
Unsupervised Learning of Multiple Objects in

Images

Michalis K. Titsias

T
H

E

U N I V E R S

I T
Y

O
F

E
D I N B U

R
G

H

Doctor of Philosophy

Institute for Adaptive and Neural Computation

School of Informatics

University of Edinburgh

2005

Abstract

Developing computer vision algorithms able to learn from unsegmented images con-

taining multiple objects is important since this is how humans constantly learn from

visual experiences. In this thesis we consider images containing views of multiple

objects and our task is to learn about each of the objects present in the images. This

task can be approached as a factorial learning problem, where each image is explained

by instantiating a model for each of the objects present with the correct instantiation

parameters. A major problem with learning a factorial model is that as the number of

objects increases, there is a combinatorial explosion of the number of configurations

that need to be considered. We develop a greedy algorithm to extract object models

sequentially from the data by making use of a robust statistical method, thus avoiding

the combinatorial explosion.

When we have video data, we greatly speed up the greedy algorithm by carrying out

approximate tracking of the multiple objects in the scene. This method is applied to raw

image sequence data and extracts the objects one at a time. First, the (possibly moving)

background is learned, and moving objects are found at later stages. The algorithm

recursively updates an appearance model so that occlusion is taken into account, and

matches this model to the frames through the sequence. We apply this method to learn

multiple objects in image sequences as well as articulated parts of the human body.

Additionally, we learn a distribution over parts undergoing full affine transformations

that expresses the relative movements of the parts.

The idea of fitting a model to data sequentially using robust statistics is quite gen-

eral and it can be applied to other models. We describe a method for training mixture

models by learning one component at a time and thus building the mixture model in a

sequential manner. We do this by incorporating an outlier component into the mixture

model which allows us to fit just one data cluster by “ignoring” the rest of the clusters.

Once a model is fitted we remove from consideration all the data explained by this

model and then repeat the operation. This algorithm can be used to provide a sensible

initialization of the mixture components when we train a mixture model.

iii

Acknowledgements

I am grateful to my supervisor Chris Williams for his invaluable guidance. I would

also like to thank David Barber for his advice in the early stage of the PhD. The last

three years I have been benefitted greatly from discussions with other members of the

ANC in Edinburgh and also from meetings of the machine learning group. Especially,

I thank Felix Agakov and Michael Schouten for innumerable discussions. Finally, I

would like to thank my family for their support especially the period of writing this

thesis.

iv

Declaration

I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

(Michalis K. Titsias)

v

Dedicated to the memory of my father Konstantinos Titsias.

vi

Table of Contents

1 Introduction 1
1.1 Computer vision and learning from examples 1

1.2 Outline of the thesis . 5

2 Learning multiple objects from images 7
2.1 Object recognition . 7

2.1.1 Global recognition methods 9

2.1.2 Local recognition methods 10

2.2 Unsupervised learning of multiple objects 12

2.2.1 Learning one object . 13

2.2.2 Learning one foreground object and the background 17

2.2.3 Learning multiple objects 22

2.3 Discussion . 24

3 Greedy learning of multiple objects using robust statistics 25
3.1 Factorial learning . 26

3.2 Learning one object using robust statistics 27

3.3 Greedy learning of multiple objects 28

3.3.1 Finding the background . 30

3.3.2 Finding the first object . 30

3.3.3 Learning further objects . 31

3.3.4 Summary of the greedy algorithm 34

3.4 Specification of the occlusion ordering and refinement of the object

models . 34

vii

3.5 Related work . 36

3.6 Experiments . 38

3.7 Discussion . 47

4 Fast learning of multiple objects and parts from video 49
4.1 Tracking multiple moving objects 50

4.2 Speeding up the greedy algorithm using tracking 53

4.2.1 Tracking the background 53

4.2.2 Tracking the foreground objects 55

4.3 Learning about parts . 56

4.3.1 Learning parts using the greedy algorithm 56

4.3.2 Finding the joint distribution of the parts 57

4.4 Related work . 60

4.4.1 Tracking . 60

4.4.2 Parts . 61

4.5 Experiments . 64

4.5.1 Demonstration of the tracking algorithm 64

4.5.2 Demonstration of learning the joint distribution over parts . . 68

4.6 Discussion . 71

5 Greedy training of mixtures models using robust statistics 73
5.1 Sequential algorithm for mixture models 74

5.1.1 Fitting one density model together with an outlier component 75

5.1.2 Fitting mixture models sequentially 77

5.1.3 Parameter initialization and specifying U
�
x � 82

5.2 Related work . 82

5.3 Experiments . 83

5.3.1 Training a J-component mixture model 83

5.3.2 Finding the number of components 86

5.4 Discussion . 87

6 General discussion 89
6.1 Summary . 89

viii

6.2 When is a greedy algorithm using robust statistics useful? 90

6.3 Directions for future work . 91

6.3.1 Further improvements on learning multiple objects 91

6.3.2 Unsupervised object recognition from images with multiple

objects . 93

A Transformation matrices and EM for one foreground object 95
A.1 Transformation matrices . 95

A.2 EM for learning one object against a static background 97

B Details of the greedy algorithm 101
B.1 Learning the background . 101

B.2 Learning the foreground objects . 102

B.3 Computation of the occlusion ordering 104

C Focused search as variational EM 107

Bibliography 109

ix

List of Figures

2.1 Learning “H” shapes from noisy images. 13

2.2 Comparison of the EM algorithm with the k-means algorithm for the

“H” shapes. 17

2.3 One object moving against a static background. 18

3.1 The generative model for learning multiple objects. 27

3.2 Learning two objects against a static background. 40

3.3 Pixels that are removed from consideration when the first object is

learned. 41

3.4 Learning two objects against a moving background. 42

3.5 Learning five objects against a static background. 43

3.6 Learning two objects against random backgrounds. 44

3.7 The appearances of the objects after refinement by maximizing the

complete data log likelihood. 45

3.8 Histograms indicating the improvement of the masks after maximizing

the complete data log likelihood. 45

4.1 Frames of the arms-torso video sequence. 58

4.2 Evolution of the background and foreground appearances during track-

ing. 66

4.3 The objects found by the tracking algorithm for the Frey-Jojic sequence. 67

4.4 The parts found by the tracking algorithm for the arms-torso sequence. 67

4.5 Two-dimensional plots of the data used to estimate the joint distribu-

tion over parts. 69

xi

4.6 Sampling of human upper body appearances from the learned joint

model for the parts. 70

5.1 Illustration of fitting a Gaussian using an outlier component. 76

5.2 Finding the number of clusters by fitting a mixture with an outlier com-

ponent. 87

B.1 Graphs showing the overlap between the objects when the occlusion

ordering is computed. 105

xii

List of Tables

5.1 t-statistic for the training set log likelihoods for the Brodatz textures. . 85

5.2 t-statistic for the test set log likelihoods for the Brodatz textures. . . . 85

5.3 Mean average log likelihoods for the test data in the digit6 dataset. . . 86

xiii

Chapter 1

Introduction

This thesis presents a framework for unsupervised learning of multiple objects in im-

ages. This chapter serves as an introduction to the topic of this thesis. In section 1.1

we give a definition of the general problem that computer vision attempts to solve and

discuss why learning from examples can be useful for doing this. We also discuss su-

pervised and unsupervised learning and how these methods have been used for object

recognition in computer vision. In section 1.2 we give a chapter by chapter outline of

the thesis.

1.1 Computer vision and learning from examples

Computer vision faces the problem of giving interpretation to images similarly to the

ability of the human visual system and brain to understand from visual experiences. A

computer vision system need not restrict itself to mimic human or animal vision and

can include, for example, other sensors such as those used in medical imaging technol-

ogy. Additionally, computer vision can provide a computational solution to a problem

that may not be similar to how human vision solves a similar problem. However, com-

puters’ performance is generally quite limited compared to human vision when both

attempt to solve the same problem. Therefore, better understanding of human vision

can potentially have a great impact on how computer algorithms are designed.

An illustrative way to think about how an imaging system will be used in practice

1

2 Chapter 1. Introduction

is to consider that it operates over time so that at each time it receives an input image

or an image sequence and then answers questions about the phenomena depicted in the

image or sequence. For example, such questions can be what is the category of each

object viewed in the image (e.g. is this object a car or not), where an object is located,

which is the area in the image that an object occupies, what an object is doing in the

image (e.g. is this man running or walking) etc. The answers to these questions can be

expressed as a set of discrete values or labels, so the system assigns labels to the image

that “explain” what is viewed. For example, if we are interested in labelling the image

according to the category of the objects it contains, the labels might be ‘human-face’

and ‘car’ indicating the image contains human faces and cars. We can have additional

labels such as labels expressing how many different faces and cars there are, separate

labels for each image pixel indicating the object the pixel is part of and others.

An ideal computer vision system can be constructed as follows. Enumerate all

possible images and for each image let the system memorize all the answers that we

wish to provide. However, this solution is computationally infeasible. There are far too

many images, e.g. for 20 � 20 gray scale images with 256 gray levels there are 256400

different combinations. The space of all possible labellings can be also very large and

thus intractable to naively enumerate.

Although the number of images is large, they are not randomly generated but highly

structured and constrained. This structure can be thought as a kind of repeatability

property that obtains several forms. To mention some examples, if we observe a patch

in an image with certain colour or texture is very likely this patch to be repeated (but

not with exactly the same appearance) in a neighbouring area of the image. Also if

we have a set of images showing faces, even though all faces are different there are

repeated characteristics that exist in any face image. Similar images will obtain similar

labellings and thus there is an underlying smooth relationship between input images

and desired labellings. This allows for a principled solution based on learning from

a set of training images. For example, say we have a set of images of faces and we

wish to learn how to discriminate between faces and any other object. A solution

based on learning from examples will be to use a set of images showing human faces

and attempt to memorize the ‘essence’ of a face or in other words what is roughly

1.1. Computer vision and learning from examples 3

repeated in any face image and use this information to detect faces in novel images.

Learning from examples does require memorization, however, we might not need to

explicitly memorize the training images but extract some important information from

these examples that can be transferred to novel images.

Learning from examples has long history in statistics and pattern recognition; see

e.g. Duda and Hart (1973). One commonly applied set of techniques for image anal-

ysis are supervised classification algorithms where the objective is to learn how to

predict the class label of an input vector through a training process using a set of la-

belled examples. Object recognition is a classification problem where an object view

should be classified into one of a set of possible categories. However, when there are

multiple objects instantiated in an image, multiple class labels need to be provided.

Additionally, due to the relative locations of camera and object, the size of the object

within the image as well as the pose and the orientation can vary and this variation can

generate a very large number of different images of the same object. Thus, the exact

process for training a classifier from a set of images needs careful consideration. A

widely used training framework is to collect a set of training images with each image

showing a single object (against some background) and label each image with the class

label of the object shown (Ullman, 1996; Forsyth and Ponce, 2003). Furthermore, the

images are normalized so that the object has a certain size and location (usually centred

in the image) so that the classifier does not have to deal with the huge variation due

to the object’s instantiation parameters. Collecting the training images requires sig-

nificant human involvement. Typically, a human should either create the images in a

suitable imaging environment where one object appears in the images (with additional

constraint of being centred and with a certain size) or segment object views from more

naturally captured images containing multiple objects. The way the trained classifier

is applied to novel data also needs consideration, since we wish to classify naturally

taken images with multiple objects and account also for occlusion and clutter rather

than one-object per image examples as those used in the training. This process, also

called recognition or detection, is desired to be efficient and fast.

An different class of learning methods is unsupervised algorithms which make

use only of the input data without requiring any labelling information. In unsuper-

4 Chapter 1. Introduction

vised learning we aim to identify regularities in data. One fairly simple unsupervised

learning model is clustering, which assumes that each input data comes from a finite

number of types of object, and thus data is produced by choosing one of these ob-

jects and then generating the data conditional on this choice. For learning objects in

images general purpose clustering algorithms presented in the literature are not im-

mediately useful. A reason for this is that in order to discover objects by clustering

we should be able to deal with the variation due to the instantiation parameters. For

example, a useful clustering algorithm should be able to group images of the same

object into one cluster independently from the variation due to translation, rotation

and scaling. Learning about objects taking this regularity into account has been called

transformation-invariant clustering by Frey and Jojic (1999, 2003). However, this work

is still limited to finding a single specific object (not an object category) from the train-

ing images. Furthermore, realistic images contain multiple objects and thus clustering

is not very useful since it can only assign a single label to the image, while the image

should be explained by multiple labels. A more general model explains an image by

multiple causes that correspond to different objects. This type of unsupervised learning

is referred as factorial learning, see, for example, Barlow (1989), Hinton and Zemel

(1994), Saund (1995). The approach of Frey and Jojic (1999) can be extended so that

to deal with multiple objects (Jojic and Frey, 2001). The main focus of this thesis is

to further investigate unsupervised factorial learning by providing a new probabilistic

model and algorithm for learning multiple objects as well as object parts from images.

Humans seem to learn how to recognize objects in quite different learning scenar-

ios than the one commonly used in computer vision for training a object recognition

system. Particularly, we constantly learn new object categories from visual experi-

ences containing multiple objects under clutter and occlusion, yet this ability seems to

largely come from unsupervised learning. Particularly, our ability to group parts of an

image into objects is probably based on cues such as motion, spatial coherence, texture

similarity, the experience of similar objects seen in the past and others (Wertheimer,

1923; Kanizsa, 1979), see also Forsyth et al. (1997). For this reason, developing un-

supervised learning algorithms and especially algorithms that learn from images with

multiple objects under complex backgrounds and occlusion is important, and might

1.2. Outline of the thesis 5

have a great impact on computer vision performance in the future.

1.2 Outline of the thesis

This thesis addresses the problem of learning multiple objects from a set of images

using unsupervised learning. The input images we are dealing with show some spe-

cific objects, such as cars and humans, against some background. The objects and

the background move relative to each other so that in different images an object can

be transformed according to translation, rotation, scaling etc. Note that such data are

frequently captured in image sequences.

Chapter 2 introduces a probabilistic generative model that explains each image

as a synthesis of a background model and L models corresponding to L foreground

objects. The object models are 2D appearance images and masks where the latter

specify the shape of the objects. The model generates an image by first selecting

transformations for the individual objects and the background and then synthesizing

the image so that objects combine by occlusion. Jojic and Frey (2001) have developed

a similar generative model and used a variational EM algorithm for training. The

chapter also gives a brief introduction to object recognition since we view learning

multiple objects as part of the general problem of learning an object recognition system

using a set of example images.

Exact learning using the EM algorithm of the model for multiple objects is in-

tractable. In Chapter 3 we develop a sequential or greedy algorithm that finds one

object at each time using a robust statistical method. The robust statistical method

means that when we learn an object, certain parts of an image where other not-yet-

explained objects exist are considered as outliers. Once we have learned an object, we

have explained the area in any training image that is occupied by this object and thus

by removing the respective image pixels from consideration we can search for a new

object at the next run of the algorithm. In this chapter we show results of extracting

objects in real images considering only a translational motion of the objects.

Chapter 4 builds upon the framework for learning multiple objects using the greedy

algorithm and focuses on learning from video data as opposed to unordered images.

6 Chapter 1. Introduction

Particularly, this chapter describes the following methods:� For video data we greatly speed up the greedy algorithm by tracking the objects

before knowing their full structure. Note that tracking allows to compute the

object’s transformations quickly. We have developed a novel tracking algorithm

that works in conjunction with the greedy algorithm.� We apply this tracking algorithm to learn parts of articulated objects, such as the

human body, from video data. Once the appearances of the parts of an object

have been learned, we compute a joint probability distribution over the trans-

formations of the parts that models the joint instantiation of these parts so that

valid object’s shapes can be generated. This distribution is derived by expressing

the transformations through using transformed landmarks on the parts and com-

puting a mixture of Gaussians distribution over these landmarks, where each

Gaussian is a probabilistic Principal Components Analysis (PCA) model.

The methods in this chapter are demonstrated by experiments in real video sequences

and considering full affine transformations for the objects.

The idea of using robust statistics and a greedy algorithm to learn a model in a

sequential way is quite general and can be applied to others models. In Chapter 5
we show how we can train a mixture model using an outlier component so that at each

stage a new mixture component is fitted to the data. We show that this algorithm can be

useful for providing a good initial parameter estimate when we train a mixture model.

Chapter 6 summarizes the main contributions of the thesis and describes directions

for future research.

Chapter 2

Learning multiple objects from images

We start this chapter by giving an introduction to the object recognition problem. Then,

we describe a probabilistic model for learning appearance-based models of multiple

objects from a set of images using unsupervised learning. The generative model pro-

duces an image as a synthesis of L foreground objects, modelled by 2D appearance

images and masks, and a background which is modelled by an appearance image. In

this chapter we do not describe any algorithm for learning the parameters of this model

as this is the topic of chapter 3. Much of the work of this chapter as well as the next

chapter has been presented in Williams and Titsias (2003, 2004).

Section 2.1 gives a brief introduction to the problem of visual object recognition.

Section 2.2 describes a probabilistic generative model for learning multiple objects and

and the chapter concludes with a discussion in section 2.3.

2.1 Object recognition

Visual object recognition deals with the problem of detecting objects in images and

assigning them into object classes. An object class can be a specific object such as

the face of a certain individual, or more generally, an object category such as the class

of all human faces and cars. Clearly, object recognition requires building a classifier

like those developed in statistical pattern recognition, see e.g. Duda and Hart (1973).

However, object recognition and image analysis have a number of idiosyncrasies that

7

8 Chapter 2. Learning multiple objects from images

make the classification process a very difficult and challenging problem.

