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» Examples of multi-task learning
» Co-occurrence of ores (geostats)
» Object recognition for multiple object classes
» Personalization (personalizing spam filters, speaker
adaptation in speech recognition)
» Compiler optimization of many computer programs
» Robot inverse dynamics (multiple loads)

» Gain strength by sharing information across tasks

» More general questions: meta-learning, learning about
learning
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Gaussian process prediction
Co-kriging

Intrinsic Correlation Model
Multi-task learning:

» A. MTL as Hierarchical Modelling
» B. MTL as Input-space Transformation
» C. MTL as Shared Feature Extraction

5. Theory for the Intrinsic Correlation Model
6. Multi-task learning in Robot Inverse Dynamics
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1. What is a Gaussian process?

» A Gaussian process (GP) is a generalization of a
multivariate Gaussian distribution to infinitely many
variables

» Informally: infinitely long vector ~ function

» Definition: a Gaussian process is a collection of random
variables, any finite number of which have (consistent)
Gaussian distributions

» A Gaussian distribution is fully specified by a mean vector
p and covariance matrix

f~N(p,X)

» A Gaussian process is fully specified by a mean function
m(x) and a covariance function k(x, x’)
f(x) ~ GP(m(x), k(x,x'))
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The Marginalization Property

» Thinking of a GP as an infinitely long vector may seem
impractical. Fortunately we are saved by the
marginalization property

» So generally we need only consider the n locations where
data is observed, and the test point x,, the remainder are
marginalized out
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Drawing Random Functions from a Gaussian Process

Example one-dimensional Gaussian process

1(x) ~ GP(m(x) = 0,k(x. X)) = exp(~ (x — X}2)

To get an indication of what this distribution over functions looks
like, focus on a finite subset of x-values,
f = (f(x1), f(X2),...,f(xp))", for which

f~ N(0,%)

where ¥ = k(X;, X;)
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From Prior to Posterior

output, f(x)
output, f(x)

0 "0
input, x input, x

Predictive distribution

P(Vs X, X, ¥, M) = N (KT (X, X)[K + 020y,
k(X X,) + 02 — KT (X, X)[K + 027 Tk(x., X))
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Marginal Likelihood

1
log p(y|X, M) = —EyTK y—flog\K\— Iog(27r)

where K, = K + o21.
» This can be used to adjust the free parameters
(hyperparameters) of a kernel.

» There can be multiple local optima of the marginal
likelihood, corresponding to different interpretations of the
data
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2. Co-kriging

Consider M tasks, and N distinct inputs x4, ..., xy:
» fy is the response for the ¢ task on the i input x;
» Gaussian process with covariance function

k(x,£; X', m) = (f,(X)fn(X))

» Goal: Given noisy observations y of f make predictions of
unobserved values f, at locations X,

» Solution Use the usual GP prediction equations

11/38



2
A\
f758RN
250N
170\
/71705
AN
7 ity $SSN\\
N
i
oty

S
IR
1
i N
7

17

AR
R
Ry
p s

12/38



Some questions

» What kinds of (cross)-covariance structures match different
ideas of multi-task learning?

» Are there multi-task relationships that don’t fit well with
co-kriging?
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3. Intrinsic Correlation Model (ICM)

() fm(X)) = Klnk*(x,X')  yie ~ N(fi(xi), 07),

» K': PSD matrix that specifies the inter-task similarities
(could depend parametrically on task descriptors if these
are available)

» k*: Covariance function over inputs
» o2: Noise variance for the ¢ task.

» Linear Model of Coregionalization is a sum of ICMs
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ICM as a linear combination of indepenent GPs

» Independent GP priors over the functions z;(x) =
multi-task GP prior over f(X)s

(fo(%)fm(x')) = Kk (x,X')

» K e RMM s a task (or context) similarity matrix with
Kgfm _ (pm)TpZ

m=1...M
/m
fn (7

S
o
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» Some problems conform nicely to the ICM setup, e.g. robot
inverse dynamics (Chai, Williams, Klanke, Vijayakumar
2009; see later)

» Semiparametric latent factor model (SLFM) of Teh et al
(2005) has P latent processes each with its own
covariance function. Noiseless outputs are obtained by
linear mixing of these latent functions
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4 A. Multi-task Learning as Hierarchical Modelling

e.g. Baxter (JAIR, 2000), Goldstein (2003)
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Prior on # may be generic (e.g. isotropic Gaussian) or
more structured

» Mixture model on § — task clustering
» Task clustering can be implemented in the ICM model

using a block diagonal K, where each block is a cluster

Manifold model for 6, e.g. linear subspace =- low-rank
structure of K (e.g. linear regression with correlated
priors)

Combination of the above ideas — a mixture of linear
subspaces

If task descriptors are available then can have

Kefm = kf(tb tm)

Regularization framework: Evgeniou et al (JMLR, 2005),
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Integrate out 6
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4 B. MTL as Input-space Transformation

» Ben-David and Schuller (COLT, 2003), f(x) is related to
fi(x) by a X-space transformation f : X — X

» Suppose f>(X) is related to fi(x) by a shifta in x-space

» Then

(FOO)R(X)) = (A(X)A(X —a)) = ki(x, X' —a)

7%

—
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» More generally can consider convolutions, e.g.

nuwi/mu—wmumm'

to generate dependent f’s (e.g. Ver Hoef and Barry, 1998;
Higdon, 2002; Boyle and Frean, 2005). 6(x — a) is a
special case

