ Pk X))V (1;7,,2,)
£

e Edge potentials
- e.g. a "contrast sensitive Potts model”

W(x,x g, (1:0,)=vg,(1)(x, = x )
where

g, () = e_/iji_yjH B=2 avg(

2
v~ )

e Parameters 0, 8¢ need to be learned, too!

Slide credit: B. Leibe [Shotton & Winn, ECCV’ 06]



How Does it Work? The s-t-Mincut Problem

2 9 Graph (V, E, C)
Vertices V = {v;, v, ... V,.}
Edges E = {(v, v») ...}
Costs C={c( z) ...}

Slide credit: Pushmeet Kohli



The s-t-Mincut Problem

What is an st-cut?

An st-cut (S,T) divides the nodes
between source and sink.

What is the cost of a st-cut?

Sum of cost of all edges
going from Sto T

5+2+9 =16

Slide credit: Pushmeet Kohli



The s-t-Mincut Problem

What is an st-cut?

An st-cut (S,T) divides the nodes
between source and sink.

What is the cost of a st-cut?

Sum of cost of all edges
going from Sto T

What is the st-mincut?

st-cut with the
minimum cost

2+1+4=7

Slide credit: Pushmeet Kohli



History of Maxflow Algorithms

Augmenting Path and Push-Relabel

year | discoverer(s) | bound

1951 | Dantzig O(n?mU)

1955 | Ford & Fulkerson O(m2U)

1970 | Dinitz O(n°m)

1972 | Edmonds & Karp O(m?logU)

1973 | Dinitz O(nmlogU)

1974 | Karzanov O(n?)

1977 | Cherkassky O (n?m1/?)

1980 | Galil & Naamad O(nmlog?n)

1983 | Sleator & Tarjan O(nmlogn)

1986 | Goldberg & Tarjan O(nmlog(n?/m))

1987 | Ahuja & Orlin O(nm + n?logU)

1987 | Ahuja et al. O(nmlog(ny/logU/m))

1989 | Cherivan & Hagerup | E(nm + n?log®n)

1990 | Cheriyan et al. O(n3/logn)

1990 | Alon O(nm + n®3logn)

1992 | King et al. O(nm + n°T¢)

1993 | Phillips & Westbrook | O(nm(l10g,,,,n + 10g°Tn))

1994 | King et al. O(nm 109, /(n10gn) )

1997 | Goldberg & Rao O(m3?1og(n?/m)logU)
O(n?Pmlog(n?/m)logU)

Slide credit: Andrew Goldberg

n: #nodes
m: #edges

U: maximum
edge weight

Algorithms
assume non-
negative edge
weights



How to Compute the s-t-Mincut?

Solve the dual maximum flow problem

Compute the maximum flow
[ ] between Source and Sink

2 9 Constraints
Edges: Flow < Capacity

Nodes: Flow in = Flow out

| Min-cut/Max-flow Theorem

In every network, the maximum flow
equals the cost of the st-mincut

Slide credit: Pushmeet Kohli



Maxflow Algorithms

Flow =0 Augmenting Path Based
[ ] Algorithms
2 9 1. Find path from source to sink

with positive capacity

0 @ 2. Push maximum possible flow

5 4 through this path

3. Repeat until no path can be
found

Algorithms assume non-negative capacity
Slide credit: Pushmeet Kohli



Maxflow Algorithms

Flow =0 Augmenting Path Based
[ ] Algorithms
2 9 1. Find path from source to sink

with positive capacity

0 @ 2. Push maximum possible flow

5 4 through this path

3. Repeat until no path can be
found

Algorithms assume non-negative capacity
Slide credit: Pushmeet Kohli



Maxflow Algorithms

Flow =0+ 2 Augmenting Path Based
[ ] Algorithms
2.2 9 1. Find path from source to sink

with positive capacity

2. Push maximum possible flow
through this path

3. Repeat until no path can be
found

Algorithms assume non-negative capacity
Slide credit: Pushmeet Kohli



Maxflow Algorithms

Flow = 2 Augmenting Path Based
[ ] Algorithms
0 9 1. Find path from source to sink

with positive capacity

0 @ 2. Push maximum possible flow

3 4 through this path

3. Repeat until no path can be
found

Algorithms assume non-negative capacity
Slide credit: Pushmeet Kohli



Maxflow Algorithms

Flow = 2
low Augmenting Path Based

[ ] Algorithms

1. Find path from source to sink
with positive capacity

2. Push maximum possible flow
through this path

3. Repeat until no path can be
found

Algorithms assume non-negative capacity
Slide credit: Pushmeet Kohli



Maxflow Algorithms

F =2
low Augmenting Path Based

[ ] Algorithms

1. Find path from source to sink
with positive capacity

2. Push maximum possible flow
through this path

3. Repeat until no path can be
found

Algorithms assume non-negative capacity
Slide credit: Pushmeet Kohli



Maxflow Algorithms

F =2+4
low ' Augmenting Path Based

[ ] Algorithms

1. Find path from source to sink
with positive capacity

2. Push maximum possible flow
through this path

3. Repeat until no path can be
found

Algorithms assume non-negative capacity
Slide credit: Pushmeet Kohli



Maxflow Algorithms

F =
low =6 Augmenting Path Based

[ ] Algorithms

1. Find path from source to sink
with positive capacity

2. Push maximum possible flow
through this path

3. Repeat until no path can be
found

Algorithms assume non-negative capacity
Slide credit: Pushmeet Kohli



Maxflow Algorithms

Flow = 6 Augmenting Path Based
[ ] Algorithms
0 5 1. Find path from source to sink