To illustrate the important challenges that arise when developing an object recog-

nition system, assume that images are constrained to have a neutral background and

contain the view of a single object. We further assume that the object can sometimes be

a member of some class “C”. The system should respond with a positive answer when

an image contains an object of class “C” and a negative answer otherwise. Clearly,

the efficiency of this system depends on its ability to generalize across the space of

variation according to which instances of the object class “C” can vary from image to

image. There are two main sources of variation of object appearance in the images.

The first source is related to the camera viewpoint and any other imaging conditions

such as lighting conditions. Since an image is a projection of an three-dimensional

world (with three-dimensional objects) into a two-dimensional space, the viewpoint of

the camera can significantly affect the appearance of an object within the image. Due

to this source of variation the object can be located in the image according to some

unknown 3D transformation parameters. For example, consider pictures of a specific

chair taken from different viewpoints; the images might vary significantly despite the

fact the chair has invariant characteristics. The second source of variation describes

changes related to the internal characteristics of the object class, so that even with a

fixed camera viewpoint and imaging conditions the object appearance within the image

can still vary. Such variation is called intra-class variation and includes changes of the

object’s shape, or any other kind of deformation, e.g. consider a cat running, a human

face that changes expressions etc. Notice that when the object class is a general cate-

gory rather than a specific object, large variability naturally arises due to the different

specific objects falling within the same class.

Realistic images can have background clutter and contain multiple foreground ob-

jects that we wish to recognize. In this case the appearance of an object can vary

because of possible occlusions or shadows caused by other objects in the scene. For

example, imagine a camera tracking a man walking in a street where other objects such

as cars and trees are interposed between the camera and the man, so that certain parts of

the man completely disappear in an observed image. This type of variation caused by

occlusion is different from the types of variation described earlier and can be thought

2.1. Object recognition 9

as a kind of structured noise. Also note that multiple objects can significantly com-

plicate the recognition or detection of the objects in an novel image. Particularly, to

detect multiple objects we should be able to carry out a segmentation of the image into

different objects so that the segmented features that belong to a single object will be

further classified to one of a number of possible classes.

Below we briefly review two general frameworks for building object recognition

systems following the division into global and local methods adopted by Forsyth and

Ponce (2003). Particularly, in section 2.1.1 we discuss global methods where the clas-

sifier attempts to model the variation in a global sense. In section 2.1.2 we discuss

local methods that use separate models to deal with the variation of local parts of the

object and have an additional model describing the co-occurrence or joint instantiation

of the parts.

2.1.1 Global recognition methods

The simplest method for recognizing an instance of an object class in an image is tem-

plate matching or matched spatial filters (see Brunelli and Poggio, 1995 for a relatively

recent review). This method assumes that the object exists in some window of certain

size within the image and matches all possible windows with a stored template. The

template model is a 2D image showing the average intensity values of the object. If we

don’t know the orientation and scale of the object we need to consider many templates

for each possible set of these parameters. Clearly, this approach can be only used for

specific objects. since for general object classes, such as the classes of all faces, we

cannot represent significant object intra-class variation with a template. More flexi-

ble templates are based on eigenspaces (Sirovich and Kirby, 1987; Turk and Pentland,

1991; Murase and Nayar, 1995). In this method a collection of objects within a class

are represented as a linear combination of some basis templates estimated, for instance,

as the first few principal components from a set of training images. The basis templates

are then used as a set of global building blocks that represent the variation of the object

class.

The techniques described so far can be thought as model-based methods since there

is an assumed appearance model describing the object class and thus recognition is

10 Chapter 2. Learning multiple objects from images

finding a matching or correspondence of this model to a novel image. If this matching

is good, then the object is present in the image, otherwise it is not. Also, this type

of methods can be considered as generative classifiers since roughly speaking there

is an underlying class-conditional distribution being modelled according to which an

instance of the object class is generated given the set of parameters that describe the

object model.

An alternative to the model-based approach is a general purpose discriminative

classifier such as a neural network or a Support Vector Machine (SVM); see e.g. Bishop

(1995); Vapnik (1998). For example, a neural network can be trained to output the

posterior probability that an input image patch (or a set of features extracted from the

original patch) depict the frontal view of a human face. Training can be carried out us-

ing labelled data of fixed-size image patches that consist of faces with (approximately)

fixed orientation and scale as well as a set of negative examples coming from natural

images that do not show a face. Once the neural network is trained, recognition is per-

formed using the same principle as in the template matching; we scan the novel image

by taking all windows of the same size as the image patch and compute the output of

the neural network for this window (Poggio and Beymer, 1996). Rowley et al. (1998)

applied such a method using neural networks for face recognition and similarly Oren

et al. (1997) have used SVMs to recognize pedestrians.

2.1.2 Local recognition methods

Local based recognition methods make use of the idea that small parts of an object

vary much less across instances of the object class than the whole object. Thus, the

variation of the whole object can be modelled in a two-fold way: (i) model separately

the variation of small parts and (ii) model the joint instantiation (e.g. spatial relation-

ships) of these parts. For example, for face recognition, the parts may be templates for

the eyes, noise and mouth. Two faces might have very similar parts, but they might

look different since the different spatial layout of these parts. Using parts-based repre-

sentation for objects dates back to Fischler and Elschlager (1973) pictorial structures

model. An influential work in this idea is the Recognition by Components method of

Biederman (1987) where some volumetric primitives are used as universal 3D parts.

2.1. Object recognition 11

Instead of having appearance based parts we might have any kind of local features that

described a local area of the object. Such features include local image patches, cor-

ner or texture patches (Weber et al., 2000; Ioffe and Forsyth, 2001), wavelet functions

(Schneiderman and Kanade, 2004) and Gaussian derivative filters (Felzenszwalb and

Huttenlocher, 2000). Ullman et al. (2002) have proposed a method that selects class-

specific 2D object fragments as parts which are selected from the training images using

mutual information.

The above description of local recognition methods is a model based approach. The

object model consists of the set of parts or local features and a model that describes the

relationships between the parts (the joint model for the parts) according to which valid

objects can be produced. Note that some authors ignore the relationships of the parts

and considered them as being independent (see e.g. Ullman et al., 2002; Csurka et al.,

2004). A simple way to match the object into an image is first to detect independently

features from the image and then find correspondences between these features and the

object parts. This is the approach taken by Weber et al. (2000); Fergus et al. (2003).

However, this not the optimal strategy since the parts are less distinctive than the whole

object and detection of them can be difficult. A more principled approach is described

in Felzenszwalb and Huttenlocher (2000, 2005) which uses the joint model of the parts

to assist the detection of the features, so that detection of the features and recognition

of the object are carried out simultaneously. In their method, the prior as well as the

posterior distribution of the parts locations has a tractable tree structure and an efficient

dynamic programming algorithm is applied.

Parts-based recognition has also been applied in a discriminative framework. For

example, Heisele et al. (2002) use separate SVMs to model the variation of object parts

and uses an additional global SVM trained to work like a joint model for the parts.

Particularly, for each object part they train a separate SVM to discriminate between

instances of that part and any other image patch coming from natural images. Then, the

global SVM takes as input the output of these SVMs and the locations of the detected

parts and is trained to recognize the whole object.

An important question is how model-based or generative recognition systems com-

pare with discriminative classifiers. Discriminative classifiers bypass a great amount

12 Chapter 2. Learning multiple objects from images

of object class variation and only concentrate on the decision boundary between the

object class and the rest classes. However, when a novel image contains an object of

some unknown class, the classifier will always choose one of the classes without hav-

ing any obvious diagnostic mechanism indicating that the object is an “outlier”. To

overcome this, we should attempt to model the decision boundary of an object and

all the rest natural images. However, we might need a enormous amount of negative

examples (plus the positive examples) to efficiently discover such a decision boundary.

The good point about these methods is that there are now several standard techniques

such as SVMs, that someone can use as “black boxes”. Generative methods attempt to

model the internal variation of an object class and can be trained by using examples of

only the object class of interest. This is an implicit way to approximate the decision

boundary of the object class with the rest possible natural images, without requiring

any reference to negative examples. However, views of an object class might have a

huge variation and designing generative methods capable of expressing this variation

can be very challenging. Finally, an advantage of the generative or model-based clas-

sifiers is that they can be applied even in case the class labels are not given. On the

other hand discriminative classifiers will need the class labels at least for some of the

examples.

2.2 Unsupervised learning of multiple objects

Training an object recognition system using a set of examples is typically carried out

using labelled data. The notion of labelled data can take several forms. For example,

some learning algorithms might require the objects in each image to be segmented or

each image to contain a single object in a normalized location. Typically we will need

a human either to do the segmentation or collect the images in the desired format. Also

classifiers (and especially discriminative classifiers) need the class label of each train-

ing example. Parts-based methods might require additional labelling information, e.g.

the methods of Felzenszwalb and Huttenlocher (2000); Heisele et al. (2002) need the

label and the location of each part in all training examples. Developing less supervised

training algorithms for object recognition can be difficult. For example, to automate

2.2. Unsupervised learning of multiple objects 13

(a) (b)

Figure 2.1: Learning “H” shapes from noisy images. (a) displays two of the training

images and (b) shows the true underlying appearance f of the object.

segmentation in still images with multiple objects captured in realistic imaging envi-

ronments is a very hard problem.

In this section and in the most of the remaining part of the thesis we focus on meth-

ods that can learn object models from images using unsupervised learning. Such a

method has been recently introduced by Frey and Jojic (1999, 2003) and it can learn

a simple appearance template of an object from a set of images using a probabilistic

generative model. In section 2.2.1 we review the Frey and Jojic work for learning a

single object and we also discuss the advantages of probabilistic methods for unsuper-

vised learning over other k-means type of algorithms. In sections 2.2.2 and 2.2.3 we

discuss learning multiple objects.

2.2.1 Learning one object

Consider an image x of size Px � Py containing P
de f� PxPy pixels, arranged as a length P

vector. Suppose now we have a set of noisy images X ��� x1 �	�
�
��� xN � each containing

the view of a foreground object in front of a highly varied (or clutter) background so

that the location of the object within an image can change in different images. Figure

2.1a shows two examples of a artificial data set of 9 � 9 “H” shapes against a clutter

background. We wish to learn the appearance of “H” using the available images. Next

we view learning the object as the inversion of a generative process according to which

each image was generated.

Let assume that the appearance of the object is an image f arranged as a length P

vector. Figure 2.1b shows the underlying appearance corresponding to the “H” shapes.

14 Chapter 2. Learning multiple objects from images

An image x can be thought as being generated from f according to the following pro-

cess:� select a transformation j from a set of J possible transformations and apply j to

f so that Tjf is the transformed appearance and Tj is the transformation matrix� generate x by adding some zero mean independent noise to each pixel of T jf,
where the noise variance can vary in different pixels

We assume that the set of transformations for the “H” shapes that can generate any

possible image is a window of 7 � 7 translations in units of one pixel with wraparound.

In this case the transformation matrix Tj is a permutation matrix that shifts the image

f in the 2D plane. For example, the left image in Figure 2.1a is generated by shifting f
shown in Figure 2.1b two pixels left and down and then adding noise. In general, the

set of transformations can correspond to translations, rotations and scalings and T j is

generally a very sparse matrix. Latter in the thesis we will make use of transformation

matrices that have only one non zero element (with value 1) in each row and correspond

to an affine transformation of an image. The permutation matrices we assume here is a

special case of such matrices. Appendix A.1 clarifies the form of these transformation

matrices.

The appearance f is not known beforehand and our task is to learn this appearance

using the set of training images. We can imagine this procedure as applying the inverse

transformation according to which each training image was originally generated and

averaging to obtain f. However, this is not an easy task since the transformations are

unknown and in order to specify them we need an estimate of f1. A simple algorithm to

solve this “chicken-and-egg” problem is to initialize f and iterate between the following

two steps:� given the current value of f find for each image xn the transformation jn that

gives the best alignment (with the smallest euclidean distance) of T jnf with xn� given the estimated transformations apply the inverse transformations to xn and

1A good estimate of f would allow us to align f with each image and determine the transformations.

2.2. Unsupervised learning of multiple objects 15

update f

f � 1
N

N

∑
n 1

T � 1
jn xn � (2.1)

where T � 1
j is the inverse transformation matrix, and since we have chosen T j to be a

permutation matrix, it is equal to the transpose T T
j . We can easily show that the above

algorithm minimizes the sum of square errors

E � N

∑
n 1

min j ��� xn � Tjf ��� 2 � (2.2)

where ��� y � z ��� 2 denotes the squared euclidean distance between y and z, with respect

to f and the transformations. From now on we call this algorithm k-means algorithm

since it operates similarly to the k-means used for clustering.

Clearly, the way an image x is generated from f is stochastic. A formal way to

describe this stochastic process is to explicitly express a model for the probability

density of x. Next, we describe such a probabilistic model and we demonstrate that

training this model using the EM algorithm is much more effective than the k-means

algorithm.

Suppose first that the transformation j is selected according to some prior proba-

bility Pj so that ∑J
j 1 Pj

� 1. Typically we don’t have preference to any transformation

and thus we can choose an uniform prior. Then, an image is generated by a Gaussian

with spherical covariance matrix σ2
f I and mean Tjf. The choice of the spherical co-

variance matrix reflects our assumption that the noise is added independently to each

pixel and additionally it has the same variance. Compiling together these assumptions

the underlying density of x is the following mixture of Gaussians

p
�
x � � J

∑
j 1

PjN
�
x;
�
Tjf � � σ2

f I � � (2.3)

where N
�
x;µµµ � Σ � denotes a Gaussian with mean µµµ and covariance Σ. This model has

been introduced by Frey and Jojic (1999, 2003)2 and is referred as transformation-

invariant clustering. To find the object appearance we can maximize the log likelihood

2To be precise, this is a simplification of the Frey and Jojic (2003) model where we assume that there
is no noise added to f before the transformation is applied and also the post transformation noise has
spherical covariance matrix.

16 Chapter 2. Learning multiple objects from images

L � ∑N
n 1 log p

�
xn � with respect to the parameters

�
f � σ2

f � . The EM algorithm (Demp-

ster et al., 1977) can be used to find a local maximum of the log likelihood. Particularly

given some initialization of
�
f � σ2

f � , EM iterates between the following steps:� Expectation-step: Given the current values of
�
f � σ2

f � find the posterior distribu-

tion over transformations P
�
j � xn � for any image xn:

P
�
j � xn � � PjN

�
xn;

�
Tjf � � σ2

f I �
∑J

i 1 PiN
�
xn;

�
Tif � � σ2

f I � � (2.4)

� Maximization-step: Given the weights P
�
j � xn � update the parameters as follows:

f � 1
N

N

∑
n 1

J

∑
j 1

P
�
j � xn � T � 1

j xn � (2.5)

σ2
f
� 1

NP

N

∑
n 1

J

∑
j 1

P
�
j � xn � ��� xn � Tjf ��� 2 � (2.6)

How to derive these updates is shown in appendix A.2. Note that the EM algorithm

iteratively optimizes over parameters by first expressing a distribution over all transfor-

mations and then updates the parameters using weighted averages based on the poste-

riors P
�
j � xn � . As the number of iterations increases typically each P

�
j � xn � will become

sharply picked around the most probable transformation and will obtain close to zero

value for the rest of transformations. In practice, at the convergence point only one

transformation, say jn, will get all the probability mass (i.e. P
�
jn � xn ��� 1) so that the

update (2.5) will conform to the update of (2.1) of the k-means algorithm. However,

at the early iterations the EM updates can be very different than those of k-means

algorithm.

To compare the EM algorithm with the k-means we created 20 datasets of “H”

shapes, each having 40 training examples. In each data set we choose an initialization

for the appearance f so that each pixel value takes a random value within the range of

maximum and minimum pixel value of all images. Then, we use the same initializa-

tion to run both algorithms. σ2
f for the EM is initialized to a large value. Figures 2.2a

and 2.2b display the appearances found by the two algorithms averaged over the 20

datasets. We also repeat the above experiment by initializing f closer to the true value

2.2. Unsupervised learning of multiple objects 17

(a) (b) (c) (d)

Figure 2.2: (a) shows the estimated appearance (averaged over 20 trials) for the EM al-

gorithm using random initializations (within the range of the image pixel values) and (b)

shows the corresponding appearance for the k-means. (d) and (c) show the estimated

appearances for the EM and the k-means respectively that are found by initializing the

appearances to be closer to the true value.

of the appearance and the results are displayed in Figure 2.2d for the EM and in Fig-

ure 2.2c for the k-means respectively. Clearly, EM can be bootstrapped by a random

initialization of the object appearance f, while k-means cannot find any meaningful

answer for such initialization. Even with an improved intialization scheme k-means

performs poorly.

Additionally to the above benefits over k-means type of algorithms for learning

objects, probabilistic models allows us to introduce prior knowledge in a principled

manner. For example, in the above model we can incorporate priors over transforma-

tions and over the parameters. Furthermore, we can always enhance a probabilistic

model by plugging in new hidden variables and parameters so that to deal with more

complex data. For example, what we will do in the next section is to modify the above

probabilistic model in order to deal with images with one foreground object against a

static or moving background rather than a clutter.

2.2.2 Learning one foreground object and the background

Consider the images of Figure 2.3a which show one foreground object against a static

background. The model described in the previous section cannot efficiently explain

these images since it assumes only one object present in the images while now the

objects are clearly two: the background and the movable foreground object. Thus, we

18 Chapter 2. Learning multiple objects from images

(a)

(b)

Figure 2.3: One object moving against a static background. (a) panel shows two images

of the training set, while panel (b) shows the object and the background found by the EM

algorithm. The left plot in (b) shows the mask πππ, the middle plot shows the element-wise

product πππ � f and the third plot displays the background b.

should introduce an appearance model for the background as well. We will generally

assume that the background can be one of three cases: (i) a static background that is

fixed for all training images, (ii) a moving background which occurs for example when

a moving camera captures a sequence of frames and (iii) random backgrounds where

each image can have a completely different background.