» Alvarez and Lawrence (2009) generalize this to allow a
linear combination of several latent processes

R
%) = > [ hulx— x)g ()
r=1

» ICM and SPFM are special cases using the ¢() kernel
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4 C. Shared Feature Extraction

» Intuition: multiple tasks
can depend on the same
extracted features; all
tasks can be used to help

output layer

learn these features

» |f data is scarce for each
task this should help hidden layer 2
learn the features

» Bakker and Heskes hidden layer 1
(2003) — neural network
setup input layer (x)
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» Minka and Picard (1999): assume that the multiple tasks
are independent GPs but with shared hyperparameters

» Yu, Tresp and Schawaighofer (2005) extend this so that all
tasks share the same kernel hyperparameter, but can have
different kernels

» Could also have inter-task correlations

» Interesting case if different tasks have different x-spaces;
convert from each task-dependent x-space to same
feature space?
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5. Some Theory for the ICM

Kian Ming A. Chai, NIPS 2009
» Primary task T and secondary task S
» Correlation p between the tasks
» Proportion 7g of the total data belongs to secondary task S
» For GPs and squared loss, we can compute analytically

the generalizaton error e1(p, X7, Xs) given p(x)

» Average this over X7, Xs to get ¢7°(p, ws, n), the learning

curve for primary task T given a total of n observations for
both tasks.
» 79 is the lower bound on €7°.

» Theory bounds benefit of multi-task learning in terms of
avg
<
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Theory: Result on lower bound

Average
generalizatio

error

for T
€79(0,mg, n), single-task

€79(p, ms, n), multi-task

n

E?'vg(pa TS n) > (1 - p27r3) E?’vg(ou T n)

» Bound has been demonstrated on 1-d problems, and on
the input distribution corresponding to the SARCOS robot
arm data

25/38



Discussion

» 3 types of multi-task learning setup

» |[CM and convolutional cross-covariance functions, shared
feature extraction

» Are there multi-task relationships that don’t fit well with a
co-kriging framework?
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Multi-task Learning in Robot Inverse Dynamics

end effector

» Joint variables q. link 2
» Apply 7; to joint i to trace a trajectory.
» Inverse dynamics — predict 7i(q, q, q).

link 0 | \/ | base
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Inverse Dynamics
Characteristics of

» Torques are non-linear functions of x £ (q, 4. q).
» (One) idealized rigid body control:

potential
T . . T . A \V - C .
7i(x) = b; (Q)a + q Hi(a)q + gi(q) + g + f7sen(qy),
N > N /
kinetic viscous and Coulomb frictions

» Physics-based modelling can be hard due to factors like
unknown parameters, friction and contact forces, joint
elasticity, making analytical predictions unfeasible

» This is particularly true for compliant, lightweight humanoid
robots

28/38



Inverse Dynamics
Characteristics of

» Functions change with the loads handled at the end
effector

» Loads have different mass, shapes, sizes.

» Bad news (1): Need a different inverse dynamics model for
different loads.

» Bad news (2): Different loads may go through different
trajectory in data collection phase and may explore
different portions of the x-space.
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» Good news: the changes enter through changes in the
dynamic parameters of the last link

» Good news: changes are linear wrt the dynamic
parameters

(%) = y/ (x)7"
where #™ € R'! (e.g. Petkos and Vijayakumar,2007)
» Reparameterization:

(%) = y/ (x)7" = y] (AT A = 2] ()"

where A; is a non-singular 11 x 11 matrix
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GP prior for Inverse Dynamics for multiple loads

» Independent GP priors over the functions z;(x) =
multi-task GP prior over 7/"s

()T ) = (K Yo (x,X')

» K’ € RMM s a task (or context) similarity matrix with
(K )em = (p")7 P}

=
3
3
I
D
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GP prior for k(x, x’)

k(x,x) = bias + [linear with ARD](x, x')
+ [squared exponential with ARD](x, x')
+ [linear (with ARD)](sgn(q),sgn(q’))

» Domain knowledge relates to last term (Coulomb friction)
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v

Puma 560 robot arm manipulator: 6 degrees of freedom

Realistic simulator (Corke, 1996), including viscous and
asymmetric-Coulomb frictions.

4 paths x 4 speeds = 16 different trajectories:
» Speeds: 5s, 10s, 15s and 20s completion times.

» 15 loads (contexts): 0.2kg ... 3.0kg, various shapes and
sizes.

v

v

Joint 2

Joint5 () ¢ 0
Wrist Bend Joint 4 m—0.2 03 0.4 0.5 X/m0'6 0.7

Wrist rotation
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Training data

» 1 reference trajectory common to handling of all loads.
» 14 unique training trajectories, one for each context (load)
» 1 trajectory has no data for any context; thus this is always

novel

Test data

» Interpolation data sets for testing on reference trajectory
and the unique trajectory for each load.

» Extrapolation data sets for testing on all trajectories.
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sGP Single task GPs GPs trained separately for
each load
iGP  Independent GP GPs trained independently for

each load but tying parame-
ters across loads
pGP pooled GP one single GP trained by
pooling data across loads
mGP multi-task GP with BIC sharing latent  functions
across loads, selecting
similarity matrix using BIC

» For mGP, the rank of K’ is determined using BIC criterion
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Conclusions and Discussion

» GP formulation of MTL with factorization k*(x,x’) and K,
and encoding of task similarity

» This model fits exactly for multi-context inverse dynamics
» Results show that MTL can be effective

» This is one model for MTL, but what about others, e.g. cov
functions that don’t factorize?
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