with positive capacity

0 @ 2. Push maximum possible flow

3 0 through this path

3. Repeat until no path can be
found

Algorithms assume non-negative capacity
Slide credit: Pushmeet Kohli



Maxflow Algorithms

Flow =6 + 1 Augmenting Path Based
[ ] Algorithms
0 4 1. Find path from source to sink

with positive capacity

0 @ 2. Push maximum possible flow

2 0 through this path

3. Repeat until no path can be
found

Algorithms assume non-negative capacity
Slide credit: Pushmeet Kohli



Maxflow Algorithms

Flow =7 Augmenting Path Based
[ ] Algorithms
0 5 1. Find path from source to sink

with positive capacity

0 @ 2. Push maximum possible flow

3 0 through this path

3. Repeat until no path can be
found

Algorithms assume non-negative capacity
Slide credit: Pushmeet Kohli



Maxflow Algorithms

Flow =7
ow Augmenting Path Based

[ ] Algorithms

1. Find path from source to sink
with positive capacity

2. Push maximum possible flow
through this path

3. Repeat until no path can be
found

Algorithms assume non-negative capacity
Slide credit: Pushmeet Kohli



Maxflow in Computer Vision

e Specialized algorithms for vision !
problems |
> Grid graphs
> Low connectivity (m ~ O(n)) .
i X 4

e Dual search tree augmenting path
algorithm
[Boykov and Kolmogorov PAMI 2004]

> Finds approximate shortest augmenting
paths efficiently

~ High worst-case time complexity

» Empirically outperforms other
algorithms on vision problems

> Efficient code available on the web

http://www.adastral.ucl.ac.uk/~vladkolm/software.html
Slide credit: Pushmeet Kohli
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When Can s-t Graph Cuts Be Applied?

Regional term Boundary term

E(L) = EEP(LP) + EE(LP,Lq)
g t-links Past n-links LPE{Sat}

e s-t graph cuts can only globally minimize binary energies
that are submodular. [Boros & Hummer, 2002, Kolmogorov & Zabih, 2004]

E(L) can be minimized | « |E(s,5)+ E(t,1) < E(s,1) + E(2,5)
by s-t graph cuts

Submodularity (“convexity”)

e Non-submodular cases can still be addressed with some
optimality guarantees.
> Current research topic

Slide credit: B. Leibe



GraphCut Applications: “GrabCut”

e Interactive Image Segmentation [Boykov & Jolly, ICCV’ 01]
> Rough region cues sufficient

> Segmentation boundary can be extracted from edges

e Procedure

> User marks foreground and background regions with a brush 2>
get initial segmentation = correct by additional brush strokes

—'7W" W
= ==

Additional 7 , ¥
segmentation “§ 3
cues f*-"é’,:‘@ o

User segmentation cues

Slide adapted from Matthieu Bray



GrabCut: Data Model

Foreground Background

ER 0 R
Global optimum of
the unary energy
e Obtained from interactive user input

> User marks foreground and background regions with a brush
> Alternatively, user can specify a bounding box

Slide adapted from Carsten Rother



GrabCut: Coherence Model

e An object is a coherent set of pixels:

v =y 3 ol Je e B
(m,n

How to choose y?

w H~ O O

0 25 200 400 Y
Slide credit: Carsten Rother



Iterated Graph Cuts

R

Foreground .=/

. 4/ Background G

Color model
(Mixture of Gaussians)

Result

T 2 3 4
Energy after
each iteration

Slide credit: Carsten Rother



Example Results

GrabCut




Summary: Graph Cuts Segmentation

e Pros
» Powerful technique, based on probabilistic model (MRF).

- Applicable for a wide range of problems.
» Very efficient algorithms available for vision problems.
- Becoming a de-facto standard for many segmentation tasks.

e Cons/Issues
» Graph cuts can only solve a limited class of models

- Submodular energy functions
- Can capture only part of the expressiveness of MRFs

> Only approximate algorithms available for multi-label case

Slide credit: B. Leibe



Summary

Introduction
Gestalt principles
Image segmentation

Segmentation as clustering
k-Means
Feature spaces

Model-free clustering: Mean-Shift

Interactive Segmentation with GraphCuts

Reading: F+P chapter 9; 5z 5.3, 5.5