The two key issues that we must deal with are the notion of a pixel being modelled

as foreground or background, and the problem of transformations of the object and the

background. We consider first the foreground/background issue and we assume that

the background is static; cases (ii) and (iii) are discussed later in this section.

As the foreground object will occupy only a subset of the Px � Py pixels and the rest

will be background, we will need to specify which pixels belong to the background and

which to the foreground; this is achieved by a vector of binary latent variables s, one for

each pixel. Each binary variable in s is drawn independently from the corresponding

entry in a vector of probabilities πππ. For pixel p, if πp � 0, then the pixel will be

ascribed to the background with high probability, and if πp � 1, it will be ascribed

to the foreground with high probability. We sometimes refer to πππ as a mask since it

2.2. Unsupervised learning of multiple objects 19

captures the shape of the object being learned.

xp is modelled by a mixture distribution:

xp � �
p f
�
xp; fp � � N

�
xp; fp

� σ2
f � if sp

� 1 �
pb
�
xp;bp � � N

�
xp;bp

� σ2
b � if sp

� 0 � (2.7)

where σ2
f and σ2

b are respectively the foreground and background variances. Thus,

ignoring transformations, we obtain

p
�
x � � P

∏
p 1 � πp p f

�
xp; fp ��� �

1 � πp � pb
�
xp;bp ��� � (2.8)

Notice that the fact that each pixel follows a mixture distribution ensures that the fore-

ground and background appearances strictly combine by occlusion and thus no trans-

parency between them is allowed.

The second issue that we must deal with is that of transformations of the foreground

object. Similarly to the previous section we introduce a transformation variable j f rep-

resented by a transformation matrix, so that matrix T j f corresponds to transformation

j f and Tj f f is the transformed foreground model. The semantics of foreground and

background mean that the mask πππ must also be transformed, so that we obtain

p
�
x � j f � � P

∏
p 1 � � Tj f πππ � p p f

�
xp;

�
Tj f f � p ��� �

1 � Tj f πππ � p pb
�
xp;bp ��� � (2.9)

where 1 denotes the P length vector that contains ones. Notice that the foreground f
and mask πππ are transformed by Tj f , but the static background b is not. In order for

equation (2.9) to make sense, each element of T j f πππ must be a valid probability (lying

in � 0 � 1 �). This is certainly true for the case when Tj f is a permutation matrix (and can

be true more generally). To complete the model we place a prior probability Pj f on

each transformation j f ; this is taken to be uniform over all possibilities so that p
�
x � �

∑
J f
j f 1 Pj f p

�
x � j f � . Clearly, the p

�
x � is a mixture model similarly to that described

by equation (2.3), with the difference that the conditional densities p
�
x � j f � are not

Gaussians but more complex densities that incorporate the background appearance as

well. Note that if we constrain the mask πππ to be the vectors of ones, then the model

will reduce to that described by (2.3).

20 Chapter 2. Learning multiple objects from images

The application of the EM algorithm becomes now a bit more complicated than the

case of section 2.2.1. Particularly, in the E-step for each image xn we need to estimate

the posterior probability for each transformation P
�
j f � xn � according to

P
�
j f � xn � � Pj f p

�
xn � j f �

∑
J f
i 1 Pi p

�
xn � i � � (2.10)

as well as a soft segmentation of the image by specifying a P length vector sn
j f

of

probability values so that the pth element stores the value�
sn

j f
� p
� �

Tj f πππ � p p f
�
xn

p;
�
Tj f f � p ��

Tj f πππ � p p f
�
xn

p;
�
Tj f f � p ��� �

1 � Tj f πππ � p pb
�
xn

p;bp � � (2.11)�
sn

j f
� p expresses the probability that the pth pixel of the image xn is part of the fore-

ground object given the transformation j f . In the M-step we update the parameters�
f � πππ � σ2

f
� b � σ2

b � . The update equations are given in the appendix A.2 but for example

the update for f is

f � N

∑
n 1

J f

∑
j f 1

P
�
j f � xn � T T

j f � sn
j f
� xn � ��� N

∑
n 1

J f

∑
j f 1

P
�
j f � xn � T T

j f � sn
j f
� � (2.12)

where y � z and y ��� z stands for the element-wise product and element-wise division

between two vectors, respectively. This update is quite intuitive. Consider the case

when P
�
j f � x � � 1 for j f

� j and 0 otherwise. For pixels which are ascribed to the

foreground (i.e.
�
sn

j ! � p � 1), the values in xn are transformed by T T
j ! (which is T � 1

j ! for

permutation matrices). This removes the effect of the transformation and thus allows

the foreground pixels found in each training image to be averaged to produce f. Figure

2.3b displays the foreground and background appearance found after applying the EM

algorithm using a training set of 31 78 � 104 images.

So far the background b was considered to be static. However in many cases, as

for example when a video camera follows an object, the background can change from

frame to frame. Next we generalize our method to deal with moving backgrounds.

To model a moving background we assume an underlying static background which

is typically much larger than the input images. We sometimes refer to this large static

background as panorama. When we generate an image a part of this panorama scene

is selected and used as the current background of the image, similarly to Rowe and

2.2. Unsupervised learning of multiple objects 21

Blake (1995). More specifically, we assume that the background b corresponds to an

Mx � My image, where in general Mx " Px and My " Py. b is represented as a M-

dimensional vector with M � MxMy. We introduce a transformation variable jb that

explains how from the panorama b the background of a data image is selected. In

our implementation we consider as possible backgrounds all the Px � Py image blocks

(aligned to the axes of the background image) taken from any possible location within

the panorama b3. Clearly, jb takes on Jb
� �

Mx
� Px � 1 � � My

� Py � 1 � total values

and a certain value jb is represented by a M � P transformation matrix Tjb , so that Tjbb
selects the appropriate image Px � Py block from b.

The conditional density of an image given the transformation variables now be-

comes

p
�
x � j f

� jb � � P

∏
p 1 � � Tj f πππ � p p f

�
xp;

�
Tj f f � p ��� �

1 � Tj f πππ � p pb
�
xp;

�
Tjbb � p ��� � (2.13)

and the likelihood of an image x is p
�
x � � ∑

J f
j f 1 ∑Jb

jb 1 Pj f Pjb p
�
x � j f

� jb � . Note also

that when the background is static is expressed as a special case of the above model;

by choosing the background b to have the same size as the data images there is only

one possible value for jb, so the background is static.

For random backgrounds we do not try to model the backgrounds explicitly, but

simply use a large-variance Gaussian at each pixel, which can account for the large

background variability. b is the mean of this Gaussian.

We can again use the EM algorithm to handle the hidden variables which is the

transformations j f and jb and the binary variables s and optimize over the parameters.

However, an exact EM algorithm requires a search over J f Jb possibilities which can be

very demanding even for small images. In chapter 3 we describe a greedy training al-

gorithm that deals separately with each transformation by learning first the background

and then the foreground object. This algorithm is presented for the more general case

of L foreground objects in chapter 3 and also in the appendix B.

3Of course the above model does not account for rotations or scaling of the background and it can
only approximately model such kind of situations.

22 Chapter 2. Learning multiple objects from images

2.2.3 Learning multiple objects

Assume that each image contains L foreground objects. Similarly to the single object

case each foreground object # , with # � 1 �
�	�
�$� L is modelled by a separate appearance

f % and mask πππ % . The background can be thought as the L � 1th object having a mask

πππb
� 1, since the background is present everywhere. For each foreground object # we

assume a transformation variable j % representing all possible translations. Below we

assume a moving background where the transformation variable jb is defined in section

2.2.2, however all derivations also apply for static or random backgrounds by simply

ignoring the variable jb. We should point out that Jojic and Frey (2001) proposed a

similar probabilistic generative model for learning multiple objects. Differences with

the model described below will be discussed in section 3.5.

It will be instructive to introduce the model for the case there are only two fore-

ground objects. Assuming L � 2, an image x is generated by instantiating the transfor-

mation variables j1 � j2 and jb and then drawing x according to

p
�
x � jb � j1 � j2 � � P

∏
p 1 & � Tj1πππ1 � p p f1

�
xp;

�
Tj1f1 � p ��� �

1 � Tj1πππ1 � p �
� � Tj2πππ2 � p p f2

�
xp;

�
Tj2f2 � p ��� �

1 � Tj2πππ2 � p pb
�
xp;

�
Tjbb � p ���	' � (2.14)

where the p f1
� p f2 and pb pixel densities are Gaussians given as in equation (2.7).

Note that each image pixel follows a three component mixture distribution, so that

with probability
�
Tj1πππ1 � p the pixel can belong to the first object, with probability

�
1 �

Tj1πππ1 � p
�
Tj2πππ2 � p to the second object and with the rest of probability to the background.

The fact that the probabilities corresponding to the second object’s pixels are always

multiplied by
�
1 � Tj1πππ1 � p implies an occlusion ordering between these two objects,

so that the first object can occlude the second one, but the opposite is not allowed.

In the general case with arbitrary number of objects the model (2.14) becomes

p
�
x � jb � j1 �
�
�
�$� jL � � P

∏
p 1

p
�
xp � jb � j1 �
�
�
�$� jL � � (2.15)

2.2. Unsupervised learning of multiple objects 23

where p
�
xp � jb � j1 �
�
�	�	� jL � is an L � 1-component mixture model,

p
�
xp � jb � j1 �	�
�
�	� jL � � L

∑% 1

% � 1

∏
k 1

�
1 � Tjkπππk � p

�
Tj (πππ %	� p p f (� xp;

�
Tj (f %	� p �

� L

∏
k 1

�
1 � Tjkπππk � p pb

�
xp;

�
Tjbb � p � � (2.16)

where if # � 1, then the term ∏ % � 1
k 1

�
1 � Tjkπππk � p in equation (2.16) is defined to be equal

to 1.

The order (from left to right) of the object models in equation (2.16) corresponds

to the occlusion allowed between the objects. Particularly, the first object exists closest

to the camera, thus it can never be occluded by any other object, the second object can

only be occluded by the first object and so on. The background exists in the furthest

distance from the camera.

Notice that in the above model there is an asymmetry between the objects because

of the specified occlusion ordering. If the objects can arbitrarily occlude one another

so that the occlusion ordering can change from image to image, then the above model

is no longer appropriate. A principled way to deal with this situation is to consider all

L! possible rearrangements of the objects (using an additional hidden variable). See

section 3.4 at chapter 3 for more details about this.

Learning the parameters of this model using an exact EM algorithm is intractable.

This is because the E-step requires searching over O
�
JL

f Jb � configurations in order to

express the posterior probability of each configuration given the image. Jojic and Frey

(2001) have considered a variational approximation. In this thesis we have developed a

greedy algorithm that can learn the objects one after the other using a robust statistical

method. Chapter 3 is dedicated to describe this algorithm in detail so we will not

further discuss it at the current chapter, except to mention that this greedy algorithm

learns one object at each stage, so that we need to search only over the transformations

of a single object.

24 Chapter 2. Learning multiple objects from images

2.3 Discussion

To summarize, in this chapter we presented a probabilistic generative model for learn-

ing multiple objects from a set of images. However, we did not present any algorithm

for learning the model parameters as the next chapter is dedicated to present the greedy

algorithm we have developed. The generative model is similar to the Jojic and Frey

(2001) method who adopt a variational EM algorithm for learning. In section 3.5 we

discuss the differences of our method with the Jojic and Frey (2001) approach.

The generative model described in this chapter for learning multiple objects is a

step towards learning appearance based object models for object recognition using

unsupervised learning. Of course, the above framework still is not suitable for object

recognition of categories since it can only be used to learn specific rigid objects that

move under 2D planar transformations. However, in chapter 4 we enhance this model

so that to find rigid parts of articulated specific objects such as human body and learn a

joint distribution that connects these parts. In addition, in chapter 6 we discuss several

other improvements of the current model as well as a training scenario where our

algorithm can be used as a preprocessing step of learning a recognition system for

object categories using unsupervised learning.

Chapter 3

Greedy learning of multiple objects

using robust statistics

Exact EM training of the generative model for multiple objects presented in the previ-

ous chapter is intractable. This is because as the number of objects increases, there is

a combinatorial explosion of the number of configurations that need to be considered.

The above problem is of general concern since it is related to the factorial learning

problem where multiple causes (objects) are needed to explain the data (image). In

this chapter we develop a greedy algorithm that extracts the object models sequentially

from the data, thus avoiding the combinatorial explosion. The algorithm learns first the

background while the foreground objects are found at later stages. This is achieved by

making use of a robust statistical method so that when we learn an object all the areas

in the image where the other objects exist are explained as outliers.

The structure of the remainder of this chapter is as follows. In section 3.1 we

review the factorial learning problem. In section 3.2 we show how we can learn one

foreground object against background using robust statistics. In section 3.3 we describe

all the stages of the greedy algorithm. In section 3.4 we compute the occlusion ordering

of the foreground objects in an image and we also describe how we can refine all the

appearances of the objects by maximizing the complete data log likelihood over all the

parameters. In 3.5 we discuss related work. In section 3.6 we present experimental

results finding objects appearing against static, moving and random backgrounds and

25

26 Chapter 3. Greedy learning of multiple objects using robust statistics

we conclude with a discussion in section 3.7.

3.1 Factorial learning

As mentioned in section 2.2.3 in the previous chapter an exact EM algorithm for learn-

ing the parameters of the model for multiple objects is intractable. To get an intuition

why this is the case, note that the generative model assumes that an image is produced

by independently choosing the location (transformation) of each object and then instan-

tiating all the objects within the image. These assumptions of the generative process

can be represented as a directed graphical model depicted in Figure 3.1. Clearly, for Jb

possible transformations of the background and J f transformations of the L foreground

objects, there are JL
f Jb ways to generate an image. This implies that a full search over

all these JL
f Jb possibilities that the EM algorithm needs to evaluate in the E-step is

infeasible.

The generative model for learning multiple objects is a factorial learning type of

model. By factorial learning we mean a situation where multiple causes (factors) are

needed to explain the observed data (image)1 as illustrated in graphical model of Fig-

ure 3.1. The general problem of factorial learning has longer history, see, for example,

Barlow (1989), Hinton and Zemel (1994), Saund (1995) and Ghahramani (1995). A

serious concern with the factorial learning problem is that as the number of causes

(objects) increases, there is always this combinatorial explosion of the number of con-

figurations that need to be considered. Since learning using an exact EM algorithm is

intractable approximations should be considered. Ghahramani (1995) suggests mean

field and Gibbs sampling approximations and Jojic and Frey (2001) use approximate

variational inference. Below we describe a different learning algorithm by finding the

background and the foreground objects sequentially one after the other using a robust

statistical method. Sequential object discovery is possible because multiple objects

combine by occluding each other and/or the background.

In the next section we discuss how using robust statistics we can discover only one

foreground object and ignore all the rest foreground objects that might appear in the
1This is the same terminology as used in the factor analysis model from statistics, although that

model uses linear (Gaussian) assumptions.

3.2. Learning one object using robust statistics 27

X

j j j1 bL

Figure 3.1: Graphical representation of the generative model for learning multiple ob-

jects.

images. This will motivate the use of the greedy algorithm presented in section 3.3.

3.2 Learning one object using robust statistics

Suppose a set of images showing multiple foreground objects against a background.

Apart from only one foreground object being modelled we consider the rest of the

foreground objects as “outlying” information and thus we do not wish to model their

appearances. In other words, our objective is to learn only the one object of inter-

est and efficiently “ignore” all the rest objects. A way to do this is to robustify the

model described in section 2.2.2 so that foreground and background occlusion can be

tolerated. More specifically, for a foreground pixel, some other objects may be inter-

posed between the camera and our object, thus perturbing the pixel value. This can be

modelled with a mixture distribution as

p f
�
xp; fp � � α f N

�
xp; fp

� σ2
f ��� �

1 � α f � U �
xp � � (3.1)

where α f is the fraction of times a foreground pixel is not occluded and the robustify-

ing component U
�
xp � is a uniform distribution common for all image pixels. When a

object pixel is occluded this should be explained by the uniform component. Such ro-

bust models have been used for image matching tasks by a number of authors, notably

Black and colleagues (Black and Jepson, 1996).

28 Chapter 3. Greedy learning of multiple objects using robust statistics

Similarly for the background, a different object from the one being modelled may

be interposed between the background and the camera, so that we again have a mixture

model

pb
�
xp;bp � � αbN

�
xp;bp

� σ2
b ��� �

1 � αb � U �
xp � � (3.2)

with similar semantics for the parameter αb. Note that for random backgrounds the

above robustification make less sense (since the Gaussian will have large variance σ2
b)

but it will apply to the static or moving background cases.

Now the probability model for the image x given the transformation of the fore-

ground object is given as in equation (2.9), with the only difference that the p f and pb

densities are not Gaussians any more but are robustified as explained above. Assum-

ing a static background, training this model is completely analogous to the non-robust

case (see section 2.2.2 and appendix A.2), for example applying the EM has complex-

ity O
�
J f � .

Note that it is not necessary that the robustifying component be a uniform distri-

bution, for example a broad Gaussian would also work. However, as pixels do have

maximum and minimum values the uniform distribution is a natural choice, and is also

the maximum entropy distribution.

In practice the above framework using robust statistics can be used to learn multiple

objects in images. By random parameter initializations, and on different runs we can

find different objects. We denote such an algorithm as random starts. However, we

have found (Williams and Titsias, 2003) that this is rather inefficient as the basins of

attraction for the different objects may be very different in size given the initialization.

For example, this algorithm will tend always to discover the largest or dominant object

so it will be unlikely to find small objects. Next section describes a greedy algorithm

that can discover the objects sequentially.

3.3 Greedy learning of multiple objects

In this section we describe a greedy algorithm for training the generative model for

multiple objects. This algorithm optimizes the parameters of the model by stages so

that at each stage an object is discovered.

3.3. Greedy learning of multiple objects 29

The model for L foreground objects and a moving background assumes that a image

is generated by first choosing values for the transformations
�
jb
� j1 �
�	�
�$� jL � and then

drawing x according to2

p
�
x � jb � j1 �
�
�
��� jL � � P

∏
p 1

p
�
xp � jb � j1 �
�
�	�	� jL � � (3.3)

where p
�
xp � jb � j1 �
�
�	�	� jL � is the L � 1-component mixture model

p
�
xp � jb � j1 �	�
�
�	� jL � � L

∑% 1

% � 1

∏
k 1

�
1 � Tjkπππk � p

�
Tj (πππ % � p p f (� xp;

�
Tj (f % � p �

� L

∏
k 1

�
1 � Tjkπππk � p pb

�
xp;

�
Tjbb � p � � (3.4)

where if # � 1 then the term ∏ % � 1
k 1

�
1 � Tjkπππk � p in (3.4) is defined to be equal to 1.

The greedy algorithm is based on using robust statistics similarly to what explained

in the previous section. Particularly, from now on we will assume that both the fore-

ground p f (and background pb pixels densities are robustified as described in section

3.2. This robustification is the key for our greedy algorithm to find the objects one at a

time.

Each component in the mixture distribution of equation (3.4) corresponds to an

object model which is either one of the L foreground objects or the background. The

key idea of our learning algorithm is to learn this mixture model (and thus the relation

with the associated transformation variable) sequentially, by learning the objects one

at a time. An intuitive way to introduce this algorithm is that originally we constrain

the mixture distribution so that the background takes all the probability and the masks

of the foreground objects are zero. Since the background pixel densities are robustified

according to equation (3.2) we can learn the background by “ignoring” all the fore-

ground objects. When a pixel of the background is occluded by a foreground object

that should be explained by the outlier component in (3.2), so that the pixel will not

affect the estimation of the background. At each subsequent stage the mask of a fore-

ground object is set free to get a non zero value and the corresponding object model is

learned.
2For clarity we repeat here some equations that are also given in section 2.2.3, where we introduced

the model.

30 Chapter 3. Greedy learning of multiple objects using robust statistics

Below we first describe learning the background in section 3.3.1, then discuss

learning the first object in section 3.3.2 and further objects in section 3.3.3. We sum-

marize the algorithm in section 3.3.4. Further details are given the appendix B.

3.3.1 Finding the background

The greedy algorithm starts by first finding the background. By constraining all the

masks � πππ % � L% 1 to be zero, the mixture model (3.4) has only one component (corre-

sponding to the background) and thus equation (3.3) takes the form

p
�
x � jb � � P

∏
p 1

pb
�
xp;

�
Tjbb � p � � (3.5)

where pb is robustified according to equation (3.2). Assuming an uniform prior Pjb for

transformation jb the log likelihood of the training images is

Lb
� N

∑
n 1

log
J

∑
jb 1

Pjb p
�
xn � jb � � (3.6)

which can be maximized with respect to � b � σ2
b
� by the EM algorithm. This algorithm

searches over Jb possibilities and is tractable; details are provided in the appendix B.1.

3.3.2 Finding the first object

At the second stage of the algorithm we learn the first foreground object. By allowing

the mask πππ1 to take on non-zero values equation (3.3) becomes

p
�
x � jb � j1 � � P

∏
p 1

�
Tj1π1 � p p f1

�
xp;

�
Tj1f1 � p ��� �

1 � Tj1πππ1 � p pb
�
xp;

�
Tjbb � p �� P

∏
p 1

p
�
xp � jb � j1 � � (3.7)

The log likelihood of the training images is L1
� ∑N

n 1 log∑ j1) jb Pj1Pjb p
�
xn � j1 � jb � and

a direct maximization using the EM algorithm can be quite demanding, since inference

involves searching over J f Jb possibilities. Our greedy algorithm drops the complexity

of the search to J f possibilities by applying a constrained EM algorithm (Neal and Hin-

ton, 1998) that exploits the fact that we already know the background. In particular, for

3.3. Greedy learning of multiple objects 31

each training image xn we introduce the distribution Qn � j1 � jb � � Qn � j1 � jb � Qn � jb � over

the transformations and we express a lower bound (based on the Jensen’s inequality)

of the log likelihood L1:

F1
� N

∑
n 1

∑
jb) j1 Qn � j1 � jb � Qn � jb � � log * Pj1Pjb

P

∏
p 1

p
�
xn

p � jb � j1 �$+� logQn � j1 � jb � Qn � jb �-, � (3.8)

This lower bound becomes tight by choosing Qn � jb � j1 � to be the posterior P
�
jb � j1 � xn �

for every image xn. Since we have learned the background we can use the posterior

probability P
�
jb � xn � (computed as described in appendix B.1) to find the most probable

transformation jn
b that best explains image xn and then we approximate Qn � jb � so that

it gives probability one for jb � jn
b and zero for the remaining values3. Thus, F1 takes

the form

F1
� N

∑
n 1

J f

∑
j1 1

Qn � j1 � � P

∑
p 1

log p
�
xn

p � jn
b
� j1 � � logQn � j1 �.,/� const � (3.9)

where const depends on the uniform probabilities Pjb and Pj1 . Also the dependence of

Qn � j1 � on jn
b for simplicity has been omitted from our notation.

Maximization of F1 can be carried by the EM algorithm, where in the E-step we

maximize F1 with respect to the Qn distributions (see equation (B.7)) and in the M-step

with respect to the object parameters � f1
� πππ1

� σ2
1
� . Thus, the computational complexity

for learning the object has been kept to a minimum since we have only to search over

the J f possible transformations of the object. Recall that the pixel densities p f1 and

pb are robustified which allows us to deal with occlusion that can be caused by the

remaining L � 1 not-yet-discovered objects.

3.3.3 Learning further objects

The algorithm for learning the second and subsequent foreground objects is a bit more

complicated as we subtract out the objects learned so far. We first describe how we
3It would be possible to make a “softer” version of this, where the transformations are weighted by

their posterior probabilities, but in practice we have found that these probabilities are usually 1 for the
best-fitting transformation and 0 otherwise after learning.

32 Chapter 3. Greedy learning of multiple objects using robust statistics

learn the second object and then generalize to the case of the # th object.

To learn a second foreground object we first allow the mask πππ2 to take on non-

zero values so that the conditional density of x given the hidden transformations be-

comes P
�
x � jb � j1 � j2 � � ∏P

p 1 p
�
xp � jb � j1 � j2 � where p

�
xp � jb � j1 � j2 � is given by equation

(3.4). We learn the second object by maximizing a lower bound of the log likelihood

L2
� ∑N

n 1 log∑ jb) j1) j2 PjbPj1Pj2 p
�
xn � jb � j1 � j2 � . Particularly, since we have learned the

background and the first object we use the most probable transformations jn
b and jn

1

that explain image xn to lower bound the log likelihood L2:

F2
� N

∑
n 1

J f

∑
j2 1

Qn � j2 � � P

∑
p 1

log p
�
xn

p � jn
b
� jn

1
� j2 � � logQn � j2 � , � const � (3.10)

F2 can be tractably optimized over Qn � j2 � and over the parameters of the second ob-

ject � f2
� πππ2

� σ2
� . However, we can make the search for the second object much more

efficient (ensuring that we will find a different object) by further constraining equation

(3.10) so that all the pixels belonging to the first object are removed from consider-

ation4. First of all note that the values of the transformed mask T jn
1
πππ1 will be close

to 1 for all pixels of image xn that are part of the first object. All these pixels should

be removed from consideration unless there are occluded by other not-yet-discovered

objects. Thus, we consider the vector ρρρn
1
� �

Tjn
1
πππ1 �0� rn

jn
1

where y � z denotes the

element-wise product of the vectors y and z and
�
rn

jn
1
� p
� α f N 1 xn

p; 1 Tjn1
f1 2 p) σ2

1 2
α f N 1 xn

p; 1 Tjn1
f1 2 p) σ2

1 243 1 1 � α f 2 U 1 xn
p 2 .

Thus, ρρρn
1 will roughly give values close to 1 only for the non-occluded object pix-

els of image xn, and these are the pixels that we wish to remove from considera-

tion. Now considering
�
ρρρn

1 � p as the probability according to which the pixel p of

image xn is part of the first object we once again lower bound F2 using the inequality

4Notice that we have implemented an alternative algorithm which directly maximizes (3.10) with
respect to the parameters of the second object. However, this algorithm in some experiments was prob-
lematic as it found the same object twice. On the other hand the algorithm that removes from consid-
eration all the pixels of the first object in each training image was always successful in discovering a
different object.

3.3. Greedy learning of multiple objects 33

log∑i yi
� log

�
∑i

yi
pi

pi � " ∑i pi log yi
pi

(obtained from Jensen’s inequality) to obtain

F2
� N

∑
n 1

J f

∑
j2 1

Qn � j2 � � P

∑
p 1

�
ρρρn

1 � p log & � Tjn
1
πππ1 � p p f1

�
xn

p;
�
Tjn

1
f1 � p �5'6� �

ρρρn
1 � p �

log & � 1 � Tjn
1
πππ1 � p � � Tj2πππ2 � p p f2

�
xn

p;
�
Tj2f2 � p ��� �

1 � Tj2πππ2 � ppb
�
xn

p;
�
T n

jbb � p ��� '� logQn � j2 �-,/� const � (3.11)

where ρρρn
1
� 1 � ρρρn

1 and the const is a constant term containing the entropic term� ∑N
n 1 ∑P

p 1 7 � ρρρn
1 � p log

�
ρρρn

1 � p � �
ρρρn

1 � p log
�
ρρρn

1 � p 8 plus terms involving the uniform prob-

abilities � Pjb
� Pj1

� Pj2
� . Since the parameters of the first object are fixed, the above

quantity is further written as

F2
� N

∑
n 1

J f

∑
j2 1

Qn � j2 � & P

∑
p 1

�
ρρρn

1 � p log � � Tj2πππ2 � p p f2

�
xn

p;
�
Tj2f2 � p �
��

1 � Tj2πππ2 � p pb
�
xn

p;
�
Tjn

b
b � p ��� � logQn � j2 � ' � const � (3.12)

Note that when for a pixel p of image xn � ρρρn
1 � p � 0, this pixel is removed from consid-

eration (in a probabilistic fashion) according to equation (3.12).

Further objects are learned similarly to the two-objects case except that the pixels of

all previously learned foreground objects should be removed from consideration. This

is achieved by setting zn
0
� 1 for all n � 1 �	�
�
�	� N and using the recursion zn% � zn% � 1 � ρρρn% .

Note that zn
1
� ρρρn

1. For object # the objective function F% given in equation (3.13) is

optimized to yield � f % � πππ % and σ2% � .
Note that the greedy algorithm treats the background and the rest L objects dif-

ferently, since pixels ascribed to the non-occluded background are not removed from

consideration as is the case for the foreground objects. We implemented an alternative

greedy algorithm that treats the background similarly to the remaining objects (remov-

ing non-occluded background pixels from consideration). However, this algorithm did

not work so well in practice as some pixels can wrongly be removed from consider-

ation because their values happen to agree with pixels of the occluding object. For

the background the number of such pixels can be large since the background is always

occluded by all of the L objects. We observed experimentally that this can result in

34 Chapter 3. Greedy learning of multiple objects using robust statistics

noisy estimates for some of the L foreground objects since many of their pixels are

accidentally removed from consideration after the background is learned. On the other

hand in the case of the foreground objects is not problematic since occlusion occurs

only in some images and is typically partial.

3.3.4 Summary of the greedy algorithm

1. Learn the background and infer the most probable transformation jn
b for each

image xn.

2. Initialize the vectors zn
0
� 1 for n � 1 �
�	�
�$� N.

3. For # � 1 to L

(a) Learn the # th object parameters � f % � πππ % � σ2% � by maximizing F% using EM

algorithm, where

F% � N

∑
n 1

J f

∑
j(1

Qn � j % � & P

∑
p 1

�
zn% � 1 � p log � � Tj (πππ % � pp f (� xp;

�
Tj(f % � p �	��

1 � Tj(πππ% � p pb
�
xp;

�
Tjn

b
b � p ��� � logQn � j % � ' � (3.13)

(b) Infer the most probable transformation � jn% � and update the weights zn% �
zn% � 1 � ρρρn% where ρρρn% is computed as described in the text.

The update equations used at any stage of the above algorithm are given in appendix

B.

3.4 Specification of the occlusion ordering and refine-

ment of the object models

Once we run the greedy algorithm, we obtain a set of appearance models for the fore-

ground objects and the background as well as an approximation of the transformation

of each object in each training image. To better specify the generation process of each

image we have to compute the occlusion ordering of the foreground objects. This

3.4. Specification of the occlusion ordering and refinement of the object models 35

is necessary since even when the occlusion ordering remains fixed across all training

images, the greedy algorithm might not pull out the objects in accordance with this or-

dering, i.e. discovering first the closest from the camera object, then the second closest

from the camera object etc. The order the greedy algorithm finds the objects strongly

depends on the initialization of the parameters and the size of the objects5. For exam-

ple, for the data of Figure 3.2a the greedy algorithm in some runs discovers first the

person with the white shirt who in some frames is occluded. Below we discuss how

we compute the occlusion ordering.

A way to infer the occlusion ordering of the foreground objects or layers in an

image xn is to consider all possible permutations of these layers and choose the permu-

tation that gives the maximum likelihood. The simplest case is to have two foreground

objects with parameters
�
πππ1
� f1 � and

�
πππ2
� f2 � , respectively. Given the approximated

transformations, the log likelihood values of the two possible orderings are

Ln
12

� P

∑
p 1

log & � Tjn
1
πππ1 � p p f1

�
xn

p;
�
Tjn

1
f1 � p ��� �

1 � Tjn
1
πππ1 � p �

� � Tjn
2
πππ2 � p p f2

�
xn

p;
�
Tjn

2
f2 � p ��� �

1 � Tjn
2
πππ2 � p pb

�
xn

p;
�
Tjn

b
b � p ���$' � (3.14)

and

Ln
21

� P

∑
p 1

log & � Tjn
2
πππ2 � p p f2

�
xn

p;
�
Tjn

2
f2 � p ��� �

1 � Tjn
2
πππ2 � p �

� � Tjn
1
πππ1 � p p f1

�
xn

p;
�
Tjn

1
f1 � p ��� �

1 � Tjn
1
πππ1 � p pb

�
xn

p;
�
Tjn

b
b � p ��� ' � (3.15)

The selected occlusion ordering for the image xn is the one with the largest log likeli-

hood, i.e. Ln
kl 9 Ln

lk. If we know a priori that the occlusion ordering across all images

remains fixed, which often happens in video data, then we select the ordering with the

largest overall log likelihood Lkl
� ∑N

n 1 Ln
kl . When we have L foreground objects we

work exactly analogously as above by expressing all L! permutations of the foreground

layers and select the one with the largest likelihood.

The above computation of the occlusion ordering takes L! time and it can be used

only when we have few foreground objects (less than 7). However, in most of the cases

we can further speed up this computation and estimate the occlusion ordering for large
5Objects that occupy more pixels than others are more likely to be found first.

36 Chapter 3. Greedy learning of multiple objects using robust statistics

number of objects. The idea is that an object # usually does not overlap (either occludes

or is occluded) with all the rest L � 1 objects, but only with some of them. Thus, if for

each object we identify the overlapping objects, the complexity in the worse case will

be O
�
G! � where G is the largest number of objects that simultaneously overlap with

each other. Details of this algorithm together with illustrative examples are given in

appendix B.3.

Once the occlusion ordering has been specified for each training image, we can

maximize the complete (using the approximated transformations and the occlusion or-

derings) log likelihood for the model described by equations (2.15) and (2.16) and

refine the appearances and masks of the objects. Note that for this maximization we

need the EM algorithm in order to deal with the fact that each pixel follows a L � 1-

component mixture distribution (see equation (2.16)). However, this EM runs quickly

since all the transformations have been “filled in” with the approximated values pro-

vided by the greedy algorithm, thus there is no search over the transformations of the

objects.

3.5 Related work

Jojic and Frey (2001) presented a similar generative model for learning multiple ob-

jects and use a variational Generalized EM algorithm for learning. In their model the

different layers are synthesized according to an alpha matting (or pixel mixing) rule

that allows transparency6. In contrast, in our model the layers are synthesized through

a mixture distribution (see e.g. equation (2.9)) which ensures that the foreground and

background appearances strictly combine by occlusion, thus no transparency between

them is allowed. When the objects combine by occlusion, our model allows for a more

robust inference and learning. For example, an exact M-step of the EM algorithm can

be expressed as opposed to the generalized M-step used by Jojic and Frey. This fact

has also been used by Kannan et al. (2005) and Frey and Jojic (2004). In terms of the

learning algorithms the variational EM of Jojic and Frey (2001) updates all the param-

6For example, for one foreground object against a background an image is drawn by a Gaussian with
mean m : f ;=< 1 > m ?@: b where m is the transparency mask that takes values in the range A 0 B 1 C and :
stands for the element-wise product between vectors.

3.5. Related work 37

eters of the model simultaneously. This might suffer from local maxima because of

the large amount of parameters that need to be initialized and optimized at the same

time. The greedy algorithm learns one object at each stage and its initialization is

straightforward since it will make no difference if we initialize the object parameters

(πππ % � f %) to the same point at each time7. Concerning speed, the complexity of the vari-

ational Generalized EM is O
�
P
�
LJ f � Jb �	� per training image while for the greedy is

O
�
P̂
�
LJ f � Jb �
� , where P̂ is the average number of pixels that are on (not removed

from consideration) at each stage. The greedy algorithm can be slighter faster since

P̂ D P. Finally, the greedy algorithm can be applied when the occlusion ordering of the

foreground objects can change in different images (see e.g. the Experiments 4 and 5),

while the method of Jojic and Frey (2001) assumes that the occlusion ordering is fixed

across all images.

If video sequence data is available then it is possible to compute optical flow in-

formation, and this can be used as a cue to discover objects by clustering flow vectors

into “layers”. Some early work on this topic is by Wang and Adelson (1994), and an

example of more recent work is that of Tao et al. (2000). Note that our method does

not require a video sequence and can be applied to unordered collections of images, as

illustrated in Experiments 4 and 5. Chapter 4 discusses learning from video data and

section 4.4 gives more related work on learning objects from video.

In our work the model for each pixel is a mixture of Gaussians. There is some

previous work on pixelwise mixtures of Gaussians (see, e.g. Rowe and Blake 1995)

which can, for example, be used to achieve background subtraction and highlight mov-

ing objects against a static background. Our work extends beyond this by gathering the

foreground pixels into objects, and also allows us to learn objects in the more difficult

non-static background case.

The greedy method has an analogue in neural network methods for Principal Com-

ponents Analysis (PCA). To carry out PCA we can extract the principal component

using Hebbian learning. If we then subtract of the projection of the input onto the

principal direction, we can again use Hebbian learning to extract the second principal

component, and so on (Sanger, 1989). This process parallels the successive discov-

7Despite the fact that the initial parameter values can be the same, the greedy algorithm at each stage
is forced to find a different object since the pixel of all previously discovered objects have been removed.

38 Chapter 3. Greedy learning of multiple objects using robust statistics

ery of objects in our method. However, notice that what is subtracted out from each

input (image) is a global information and not specific pixels. We note also that this

sequential algorithm cannot be used if a full factor analysis model (with different noise

variances on different visible dimensions) is to be learned.

3.6 Experiments

We describe five experiments extracting movable objects from images using static,

moving and random backgrounds. In these experiments the uniform distribution U
�
xp �

is based on the maximum and minimum pixel values of all training image pixels. In all

the experiments reported below except experiment 5 the parameters α f and αb were

chosen8 to be 0 � 9; in experiment 5 αb was set to 1. Also we assume that the total

number of objects L that appear in the images is known, thus the greedy algorithm

terminates when we discover the Lth object.

To apply the greedy algorithm we have to initialize the model parameters at each

stage. We first describe how we initialize the background parameters as the background

is learned at the first stage of the algorithm. The background appearance b corresponds

to an image that is larger than the input image size. We initialize the centred Px � Py

block of b to be equal with the mean of the training images. The rest pixels of b are

initialized by repeating the border-lines of pixels in the centred block of b and then

adding a Gaussian noise to these pixels. The variance σ2
b is initialized to a large value

(much larger value than the overall variance of all image pixels9). The parameters of an

object learned at each subsequent stage of the greedy algorithm are always initialized

in the same way. Each element of the mask πππ % is initialized to 0.5, and the variance σ2%
to a large value equal to the σ2

b initial value. To initialize the foreground appearance f % ,
we compute the pixelwise mean of the training images and add independent Gaussian

noise with equal variances at each pixel, where the variance is set to be large enough

so that the range of pixel values found in the training images can be explored.

8These parameters could be learned with some additional care but in our current implementation we
do not do so.

9In our experiments the input image pixels are normalized to lie in A 0 B 1 C and the background variance
σ2

b as well as the any foreground object variance σ2E is initialized to 2.

3.6. Experiments 39

In all of the experiments described below the above initialization scheme proved to

be effective and we obtained good results by performing one or two runs of the greedy

algorithm. At each stage of the algorithm typically 100 iterations were sufficient to

reach convergence.

Experiment 1. Figure 3.2 illustrates the detection of two objects against a static

background10. Some examples of the 44 118 � 248 training images (excluding the

black border) are shown in Figure 3.2a and results are shown for the greedy algorithm

in Figure 3.2b. For both objects we show both the learned mask and the element-

wise product of the learned foreground and mask. In most runs the person with the

striped shirt (Frey) is discovered first. It is interesting to comment on how the greedy

algorithm operates in case the person with the lighter shirt (Jojic) is found first. As

explained in section 3.3, once an object is discovered by the greedy algorithm, roughly

speaking its non-occluded pixels are removed from consideration. Figure 3.3 illus-

trates this point for two frames of the video sequence; one without occlusion and

one with occlusion. Figure 3.3a shows the two video frames and Figure 3.3b the

pixels (displayed in white) that are masked out from the next run. Note that when

Frey occludes Jojic the white stripes of Frey’s shirt are accounted for by the Jojic

model. This is because the white colour of these stripes agrees with the learned white

colour of Jojic’s shirt. This does not cause problems for learning the second object

(Frey) as there are many frames where the occlusion does not take place. In other

experiments with two people wearing different coloured clothes no such effect takes

place. Video sequences of the raw data and the extracted objects can be viewed at

http://www.dai.ed.ac.uk/homes/s0129556/lmo.html.

Experiment 2. We also conducted an interesting variant on the above experiment.

Rather than walking independently, two people now move together, keeping the same

distance apart. This led to the extraction of a mask containing both people. Note

that this is expected, since the pixels of the two people can be explained by the same

transformation, so are considered as one object. Of course, it is open to debate whether

we would wish to think of what is learned as one or two objects. In our opinion

the ability to extract such regularities is very sensible, and quite widespread, e.g. in

10These data are used in Jojic and Frey (2001). We thank N. Jojic and B. Frey for making available
these data via http://www.psi.toronto.edu/layers.html.

40 Chapter 3. Greedy learning of multiple objects using robust statistics

(a)

(b)

Figure 3.2: Learning two objects against a static background. Panel (a) displays some

frames of the training images, and (b) shows the two objects and background found by

the greedy algorithm. The plots in the upper row of (b) show the masks πππ1 and πππ2.

The first two plots in the lower row of (b) display the element-wise products πππ1 � f1 and

πππ2 � f2 while the third plot displays the background b.

3.6. Experiments 41

(a) (b)

Figure 3.3: What the greedy algorithm removes from consideration once Jojic is found.

Panel (a) displays two frames of the training images, and (b) plots the corresponding ρρρ1

vectors (see section 3.3), that indicate the pixels which are masked out from the second

iteration.

finding pairs of eyes. If it was desired, it would be a simple matter to run a connected

components algorithm on the thresholded mask to pick out the two objects.

Experiment 3. In the data shown in Figure 3.4 two objects move against a moving

background. Figure 3.4a shows some of the 36 70 � 140 images of the video sequence.

Note that the background changes from frame to frame because of the camera’s move-

ment. Notice also that there is motion blur in some of the frames and that one person

is occluded by the other in many frames as they walk in the same direction. Figure

3.4b shows the results of the greedy algorithm where at the first stage we find the

background and at the next two stages the moving objects are found.

Experiment 4. In Figure 3.5 five objects are learned against a static background,

using a dataset of 80 images of size 66 � 88. Notice the large amount of occlusion in

some of the training images shown in Figure 3.5a. Results are shown in Figure 3.5b

for the greedy algorithm.

Experiment 5. In Figure 3.6 we consider learning objects against random back-

grounds. Actually three different backgrounds were used, as can be seen in the example

42 Chapter 3. Greedy learning of multiple objects using robust statistics

(a)

(b)

Figure 3.4: Learning two objects against a moving background. Panel (a) displays

some frames of the training images, and (b) the panorama-background and the masks

and rendered objects found by the greedy algorithm. (To show the rendered objects we

reverse our usual convention and show the objects against a light background as the

objects themselves are mainly dark.)

3.6. Experiments 43

(a)

(b)

Figure 3.5: Learning five objects against a static background. Panel (a) displays some

of the training images and (b) shows the masks and objects (displayed as described in

the caption of Figure 3.2) learned by the greedy algorithm.

44 Chapter 3. Greedy learning of multiple objects using robust statistics

(a)

(b)

Figure 3.6: Two objects are learned from a set of images with three different back-

grounds. Panel (a) displays some examples of the training images, and (b) shows the

masks and objects found by the greedy algorithm, displayed as described in the caption

of Figure 3.2.

3.6. Experiments 45

Figure 3.7: The appearances of the objects after the refinement step for the images

used in Experiment 1. Comparing the above plots with the corresponding plots showing

in Figure 3.2b, we can inspect the improvement over the parameters of the objects.

0 0.2 0.4 0.6 0.8
0

2000

4000

6000

8000

0 0.2 0.4 0.6 0.8
0

5000

10000

15000

0 0.2 0.4 0.6 0.8
0

0.5

1

1.5

2x 104

0 0.2 0.4 0.6 0.8
0

0.5

1

1.5

2

2.5x 104

Figure 3.8: The two panels of the top row show the histograms of the entropy values

for the masks of Figure 3.2b (the histogram on the left corresponds to Frey and the

histogram on the right to Jojic). The bottom row shows the corresponding histograms

(again the left plot corresponds to Frey and the right to Jojic) for the entropy values of

the masks after the refinement step.

46 Chapter 3. Greedy learning of multiple objects using robust statistics

images shown in Figure 3.6a. Note that in this case we set αb
� 1 since robustifying a

random background does not make sense. There were 67 66 � 88 images in the training

set. The results with the greedy algorithm are shown in Figure 3.6b.

In some other experiments using a few random backgrounds our algorithm has not

worked well. In these cases it seems that the foreground models tend to model structure

that appears in some backgrounds rather than the foreground objects. These problems

might be overcome by using more random backgrounds, as this would fit the random

background assumptions better.

Demonstration of the refinement of the appearances of the objects

In all the above experiments the occlusion ordering of the objects has been correctly

computed according to the algorithm described in section 3.4 and appendix B.3. As ex-

plained in section 3.4, once the occlusion ordering has been specified for each training

image we can refine the appearances of the objects by maximizing the complete data

log likelihood over all the parameters. For this refinement step, we initialize the back-

ground and the foreground appearances and masks using the values provided by the

greedy algorithm. The variances
�
σ1
�
�
�	�	� σL

� σb � are reinitialized to a large value (as

described in the second paragraph of this section) so that to escape from local maxima.

Note also that for this maximization we maintain the robustification of the background

and foreground pixel densities (αb and α f obtains the value 0 � 9) in order to deal with a

possible deformability of the objects, e.g. local clothing deformation, or changes of the

lighting conditions. The EM algorithms needed for the above maximization converges

in few iterations (e.g. less than 20). This is because both the objects’ appearances

initialized by the greedy algorithm are already close to their final values and all the

transformations of the objects have been “filled in” with the approximated values pro-

vided by the greedy algorithm.

Figure 3.7 displays the results for the Frey-Jojic images used in the Experiment 1

after the refinement step. Comparing Figure 3.2b with Figure 3.7 we can visually in-

spect the improvement over the appearances of the objects, e.g. the ghosts in the masks

of Figure 3.2b have disappeared in Figure 3.7. To better examine the improvement in

the mask πππ % of an object, we measure the entropy in each pixel of the mask accord-

3.7. Discussion 47

ing to H
�	�

πππ %	� p � � � � πππ %	� p log
�
πππ %	� p

� �
1 � πππ %	� p log

�
1 � πππ %	� p. Typically, a good mask

has values close to 0 and 1 which can be indicated by the entropy values i.e. in such

case H
�
�

πππ %	� p ��� 0 for most of the pixels. In Figure 3.8 we plot the histograms of the

entropy values for the masks before and after the refinement step so as to inspect any

improvement. The two plots in the top row of Figure 3.8 show the histograms for the

masks of Figure 3.2b, while the histograms shown in the bottom row correspond to

the masks after the refinement step. Clearly, the refinement step “cleans” the masks

significantly.

3.7 Discussion

As we have seen, training the generative model for multiple objects using a direct

search over all JbJL
f values of the transformation variables is not feasible. Rather than

use approximate simultaneous inference of the hidden variables we have developed

a sequential method which extracts the background and foreground objects one-at-a-

time from the input images. This is achieved by robustifying the generative model

so that occlusions of either foreground or background can be tolerated. The results

above show that this greedy algorithm is very effective at finding the background and

foreground objects in the data.

Furthermore, although we have described this work in relation to image modelling,

it can be applied to other domains. For example, one can apply the greedy approach to

fitting mixture models, as we will describe in Chapter 5. Also, one can make a model

for sequence data by having Hidden Markov models (HMMs) for a “foreground” pat-

tern and the “background”. Faced with sequences containing multiple foreground pat-

terns, one could extract these patterns sequentially using a similar algorithm to that

described above. It is true that for sequence data it would be possible to train a com-

pound HMM consisting of L � 1 HMM components simultaneously, but there may be

severe local minima problems in the search space so that the sequential approach might

be preferable.

A criticism about the above framework for learning multiple objects in images

concerns the size of the transformation space i.e. the values of J f and Jb. Even when

48 Chapter 3. Greedy learning of multiple objects using robust statistics

we learn a single object at a time the possible transformations of the object that we need

to consider can be enormous. For example, considering only translations in units of one

pixel gives P transformations. If the object can be rotated, we might need to consider

about 360 rotations which immediately gives 360P total transformations. This means

that for 100 � 100 images we will need P � 3 � 6 � 106 transformations. For richer

spaces of transformations, such as the affine transformations, we will need to consider

a much larger number of transformations and the method will be extremely slow. A

way of tackling this problem is to decompose the whole transformation into simpler

transformations and then use a variational approximation to separate the search. Frey

and Jojic (2001) used this approach to search over translations, rotations and scalings,

combined with Fast Fourier Transforms to learn a single object. A more advanced

technique based on this idea is that of Winn and Blake (2005) who use full affine

transformations by globally searching over translations, rotations and scalings and then

considering an additional local search over an affine transformation. However, this

technique has so far been demonstrated only for a single foreground object against a

static background.

When the images come from a video sequence with multiple moving objects we

can speed up the search over the transformations based on the fact that the motion of an

object between successive frames is constrained to be small. Considering video data

and using the above constraint, in the next chapter we present a method that greatly

speeds up the greedy algorithm for learning multiple objects and allow us to consider

full affine transformations.

Chapter 4

Fast learning of multiple objects and

parts from video

The greedy algorithm for learning multiple objects presented in the previous chapter

works on unordered sets of images. In this case training can be very slow as it is nec-

essary to search over all possible transformations of at least a single object on every

image. However, for video sequences we could considerably speed up the training by

first tracking the objects before knowing their full structure. Tracking can approxi-

mate the underlying sequence of transformations of an object in the frames and thus

learning can be carried out with a very focused search over the neighbourhood of these

transformations or without search at all when the approximation is accurate.

In this chapter we develop an algorithm that works in conjunction with the greedy

algorithm so that the stage where the greedy algorithm learns an object (by assum-

ing unordered images) is now speeded up by applying first tracking and then learning

given the approximated transformations. First, the moving background is tracked and

learned, and moving foreground objects are found at later stages. The tracking al-

gorithm itself recursively updates an appearance model of the tracked object so that

occlusion is taken into account, and approximates the transformations by matching

this model to the frames through the sequence. This provides accurate transforma-

tions, e.g. in the experiments in section 4.5, we learn the objects without search using

only the transformations found by the tracking algorithm and obtain good results.

49

50 Chapter 4. Fast learning of multiple objects and parts from video

Furthermore, in this chapter we learn articulated parts of the human body from

video data using unsupervised learning. We apply the same algorithm for learning

multiple objects in order to learn articulated parts, so that the parts are first tracked

and then have their full structure learned. We also learn a distribution over parts’

transformations, that expresses all the valid relative movements of the parts. In section

4.5 we assume that parts can undergo full affine transformations and we extract three

parts (the two arms and the head/torso) from a video sequence of the upper human

body. Much of the work of this chapter has been described in Titsias and Williams

(2004).

The structure of the remainder of the chapter is as follows: In section 4.1 we briefly

review work done using tracking for learning multiple moving objects in video se-

quences. In section 4.2 we present the training algorithm based on tracking, while in

section 4.3 we describe learning of parts. In section 4.4 we discuss related work re-

garding both tracking multiple objects and learning parts of objects. In section 4.5 we

give experimental results, and we conclude with a discussion in section 4.6.

4.1 Tracking multiple moving objects

Consider a video sequence where each frame contains the view of a single object

against clutter (multiple objects will be discussed shortly). The constraint that the ob-

ject does not move very fast, hence it cannot change its instantiation parameters rapidly,

can be encoded using a Hidden Markov Model (HMM) where the hidden states cor-

respond to the transformations of the object and the observations are the video frames

(Jojic et al., 2000). The number of transformations I f used to explain the motion in a

frame of the video can be much smaller compared to the global number of transfor-

mations as now we only need to consider a window of neighbouring transformations

centred at the transformation of the previous frame. EM can be applied for learning

the object appearance as shown by Jojic et al. (2000). In the E-step the inference over

transformations is carried out by running the forward-backward algorithm in O
�
NI2

f �
time, where N is the number of frames. In the case of multiple moving objects the

probabilistic generative model described in section 2.2.3 can be suitably modified to

4.1. Tracking multiple moving objects 51

generate the images similarly to the HMM. Particularly, the model now will be a fac-

torial HMM type of model (Ghahramani and Jordan, 1997). For L moving objects, the

inference step of the EM algorithm needs O
�
N
�
I2

f � L � time, which grows exponentially

with the number of objects similarly to the case of unordered (independently drawn)

images.

However, even when we have a single moving object the number of transforma-

tions I f can be of order of ten of thousands (e.g. if we discretize a full affine transfor-

mation over some window of neighbouring transformations). Thus, the quadratic term

I2
f makes the computations prohibitive. For example, Jojic et al. (2000) have applied

their HMM approach for learning a single object considering only translations. A so-

lution to the above problem is to have a separate method for approximating the MAP

estimate of the sequence of transformations of the HMM. Many methods achieve this

considering a recursive processing of the video frames and applying motion estimation

and tracking. In the following of the section we briefly discuss such techniques from

the literature that have been applied for learning 2D appearance models of multiple

objects in video sequences.

An algorithm for finding the transformations of objects in a video can be based

on motion estimation in pairs of successive frames. We refer to these techniques as

two-frame motion estimation methods. First, two-frame motion estimation is carried

out through the whole sequence and then the object transformation at each frame is

estimated as a cumulative sum of all the motions up to that frame1. This basically is

the approach considered by several methods that learn multiple moving objects repre-

sented as 2D layers (appearances and support masks) in image sequences (Wang and

Adelson, 1994; Darrell and Pentland, 1995; Sawhney and Ayer, 1996). These meth-

ods use optical flow estimation (Horn and Schunck, 1981) between pairs of frames

and introduce the concept of multiple moving objects by constraining the flow vectors

to follow a parametric model such as a simple translational or affine motion (Bergen

et al., 1992; Wang and Adelson, 1994; Black and Anandan, 1996). A segmentation of

the first frame into coherently moving regions is also needed since in order to estimate

the motion of an object we need to know the image area that belongs to that object.

1This implies that the first frame in the sequence is the reference frame. Alternatively, we could
choose some other frame as the reference frame and compute the transformations accordingly.

52 Chapter 4. Fast learning of multiple objects and parts from video

Motion estimates and segmentation are updated iteratively until the first frame is seg-

mented into stable moving regions and the corresponding motions are approximated.

k-means has been used for the segmentation step (Wang and Adelson, 1994) as well as

Gaussian mixture models (Jepson and Black, 1993; Sawhney and Ayer, 1996; Weiss

and Adelson, 1996; Vasconcelos and Lippman, 2001).

The main drawback of all two-frame motion estimation methods is that they strongly

depend on the accuracy of the motion estimates when matching successive frames. Par-

tial occlusion of the objects affects the accuracy of the motion estimation. Particularly,

occlusion that occurs in both the first and the second frame can have an additive ef-

fect in the accuracy, e.g. when some part of an object is visible in some frame, while

only the remaining part is visible in the next frame, the two-frame approach will not

be able to estimate the motion. In addition, the widely-used optical flow algorithm

suffers from the aperture problem. Since the transformation of an object at each frame

is finally approximated as the cumulative sum of the motions up to that frame, small

errors in the motion estimates will accumulate, resulting in a poor approximation of

the transformations.

Motion estimation can be improved by accumulating an appearance model of a

moving object through time (Irani et al., 1994; Tao et al., 2000). In this case a stabilized

appearance model of the object is stored and updated as we process the frames and

the motion of each frame is found by matching the stored appearance model to the

frame. We refer to these methods as model-based tracking methods. Notice that in

this case we can directly compute the transformation of an object by matching the

stored appearance to the current frame without needing to take an accumulated sum

of motions up to that frame. To whole approach can be much more reliable than the

two-frame tracking framework. For example, consider the situation were we compute

wrongly the transformation of an object at some frame due to severe occlusion. In

other words we lose the track of the object at that frame. The two-frame method will

provide wrong estimates of the transformations after that frame. On the other hand the

model-based approach can still recover the track as long as in some subsequent time

we manage to correctly match the object model to the current frame. Next we present

a novel model-based type algorithm for tracking multiple objects.

4.2. Speeding up the greedy algorithm using tracking 53

4.2 Speeding up the greedy algorithm using tracking

In this section we present a tracking algorithm that applies to a sequence of frames and

approximates the corresponding set of transformations of the objects. The method is

combined with the greedy algorithm so that we track and learn all the differently mov-

ing objects sequentially. We start by tracking the background, while the foreground

objects are ignored (using robust statistics) at this stage. Once the transformation of

the background in all frames has been approximated we learn its full structure through

a focused search. Note that this procedure simply replaces the step 1 of the greedy al-

gorithm as summarized in section 3.3.4. Given that we know the background enables

us to track and learn foreground objects, so that step 3(a) of the greedy algorithm is

modified suitably.

Section 4.2.1 discusses how we can track the background while section 4.2.2 de-

scribes tracking of the foreground objects.

4.2.1 Tracking the background

We wish first to track the background and ignore all the other motions related to the

foreground objects. To introduce the idea of our tracking algorithm assume that we

know the appearance of the background b as well as the transformation j1
b that asso-

ciates b with the first frame. Since motion between successive frames is expected to

be relatively small we can determine the transformation j2
b for the second frame by

searching over a small discrete set of neighbouring transformations centred at j1
b and

inferring the most probable one (i.e. the one giving the highest likelihood given by

equation (3.5), assuming a uniform prior). This procedure can be applied recursively

to determine the sequence of transformations in the entire video.

However, the background b is not known in advance, but we can still apply roughly

the same tracking algorithm by suitably initializing and updating the background b as

we process the frames. More specifically, we initialize b so that the centred part of it

will be the first frame x1 in the sequence. The remaining values of b take zero values

and are considered as yet not-initialized which is indicated by a mask m of the same

size as b that takes value 1 for initialized pixels and 0 otherwise. The transformation of

54 Chapter 4. Fast learning of multiple objects and parts from video

the first frame j1
b is the identity, which means that the first frame is untransformed. The

transformation of the second frame and in general any frame t � 1, t " 1, is determined

by evaluating the posterior

R
�
jt 3 1
b � ∝ exp

�
∑P

p 1
�
Tjt F 1

b
mt � p log pb

�
xt 3 1

p ;
�
Tjt F 1

b
bt � p �

∑P
p 1

�
Tjt F 1

b
mt � p

, � (4.1)

over the set of possible jt 3 1
b values around the neighbourhood of jt

b. Note that (4.1)

is similar to the likelihood (3.5) with the only difference that pixels of the background

that are not initialized yet are removed from consideration and the whole score is nor-

malized (by ∑P
p 1

�
Tjt F 1

b
mt � p) so that the number of not initialized yet pixels (that can

vary with jt 3 1
b) does not affect the total score. Once we know jt 3 1

b , we use all the

frames up to the frame xt 3 1 to update b according to

bt 3 1 G t 3 1

∑
n 1 � T T

jn
b

�
rn

jn
b
� xn ��� ��� t 3 1

∑
n 1 � T T

jn
b
rn

jn
b
� � (4.2)

where the rn
jn
b

vectors have been updated according to equation (B.3) (see appendix

B) for the old value bt of the background. Notice that the above update is given by

equation (B.4) in the greedy algorithm, by considering only the first t � 1 frames as the

training data and assuming that the found transformation values � j1
b
�
�
�	�$� jt 3 1

b
� take all

the probability (P
�
ji
b � xi � � 1, i � 1 �	�
�
�	� t � 1). The mask m is also updated so that it

always indicates the pixels of b that are explored so far.

As we process the frames the background b is adjusted so that any occluding fore-

ground object is blurred out revealing the background behind. An illustrative example

of applying the algorithm is shown in Figure 4.2a. Having tracked the background, we

can then learn its full structure assuming a focused search over the neighbourhood of

the approximated transformations. What we mean by learning using a focused search

is that we apply an EM type of algorithm for learning the background as that mentioned

in section 3.3.1 and further presented in appendix B.1. But now we suitably constrain

each posterior probability P
�
jb � xn � to obtain non-zero values only in a neighbourhood

of transformations centred at jn
b that is found by the tracking algorithm. Appendix C

formally presents this algorithm with focused search as a variational EM.

4.2. Speeding up the greedy algorithm using tracking 55

4.2.2 Tracking the foreground objects

Assume that the background has now been learned. The pixels which are explained

by the background in each image xt are flagged by the background responsibilities rt
jtb

(computed by equation (B.3)). Clearly the mask rt
jtb
� 1 � rt

jtb
roughly indicates all the

pixels of frame xt that belong to the foreground objects. By focusing only on these

pixels we wish to start tracking one of the foreground objects through the entire video

sequence and ignore for the moment the rest foreground objects.

Our algorithm tracks the first object by simultaneously updating its mask πππ1 and

appearance f1. The mask and the appearance are initialized so that πππ1
� 0 � 5 � rt

jtb
and

f1
� x1, where 0 � 5 denotes the vector with 0 � 5 values2. Due to this initialization we

know that the first frame is untransformed, i.e. j1
1 is the identity transformation. To

determine the transformation of the second frame and in general the transformation

jt 3 1
1 , with t " 1, of the frame xt 3 1 we find the most probable value of jt 3 1

1 according

to the posterior

R
�
jt 3 1
1 � ∝ exp

�
P

∑
p 1

�
wt 3 1

1 � p log H � Tjt F 1
1

πππ1 � p �
p f
�
xt 3 1

p ;
�
Tjt F 1

1
f1 � p �
� � 1 � Tjt F 1

1
πππ1 � p

�
1 � αb � U �

xt 3 1
p �	IJ, � (4.3)

where wt 3 1
1

� rt 3 1
jt F 1
b

. R
�
jt 3 1
1 � measures the goodness of the match at those pixels of

frame xt 3 1 which are not explained by the background. Note that as the objects will, in

general, be of different sizes, the probability R
�
jt 3 1
1 � over the transformation variable

will have greater mass on transformations relating to the largest object. Recall that

p f
�
xt 3 1

p ;
�
Tjt F 1

1
f1 � p � includes an outlier component so that some badly misfit pixels can

be tolerated.

Once we determine jt 3 1
1 we update both the mask πππ1 and appearance f1. These

updates are similar to those given by (B.9) and (B.10), with the only difference that we

use only the first t � 1 frames and the approximate transformations to obtain posterior

probabilities P
�
jt1 � xt � � 1. Note that the updates are robust to occlusion (because of

2The value of 0.5 is chosen to express our uncertainty about whether these pixels will ultimately be
in the foreground mask or not.

56 Chapter 4. Fast learning of multiple objects and parts from video

the semantics of rn
jn
1
; see appendix B.2) so that occlusion of the tracked object can be

tolerated. This makes tracking reliable even for the video frames the object is occluded.

Note also that as the frames are processed tracking becomes more stable since πππ1

approximates the mask of a single object and the f1 will contain a sharp and clear view

for only the one object being tracked while the rest of the objects will be blurred; see

Figure 4.2b for an illustrative example.

Once this first object model has been learned we can go through the images to

find which pixels are explained by this model, and update the z vector accordingly as

explained in section 3.3 (see also appendix B). We can now run the same tracking

algorithm again by updating wt% 3 1 (# " 1) as by wt% 3 1
� zt% � wt% which allows tracking a

different object on the #K� 1th iteration. Note also that the new mask πππ % 3 1 is initialized

to 0 � 5 � wt% 3 1 while the appearance f % 3 1 is always initialized to the first frame x1.

4.3 Learning about parts

For the recognition of complex objects that contain several parts that can take on dif-

ferent configurations relative to each other, it has long been recognized that a strategy

based on the recognition of the individual parts and their relationships is likely to be

advantageous; see e.g. Biederman (1987) on recognition-by-components. Much work

in computer vision along this track uses manually identified parts; recent examples of

such work are Felzenszwalb and Huttenlocher (2005) and Schneiderman and Kanade

(2004) which consider people and cars, and faces and cars respectively. In contrast we

are interested in learning parts from data. Much less work has been done on this topic,

but some specific contributions are discussed in section 4.4.2.

Section 4.3.1 discusses how the greedy algorithm is used for learning parts of ar-

ticulated objects using video data. Section 4.3.2 describes a method for computing a

joint distribution over parts that can undergo full affine transformations.

4.3.1 Learning parts using the greedy algorithm

To learn objects parts using unsupervised learning from some training images we

should first ask the question what properties a set of pixels should have in order to

4.3. Learning about parts 57

be considered as a single part. An general answer should be that pixels having strong

statistical correlation3 observed through the whole data set, should be taken as a single

part. Of course, turning this general principle into a specific algorithm to learn parts

from images can be a great challenge. Here we focus on articulated objects (e.g. a

human body) where the statistical correlation is due to co-motion so that a set of pixels

explained across the data set by the same transformation (such as a combination of

translation and rotation) should be taken as a single part.

The greedy algorithm combined with tracking can be used to discover the appear-

ances and masks of the parts of an articulated object from video data. Figure 4.1

shows three frames of the arms-torso video data in which we applied the greedy algo-

rithm and Figure 4.4 displays the three parts that are found. However, notice that the

greedy algorithm was first developed to train a generative model for multiple objects

which considers the objects as being apriori independent. Particularly, as explained in

section 3.1, the location (decided by the transformation) of each object in the image is

assumed to be generated independently from the locations of the other objects. This

assumption is a good approximation for multiple objects which their motion is largely

unrelated. However, for object parts this assumption is inappropriate since the parts

much be located within the image so that to form a valid object. For example, in the

data of Figure 4.1 the arms should always be connected to the torso in a way that a

valid human body appearance is expressed. In the next section we discuss how the in-

formation provided by the greedy algorithm can be used to compute a joint distribution

over the transformations of the parts.

4.3.2 Finding the joint distribution of the parts

Assume now that we have applied the greedy algorithm and we have discovered L parts

of a single object. Particularly, for each part # the algorithm outputs the appearance

f % , the mask πππ % and the transformations
�
j1% �	�
�
�	� jN% � that describe how the parts are

instantiated in each training image. Using this information we wish to learn the joint

distribution P
�
j1 �
�
�
�$� jL � over the transformations of the parts.

3Statistical correlation between some quantities can be quantified in terms of the mutual information
which measures our certainty about predicting one quantity by observing others.

58 Chapter 4. Fast learning of multiple objects and parts from video

Figure 4.1: Three frames of the arms-torso video sequence.

The relationship between the parts is independent from the location of the whole

object within the image. For example, for the arms-torso data of Figure 4.1 the parts

are connected through flexible joints according to some rules that are invariant from the

global location of the human in the image. Next we exploit this property by computing

a distribution over parts in some canonical frame and considering an additional global

transformation to instantiate the whole object in any location within an image.

When each part can only translate, the location (instantiation within the image) of

each object part can be described by depicting one landmark on the part appearance

and translating this landmark. Now when the parts undergo full affine transformations

we need to depict three non co-linear landmarks on each part appearance and then

consider transformed positions of these landmarks. Figure 4.6a illustrates the original

(untransformed) coordinates of the landmarks overlaid on each part appearance for the

arms-torso data, while Figure 4.6b (bottom row) shows the corresponding transformed

coordinates of the landmarks when several upper human body images are generated.

Let tn% � �
tn%) 1 � tn%) 2 � tn%) 3 � � � � tn%) 1 � x � tn%) 1 � y � tn%) 2 � x � tn%) 2 � y � tn%) 3 � x � tn%) 3 � y � T be the coor-

dinates of all three landmarks of the # th part in the image xn. Using the data set�
t1% �
�	�
�	� tN% � , where # � 1 �
�
�
�$� L, of the landmarks in all training images we wish to

compute the canonical frame distribution. This distribution is defined in some refer-

ence frame so that one of the parts will be always untransformed. Without loss of gen-

erality, we choose the first part as the reference part and thus the distribution is defined

over all landmarks of the parts (transformed into the canonical frame space) except the

landmarks of the reference part. Particularly, we need to remove the effect of the trans-

formation of the reference part according to on%) i � �
An

1 � � 1 H tn%) i � mn
1 I , with i � 1 � 2 � 3

and # � 2 �	�
�
��� L, and where the 2 � 2 matrix An
1 and mn

1
� � � mn

1 � x � mn
1 � y � T denote the

4.3. Learning about parts 59

affine parameters for the reference part in the image xn. Thus, the canonical frame

distribution is computed using the data set
�
õ1 �
�	�
�	� õN � where each õn � �

on
2
�
�
�
�$� on

L � .
We model this distribution by the following mixture of Gaussians

Q
�
õ � � K

∑
k 1

PkN
�
õ;µµµk

� WkW T
k � vkI � � (4.4)

where each µµµk is a 6
�
L � 1 � mean vector and the 6

�
L � 1 �L� 6

�
L � 1 � covariance matrix

WkW T
k � vkI is parameterised by the low rank 6

�
L � 1 �M� q matrix Wk (where q D 6

�
L �

1 �) and the variance vk. Each Gaussian in equation (4.4) is a probabilistic PCA model

(Tipping and Bishop, 1999; Roweis, 1998), thus the whole mixture can represent a

non-linear data manifold as a collection of local linear models. Notice that due to

the articulation motion of the parts, we expect each vector of landmarks (i.e. õ) to

lie on a non-linear manifold. In Figure 4.5 we illustrate this fact by showing several

two-dimensional plots of different pairs of dimensions of the data set used to estimate

the distribution (4.4) for the arms-torso sequence (see also section 4.5.2). Clearly,

the plots in Figure 4.5 suggest that the manifold in this case has an non-linear arc

shape. To specify the parameters
�
µµµ1
� W1

� v1
�	�
�
��� µµµK

� WK
� vK � , we use as a training set

the landmarks
�
õ1 �
�
�
�$� õN � and maximize the log likelihood using the EM algorithm

(Tipping and Bishop, 1999).

To instantiate an object within an image, we first draw a sample õ from the canoni-

cal frame distribution Q and then we choose an affine transformation for the reference

part and transform all the landmarks. Particularly, selecting the affine
�
A1
� m1 � for the

reference part by a discrete uniform distribution Pre f , each landmark in an observed

image is given by t %) i � A1o %) i � m1. Thus, the distribution in the image space will be

p
�
t1
� t̃ � � Pre f

�
t1 � K

∑
k 1

PkN
�
t̃; Ãµµµk � m̃ � ÃΣk

�
Ã � T � � (4.5)

where t̃ � �
t2
�
�
�
�$� tL � , m̃ is a 6

�
L � 1 � -dimensional vector constructed by 3

�
L � 1 � repli-

cates of the translation m1, Ã is a 6
�
L � 1 �N� 6

�
L � 1 � bock-diagonal matrix with the

blocks being 3
�
L � 1 � replicates of the A1 matrix and Σk

� WkW T
k � vkI. Note that equa-

tion (4.5) is the desired distribution over transformations of the parts i.e. P
�
j1
�
�
�	�$� jL � .

The above framework can be used in the case the parts undergo more restricted (or

more general) transformations than a full affine, e.g. if we consider only translations,

60 Chapter 4. Fast learning of multiple objects and parts from video

rotations and scalings, then the only difference in computing the canonical frame dis-

tribution is that we need only two landmarks on each part instead of three. So far we

have not discussed how we choose the original (untransformed) locations of the land-

marks on the part appearances. We have an automatic method for doing this which is

explained in the experiments described in section 4.5. For example, this method has

been used to choose the landmarks above the head/torso and the two arms shown in

Figure 4.6a.

4.4 Related work

In this section we discuss related work. In particular, section 4.4.1 discusses related

work regarding tracking multiple objects and section 4.4.2 about learning parts.

4.4.1 Tracking

There is a huge literature on motion analysis and tracking in computer vision, and there

is indeed much relevant prior work. Particularly, Wang and Adelson (1994) estimate

object motions in successive frames and track them through the sequence by comput-

ing optical flow vectors, fit affine motion models to these vectors, and then cluster

the motion parameters into a number of objects using k-means. Darrell and Pentland

(1995); Sawhney and Ayer (1996) uses similar approaches based on optical flow esti-

mation between successive frames and apply also the MDL principle for selecting the

number of objects. Note that a major limitation of optical-flow based methods con-

cerns regions of low texture where flow information can be sparse, and when there

is large inter-frame motion. The method of Irani et al. (1994) is much more relevant

to ours. They do motion estimation using optical flow by matching the current frame

against an accumulative appearance image of the tracked object. The appearance of

a tracked object develops though time, although they do not take into account issues

of occlusion, so that if a tracked object becomes occluded for some frames, it may be

lost.

The work of Tao et al. (2000) is also relevant in that it deals with a background

model and object models defined in terms of masks and appearances. However, note

4.4. Related work 61

that the mask is assumed to be of elliptical shape (parameterised as a Gaussian) rather

than a general mask. The mask and appearance models are dynamically updated. How-

ever, the initialization of each model is handled by a “separate module”, and is not

obtained automatically. For the aerial surveillance example given in the paper initial-

ization of the objects can be obtained by simple background subtraction, but that is

not sufficient for the examples we consider. Later work by Jepson et al. (2002) uses

a polybone model for the mask instead of the Gaussian, but this still has limited rep-

resentational capacity in comparison to our general mask. Jepson et al. also use more

complex tracking methods which include the birth and death of polybones in time, as

well as temporal tracking proposals.

The idea of focusing search when carrying our transformation-invariant clustering

has also been used before, e.g. by Fitzgibbon and Zisserman (2002) in their work on

automatic cast listing of movies. However, in that case prior knowledge that faces were

being searched for meant that a face detector could be run on the images to produce

candidate locations, while this is not possible in our case as we do not know what

objects we are looking for apriori.

As well as methods based on masks and appearances, there are also feature-based

methods for tracking objects in image sequences, see e.g. Torr (1998), Wills et al.

(2003). These attempt to track features through a sequence and cluster these tracks

using different motion models. We believe that these methods are of considerable in-

terest, particularly when combined with new ideas on features that are stable to various

transformations such as scaling and rotation (Lowe, 2004). We will further discuss this

in section 6.3 where we provide directions for future work.

4.4.2 Parts

In section 4.4.2.1 we discuss related work about learning objects parts and in section

4.4.2.2 about modelling the spatial relationships of the parts.

4.4.2.1 Unsupervised learning of parts

Perona and co-workers have developed important work on unsupervised learning of

objects and parts through a series of papers (Burl et al., 1998; Weber et al., 2000;

62 Chapter 4. Fast learning of multiple objects and parts from video

Fergus et al., 2003). Their general approach (as described in Weber et al., 2000) is

as follows: First an interest operator is used to locate keypoints in an training set of

images each showing an object view against clutter then graylevel descriptors of these

keypoints are extracted. These features are then clustered to give a number of “part”

types; note that there can be several detections of a given part type in a given image.

The learning of this model is slow as one has to deal with the combinatorics of the

assignment of all part type detections in an image to the part types in the model. Note

that in the end the model only prescribes the feature appearance at certain locations in

the image, and does not provide a full appearance model of the object. However, an

important aspect of this work is that object classes (e.g. cars) can be learned, not just

specific objects.

Shams and von der Malsburg (1999) have also developed a method for learning

parts by matching images in a pairwise fashion, trying to identify corresponding re-

gions in the two images. These candidate image patches were then clustered to com-

pensate for the effect of occlusions. We make the following observations on their

work: (i) in their method the background must be removed otherwise it would give rise

to large match regions; (ii) their data (although based on realistic CAD-type models)

is synthetic, and designed to focus learning on shape related features by eliminating

complicating factors such as background, surface markings etc.

Lee and Seung (1999) described a non-negative matrix factorization method to

tackle part decompositions. However, this interesting work does not deal with the

problem of parts undergoing transformations, and so could not extract the kinds of

parts found by our method. Cooperative Vector Quantization methods (Hinton and

Zemel, 1994; Ghahramani, 1995; Ross and Zemel, 2003) use probabilistic models to

find parts decompositions of data, but again they do not consider parts undergoing

transformations.

4.4. Related work 63

4.4.2.2 Joint model for the parts

Burl et al. (1998) considered a Gaussian distribution for connecting the parts that can

only deal with a translational relative deformation of the parts4. Particularly, they only

consider a single landmark point on each part, so that only translations of the parts are

modelled. Thus, this method is not suitable for parts that undergo different rotations

(i.e. having more than one articulation points) such as parts of a human body. Felzen-

szwalb and Huttenlocher (2005) presented a method for modelling the joint distribution

over parts that can vary due to translations rotations and scalings. In particular, they

consider a tree-structured Markov Random Field over transformation parameters of

the parts with each potential function being a product of three Gaussians (two for the

landmark that explains translation and one for the scale parameter) and a Von Mises

distribution that models rotation angle. However, this method can only be trained with

labelled examples e.g. they need explicitly a human to label the position of the joint of

each pair of connecting parts in each training image. Note that our method models full

affine relative deformation of the parts by depicting three landmarks on each part and

additionally the selection of the landmarks is done automatically.

There are many methods in the literature that make use of a set of landmarks to

express a statistical model of an object’s shape, e.g see Grenander et al. (1991), Cootes

et al. (1992), Williams (1994), Bregler and Omohundro (1994) and Heap and Hogg

(1995) among others. These methods depict landmarks usually along the boundary of

the object and then model shape deformation by expressing a joint distribution over

these landmarks. For example, Cootes et al. (1992) assume a linear model by esti-

mating the covariance matrix from the data using the first few principal components.

Bregler and Omohundro (1994) used clustering combined with PCA to deal with the

non-linear data manifold, similarly to the probabilistic PCA mixture model we used

in section 4.3.2. Heap and Hogg (1995) transform suitably chosen landmarks into to

polar coordinates so as to make the data manifold linear in the case of rotational defor-

mation. Note that in our case the landmarks are used to express relative relationship

or deformation between parts rather than deformation of the object as a whole. This

4Note that the work of Weber et al. (2000) and Fergus et al. (2003) uses the same framework for
connecting the parts with this introduced by Burl et al. (1998).

64 Chapter 4. Fast learning of multiple objects and parts from video

means that the number of landmarks scales with the number of parts and it can be much

smaller than the number of landmarks used in all the above methods. Since we model

deformation of articulated (largely rigid) parts, the method of Heap and Hogg (1995)

may be an alternative way to model the canonical frame distribution.

4.5 Experiments

In section 4.5.1 we demonstrate the greedy and tracking algorithm for learning multiple

objects in video and we compare it with the original greedy algorithm (see chapter 3)

with respect to running time complexity. In section 4.5.2 we demonstrate the method

for learning the joint distribution over the transformations of the parts.

4.5.1 Demonstration of the tracking algorithm

We will consider two video sequences: the Frey-Jojic (FJ) sequence available from

http://www.psi.toronto.edu/layers.html and the arms-torso video sequence

showing a moving human upper body (see Figure 4.1).

In terms of computational time, the greedy algorithm without tracking requires

O
�
JNM � operations per learning an object, where J is the number of transformations,

N the number of frames and M the number of EM iterations needed for convergence.

Here one operation consists of computing pb
�
xp;bp � or p f

�
xp; fp � (according to equa-

tions (3.2) and (3.1)) for all image pixels. The algorithm using tracking needs roughly

O
�
I1N � N2 � I2NM2 � operations per pixel, where I1 is the number of transformations

considered for searching to find the transformation of the next frame as we track the

object through the sequence, I2 is the number of transformations of the focused search

in the learning stage, and M2 is the corresponding number of EM iterations. The N2

term is due to updates of the mask and appearance during tracking, since at each time

we consider all the frames processed so far. Notice that J f O I1
� I2 so the tracking

algorithm should enjoy considerable speedups.

The FJ sequence consists of 44 118 � 248 images (excluding the black border);

it was also used at the previous chapter (see Figure 3.2a). The results in Figure 4.3

were obtained using a 15 � 15 window of translations in units of one pixel during the

4.5. Experiments 65

tracking stage (I1
� 225) and a 1 � 1 window (I2

� 1), i.e. without search, around

the approximated location during the learning stage. This learning stage requires EM

which converged in about M2
� 30 iterations. Figure 4.2a shows the evolution of the

initial appearance of the background (t � 1) through frames 10 and 20 as we track

the background. Note that as we process the frames the background becomes sharp

and clear, while the foreground objects are blurred. Similarly, Figure 4.2b shows the

evolution of the mask and appearance as we track the first object (Frey). Again notice

that as we process the frames the mask focuses on only one of the two objects and the

appearance remains sharp only for this object.

The algorithm with tracking needs a total of 13 � 156 operations to find an object.

The original greedy algorithm considers all 118 � 248 possible translations i.e. J f
�

29264, and also requires M1
� 70 iterations to reach convergence. Thus, the total

number of operations required by the original greedy algorithm is 90 � 133 � 120, which

implies that we gain a speed up of over 6850 for learning a single object. The real

running times of our MATLAB implementations roughly confirm the above, since the

greedy algorithm learns the whole sequence in 80 hours, while the algorithm using

tracking runs in 3 minutes.

We demonstrate our method for learning parts of human body using the arms-torso

sequence that consists of 79 76 � 151 images. Three frames of this sequence are shown

in Figure 4.1. To learn the articulated parts we use full affine transformations so that

the transformation matrix Tj (that applies to πππ % and f % implements an affine transforma-

tion. We implemented this using the MATLAB function tformarray.m and considering

nearest neighbour interpolation; see also appendix A.1. Note that to discretize an affine

transformation we use the fact that any affine is a combination of a rotation, two scal-

ings (one for each image axis), another rotation and a translation5. However, for this

particular sequence similar results can be obtained by constraining the affine transfor-

mation to be only a combination of a translation and a rotation, since the parts actually

only translate and rotate.

When we use only translations and rotations the tracking method uses a 10 � 10

5This is based on the fact that the 2 P 2 A matrix that linearly transforms a pixel location, can be
decomposed using Singular Value Decomposition as A Q UΛV , where U is the left rotation matrix, Λ a
diagonal scaling matrix and V the right rotation matrix.

66 Chapter 4. Fast learning of multiple objects and parts from video

t � 1 t � 10 t � 20

(a)

t � 1 t � 10 t � 20

(b)

Figure 4.2: Panel (a) shows the evolution of the background appearance b during track-

ing at time 1 (initial value of b), 10, and 20. Clearly, as we track the background the

appearance b reveals the background behind the foreground objects which are blurred.

Similarly, panel (b) shows the evolution of the mask πππ1 (top row) and the appearance

f1 (bottom row) at times 1, 10 and 20 as we track the first objects (Frey). Again notice

how the mask becomes focused on one of the objects (Frey) and how the appearance

remains clear and sharp only for Frey.

4.5. Experiments 67

Figure 4.3: The final masks and the element-wise product of the mask and appearance

model (πππ � f) learned for Frey (first column from the left) and Jojic (second column).

Figure 4.4: The masks and appearances of the parts of the arms-torso video sequence.

The plots in the first column show the learn mask (top row) and the element-wise prod-

uct of the mask and appearance (bottom row) for the head/torso. Any pair of panels in

the other two columns provides the same information for the two arms.

68 Chapter 4. Fast learning of multiple objects and parts from video

window of translations and 10 rotations (at 4o spacing) so that it searches over I1
�

1000 transformations in total. After tracking a part we use a focused search around

a 1 � 1 � 1 window (i.e. no search) to learn its full structure. Figures 4.4 shows the

three parts discovered by the algorithm i.e. the head/torso and the two arms. Note that

the ambiguity of the masks and appearances around the joints of the two arms with

the torso which is due to the deformability of the clothing in these areas. The total

real running time for learning this sequence was roughly half hour. When we use full

affine transformations the algorithm becomes slower and runs roughly in 10 hours.

Notice also that running the original greedy algorithm on this sequence is infeasible

in practice. In particular, the greedy algorithm without tracking requires consideration

of all possible 76 � 151 translations combined with, say, 200 rotations which imme-

diately gives a very large number of transformations (J f
� 2 � 295 � 200) that should be

considered.

4.5.2 Demonstration of learning the joint distribution over parts

The tracking algorithm for learning the objects parts outputs a set of appearances and

masks as well as the approximated transformations for all the training images. In order

now to apply the framework for computing a joint model for the parts, as described in

section 4.3.2, we need first to depict the landmarks on each part appearance. We do this

automatically using the learned masks. Particularly, from the mask πππ % we consider all

the pixel locations that belong to the object part (the mask gives a value close to 1 for

those pixels) and we choose the landmarks so that to form a triangle that covers a large

amount of the part area. Particularly, by applying PCA we select the first landmark to

be across the minor axis and close to the boundary of the object part (indicated by the

corresponding eigenvalue). For example, this is how the first from the right landmark

is depicted on the head/torso mask as shown in Figure 4.6a. The other two landmarks

are selected to be across an axis that is parallel to the principal axis and also close to

the boundary side that is in the opposite direction than the side of the first landmark;

see again Figure 4.6a for an illustration. Note that the landmarks can be outside of the

object, and in fact many alternative choices of the landmarks can be equal good.

Having selected the landmarks as described above, the joint distribution over parts

4.5. Experiments 69

20 30 40 50
90

95

100

105

110

20 30 40 50
50

55

60

65

70

75

95 100 105 110

28

30

32

34

36

38

40

Figure 4.5: Three scatter plots of different pairs of dimensions of the 12-dimensional

data set used to estimate the canonical frame distribution for the arms-torso sequence.

The left panel plots the two dimensions of the landmark that belongs to the first arm

(showing in the middle column of Figure 4.4) and it is the closest to the hand. Similarly,

the middle panel plots the dimensions of the landmark of the second arm that is again

the closest to the hand. The right panel plots two dimensions that belong to landmarks

of different arms. One standard deviation Gaussian ellipses of the probabilistic PCA

mixture model are also plotted (by picking the corresponding two dimensions of the

means and the 2 � 2 parts of the covariance matrices).

is computed as discussed in section 4.3.2. Particularly, as explained in section 4.3.2, we

form a data set of vectors each one corresponding to each training image and containing

the landmarks of all the parts except the landmarks of the reference part and transform

these vectors into the canonical frame space by applying the inverse transformation

of the reference part. For example, for the arms-torso video sequence the head/torso6

was selected as the reference part and thus the above data set consists of six landmarks

corresponding to the two arms, which gives vectors into the 12-dimensional space.

Figure 4.5 shows three scatter plots of this 12-dimensional data set by picking pairs

of different combinations of the dimensions. Clearly, Figure 4.5 indicates that the

landmarks of the two arms in the canonical frame space form an arc shaped manifold

due the rotational motion.

The canonical frame distribution described by equation (4.4) was chosen to have 4

components where for each component a 4-dimensional PCA space was used. These

choices were based on a validation set. To optimize the parameters of this distribution

6We chose the reference part so as to have the largest area computed using the mask.

70 Chapter 4. Fast learning of multiple objects and parts from video

(a)

(b)

Figure 4.6: Panel (a) shows the landmarks depicted on each part mask for the arms-

torso video data according to the method described in the text. Panel (b) illustrates

three samples of human upper body appearances. Particularly, the top row shows

the appearances produced by the joint model for the parts and the trained generative

model, while the bottom row shows the corresponding positions of the transformed

landmarks (using different colours for different parts) superimposed on the transformed

masks.

4.6. Discussion 71

we applied EM (Tipping and Bishop, 1999) and particularly we used the NETLAB

implementation which is available from http://www.ncrg.aston.ac.uk/netlab.

Figure 4.5 illustrates how the mixture components fit the data. To inspect the quality

of the fit to the underlying shape distribution, we draw several samples of human upper

body appearances based on the learned joint distribution over the parts. From visual in-

spection these samples always look plausible shapes, e.g. Figure 4.6b shows three such

samples. Note that to produce each plot in the top row in Figure 4.6b we first sample

the landmarks according to the equation (4.5), which provides all the transformations,

and then an object appearance is generated according to the probability model of equa-

tion (2.15). In the bottom row of Figure 4.6b we also show the corresponding positions

of the landmarks superimposed on the masks. Note that the arms are always placed

symmetrically to each other since that was also the nature of the training examples.

4.6 Discussion

Above we have shown how to use a tracking method to greatly speed up the greedy al-

gorithm presented in chapter 3 and we also demonstrated that this method can identify

articulated parts of objects, as in the human body. Additionally, we described how to

connect the parts by learning a prior distribution over the transformations of the parts.

Our current tracking algorithm for learning multiple objects has certain limitations.

First of all, the objects we learn are specific objects without significant internal vari-

ability and viewpoint changes. For example, consider the arms-torso data of Figure 4.1,

the parts largely undergo 2D motion and no 3D rotations and substantially changes of

the viewpoint of the object are considered. In case the viewpoint changes so that the

object appearance changes dramatically, the probabilistic model as well as the tracking

algorithm will need some modification. An additional remaining issue is to automati-

cally specify the number of objects L that exists in the sequence and also to detect when

a model is a part or an independent object. Suggestions for future research on all the

above topics such as specifying the number of objects, learning objects/parts with in-

ternal variability and finding non-articulated parts will be discussed at the conclusions

chapter and specifically in section 6.3.

Chapter 5

Greedy training of mixtures models

using robust statistics

The key idea of the greedy algorithm for learning multiple objects presented in chapter

3 is that it uses robust statistics in order to learn one object at each time. As explained in

section 3.3, the greedy algorithm trains sequentially a certain type of a mixture model

for image pixels where each component corresponds to an object model, so that at each

stage a component fits a subset of the pixels and the remaining pixels are explained by

an outlier process.

In this chapter we discuss how we can fit a mixture model used for clustering in a

similar manner. Particularly, we incorporate an outlier component (an uniform density

to any possible data point) into the mixture model which allows us to fit one cluster of

the data by “ignoring” the rest of the clusters. Data points that are fitted by a model

are then “removed from consideration” in a probabilistic fashion so that at the next

stage a new model can fit to an unexplored region of the data space and so on. Such a

method can be useful for improving parameter initialization since it provides a sensible

way to sequentially initialize each component model to data regions that are not well

explained by the already fitted models.

An additional feature of the algorithm is that it can indicate when to stop adding

new components; when the outlier component fits no data (or fits only background

clutter data) we have potentially reached the desirable number of components and we

73

74 Chapter 5. Greedy training of mixtures models using robust statistics

can stop. We show that this can be used to find the number of components in some

simple clustering problems.

The structure of the remainder of the chapter is as follows: In section 5.1 we de-

scribe the sequential algorithm for fitting a mixture model assuming any form for the

component density models. In section 5.2 we discuss related work, while in section 5.3

we show some experiments in real data sets using Gaussian and multinomial mixtures

and provide also a comparison with the regular EM. For Gaussian mixtures we include

also in the comparison another sequential (greedy) algorithm proposed by Vlassis and

Likas (2002) and Verbeek et al. (2003). We conclude with a discussion in section 5.4.

5.1 Sequential algorithm for mixture models

We address the problem of learning a mixture density model with J components

P
�
x � � J

∑
j 1

π jPj
�
x � θ j � � (5.1)

where Pj
�
x � θ j � is the jth component having parameters θ j and π j the mixing coeffi-

cient. Mixture models have been widely used in statistical modelling as density esti-

mation methods McLachlan and Peel (2000). Given a set of i.i.d data X �R� x1 �
�	�
�	� xN �
we wish to estimate the underlying density of x by a mixture model of the form (5.1).

The component densities Pj
�
x � θ j � can be chosen from some parametric family such as

the exponential family. Most of the presentation in the rest of the paper assumes that

Pj
�
x � θ j � can be any distribution while in out experiments we specify this to be a mul-

tivariate Gaussian in the case of continuous data and a multinomial for discrete-valued

data.

In this section we describe the sequential algorithm for learning mixture models.

Particularly, section 5.1.1 illustrates the idea of using an outlier component to train a

single Gaussian density. Section 5.1.2 describes the algorithm for sequentially fitting

the components of a mixture model using an outlier component and section 5.1.3 pro-

vides details regarding the application of the algorithm to Gaussian and multinomial

mixtures.

5.1. Sequential algorithm for mixture models 75

5.1.1 Fitting one density model together with an outlier component

We wish to learn a density model P
�
x � θ � together with a uniform distribution U

�
x � ,

called the outlier component, so that

P
�
x � � αP

�
x � θ ��� �

1 � α � U �
x � � (5.2)

For clarity assume at the moment that the model P
�
x � θ � is a multivariate Gaussian

with parameters θ �S� µµµ � Σ � . Selecting first a value for α we can learn the parameters

by maximizing the log likelihood L � ∑N
n 1 logP

�
xn � using the EM algorithm.

Notice that if α � 1 the outlier component is neglected and the parameter estimate

for the Gaussian is the maximum likelihood solution. As α decreases the Gaussian

becomes more and more focused on some population of the data and as α approaches

zero the Gaussian fits very few data points ending up with fitting just one data point.

An obvious use of this model is to robustify the Gaussian estimate by choosing

a high value for α (say 0 � 9) which can be useful in situations where one data cluster

is embedded in background clutter. However, what is less obvious is the fact that by

choosing properly the value of α the robust model of equation (5.2) can be used for

learning just one data cluster by ignoring any other clusters of the data. To illustrate

this consider the data of Figure 5.1 which form three separate clusters. We maximize

the likelihood by initializing µµµ selecting one data point and Σ � cI with c equal to

the maximum variance of all data dimensions. α is initialized to 0 � 5 and is learned

infrequently by EM (every 10 iterations). Figure 5.1 illustrates two runs of the EM

algorithm under two different parameter initializations of the mean.

If we can fit just one cluster of the data by the model described above we can

then, by repeating the process, fit all the data clusters sequentially. This motivates the

sequential algorithm for fitting mixture models described in next section.

76 Chapter 5. Greedy training of mixtures models using robust statistics

−10 −5 0 5
−4

−2

0

2

4

6
Initial Gaussian

−6 −4 −2 0 2 4
−3

−2

−1

0

1

2

3

4
Final Gaussian

−6 −4 −2 0 2 4
−4

−2

0

2

4

6
Initial Gaussian

−6 −4 −2 0 2 4
−3

−2

−1

0

1

2

3

4
Final Gaussian

Figure 5.1: Illustrates fitting a Gaussian using an outlier component. Under different

initializations of the mean (plots on the left) we can discover different clusters (plots on

the right).

5.1. Sequential algorithm for mixture models 77

5.1.2 Fitting mixture models sequentially

In this section we discuss how we can use an outlier component to fit a mixture model

rather than a single density model. Such a mixture should have the form

P
�
x � � J

∑
j 1

π jPj
�
x � θ j ��� �

1 � J

∑
j 1

π j � U �
x � � (5.3)

where generally ∑J
j 1 π j T 1. We wish to train this mixture model sequentially by

learning only one density model Pj
�
x � θ j � at each stage. An intuitive way of thinking

about this is that we start by assuming that the mixing coefficients π j, j �
�
�
�$� J are set

to zero, so that the outlier component has all the probability. At jth stage the mixing

coefficient π j is set free to get a positive value and the corresponding component model

Pj
�
x � θ j � is allowed to fit some part of the data. At each stage the mixing coefficient of

the outlier component always decreases which implies that the probability of what is

considered as outlying data decreases sequentially.

Attias (2000) has shown how mixture models can be trained using variational

Bayesian methods. It is interesting to note that if one component of the mixture at

a time is updated repeatedly while keeping the other components fixed then a scheme

quite similar to ours would emerge, as the as-yet-unfitted components would tend to

have vague distributions not dissimilar to our uniform component1.

We now describe our algorithm in detail, starting with training the first component

P1
�
x � θ1 � . By allowing the coefficient π1 to obtain a positive value we have the mixture

P
�
x � � π1P1

�
x � θ1 ��� �

1 � π1 � U �
x � � (5.4)

which is exactly the model discussed in section 5.1.1 and thus learning the parameters� θ1
� π1

� can be done by maximizing the log likelihood using EM.

Suppose now that we have fitted a model P1
�
x � θ1 � to the data. What we wish to do

next is to train the second mixture component P2
�
x � θ2 � by considering the mixture

P
�
x � � π1P1

�
x � θ1 ��� π2P2

�
x � θ2 ��� �

1 � π1
� π2 � U �

x � � (5.5)

This case now becomes a little more complicated in the sense that we wish the second

model not to fit data that are already well explained by the first model. Generally the
1We thank Steve Roberts for a helpful discussion on this point.

78 Chapter 5. Greedy training of mixtures models using robust statistics

new model P2
�
x � θ2 � should fit a subset of the data that is reasonably different from all

the data fitted by P1
�
x � θ1 � . Such a constraint can be efficiently taken into account by

applying a constrained EM algorithm where instead of the log likelihood we maximize

a lower bound of the log likelihood (Neal and Hinton, 1998). Particularly, we compute

the responsibilities of the uniform component for each data point xn by

zn
1
� �

1 � π1 � U �
xn �

π1P1
�
xn � θ1 ��� �

1 � π1 � U �
xn � � (5.6)

which are computed by having only trained the first component and then we express

a lower bound of the log likelihood of the model (5.5). Particularly, introducing the

notation Pu
2
�
x � � π2P2

�
x � θ2 �U� �

1 � π1
� π2 � U �

x � and using Jensen’s inequality we

have

N

∑
n 1

log � π1P1
�
x � θ1 ��� Pu

2
�
x � �� N

∑
n 1

log V � 1 � zn
1 � π1P1

�
x � θ1 �

1 � zn
1

� zn
1

Pu
2
�
x �

zn
1 W" N

∑
n 1

�
1 � zn

1 � logπ1P1
�
xn � θ1 ��� N

∑
n 1

zn
1 logPu

2
�
x �� H

� � zn
1
� � � (5.7)

where H
� � zn

1
� � denotes an entropic term independent of � π2

� θ2
� . Since the parameters

of the first model are fixed, maximizing the above bound simplifies to maximizing only

the second term in the above sum under the constraint that π2 should receive a value

smaller or equal to 1 � π1. According to the form of the above objective function

maximizing with respect to � θ2
� π2

� favours solutions where the model fits data that

previously was explained mainly by the outlier component. To make this more obvious

note that the weights � zn
1
� are close to zero for all data explained by P1

�
x � θ1 � and close

to one for all data explained by the outlier component. So the objective function (5.7)

effectively removes from consideration in a probabilistic fashion data fitted by the first

model. This process of fitting the mixture components to the data can be performed

sequentially. The algorithm is summarized below

1. Set j � 0. Initialize: zn
0
� 1 for all n.

5.1. Sequential algorithm for mixture models 79

2. Set j � j � 1. Initialize θ j and π j
� α

�
1 � ∑ j � 1

i 1 πi � , where α D 1 (we use α �
0 � 5).

3. Optimize the parameters � θ j
� π j

� by running EM and maximizing:

N

∑
n 1

zn
j � 1 log � π jPj

�
xn � θ j ��� �

1 � j � 1

∑
i 1

πi
� π j � U �

xn � �X� (5.8)

where π j is sparsely updated by EM (every 10 iterations).

4. Update the log likelihood weights

zn
j
� �

1 � ∑ j
i 1 πi � U �

xn �
∑ j

i 1 πiPi
�
xn � θi ��� �

1 � ∑ j
i 1 πi � U �

xn � � (5.9)

5. Go to step 2 or output the mixture Pj
�
x � � ∑ j

i 1 πiPi
�
x � θi ��� �

1 � ∑ j
i 1 πi � U �

x � .
At each stage of the above algorithm a new model is trained (step 3) by maximizing

a weighted log likelihood where the weights � zn
j
� mask out (probabilistically) data

fitted by the previously learned models. At step 4 the � zn
j
� values are updated so that

at the next stage we can fit a new model most probably to a different data subset.

The sequential process can be considered as a kind of boosting algorithm for density

estimation as the data points are reweighted on each iteration so that points that are

well fitted by the current models become less important in later stages.

Note that the mixing coefficient of the outlier component 1 � ∑ j
i 1 πi can only de-

crease at each stage and naturally the learning process stops once this coefficient be-

comes very close to zero. In section 5.3.2 we describe a simple stopping criterion

based on this idea and we use it to find the number of clusters in some simple cluster-

ing problems.

The outcome of the sequential algorithm can be used to initialize a mixture model.

In such case the outlier component is discarded and the coefficients π j, j � 1 �
�
�
�$� J are

normalized to sum to one. The parameters of the resulting mixture can be refined by

applying EM and maximizing the likelihood.

80 Chapter 5. Greedy training of mixtures models using robust statistics

5.1.2.1 Refinement of the previous learned components

So far the models fitted to the data remain fixed for the later stages, however it might

be more effective if we can refine their parameters during learning. Next we discuss

the refinement procedure we use in our implementation.

The refinement can be introduced as an additional step of the sequential algorithm

between steps 4 and 5 which is applied only for j " 2. After step 4 the values � � 1 � zn
j � �

are the responsibilities according to which all the components P
�
x � θi � , i � 1 �
�
�
�$� j

explain the data. Based on these responsibilities we maximize a lower bound of the

log likelihood

F � N

∑
n 1

�
1 � zn

j � log
j

∑
i 1

πiP
�
xn � θi �

� N

∑
n 1

zn
j log

�
1 � j

∑
i 1

πi � U �
xn ��� H

� � zn
j
� �� N

∑
n 1

�
1 � zn

j � log
j

∑
i 1

πiP
�
xn � θi ��� const � (5.10)

where the sum ∑ j
i 1 πi is fixed at the value that obtains before we apply the refinement

step. Note that the second term in the first line is a constant since ∑ j
i 1 πi is invariant

as well as the entropic term since depends on the � zn
j
� values. Thus, the refinement

objective function is just the first term in the above sum under the constraint that ∑ j
i 1 πi

is invariant, which can be carried out using EM. Such refinement will be within the data

regions that the first j components already fit. Completely unexplored data regions for

which the outlier component obtains high responsibility will remain unexplored after

refinement.

Assuming that we have carried out the refinement step as described above, we need

to feed the changes made back into the sequential algorithm. This is simply done by

updating the weights, so the refinement step is completed by updating � zn
j
� according

to the step 4 of the sequential algorithm.

It is interesting to compare the weighted log likelihood used in the refinement step

(equation (5.10)) with the corresponding used for learning a new Gaussian (equation

(5.8)). The quantity F in (5.10) explicitly masks out (in a probabilistic way) all the

data fitted by the outlier component. This allows refinement of the Gaussians without

5.1. Sequential algorithm for mixture models 81

big moves in unexplored data regions. On the other hand the weighted log likelihood

used to learn a new Gaussian works in the opposite way; it masks out all the data fitted

by the already learned Gaussians in order to fit a new Gaussian to unexplored data

regions.

5.1.2.2 Running time analysis

For mixture models trained by EM algorithm the time complexity depends on the num-

ber of evaluations of the component densities Pj
�
x � . The sequential algorithm without

refinement fits one component at each stage which has complexity O
�
N � per EM it-

eration. If the maximum number of iterations is M1, the whole process for fitting J

models needs O
�
JNM1 � operations. This can be further reduced by noting that at each

stage the data fitted by the current models become much less important since their

weights zn
j � 1 will take a very close to zero value. We can explicitly remove these

data from the dataset by expressing the set A j
�Y� n : zn

j � 1 9 δ � with δ small (e.g.

δ � 0 � 05) and use only the data from A j when we train the jth component. Thus,

the jth stage needs O
�
N jM1 � time (N j

� �A j �) and the total time complexity becomes

O
�
JKM1 � where K denotes the average value of all N js. In practice K can be much

smaller than N. The algorithm with refinement steps at the jth stage learns first one

component and updates the current mixture (only for j " 2) which totally requires

O
�
JNM1 � ∑J

i 2 iNM2 � � O
�
JNM1 � J2NM2 � operations where M2 is the maximum

number of EM iterations for the refinement procedure. This time can also be reduced

similarly to the no-refinement case.

Note that when we train a J-component mixture the sequential algorithm is used

as the initialization procedure of the mixture model. This means that it is not desirable

to run all the EM algorithms required by the sequential algorithm till convergence.

Typically, we can apply few iterations M1 and M2 for training a new Gaussian and

refining the current mixture, respectively. Especially, it is desirable that M2 be small

(e.g less than 20) so that the refinement procedure to be fast. Once the components

have been initialized the regular EM is applied to refine this mixture which needs

O
�
JN � operations per EM iteration.

82 Chapter 5. Greedy training of mixtures models using robust statistics

5.1.3 Parameter initialization and specifying U Z x [
When we apply the sequential algorithm we have to specify several parameters. First

of all the α value used in the step 2 of the algorithm is set equal to 0 � 5. Now, when

Pj
�
x � θ j � is a Gaussian we initialize the mean to some training data point selected from

the distribution G
�
n � � zn

j
� ∑N

n \] 1 zn \
j . G

�
n � at each stage favours points that are mainly

explained by the outlier component. The covariance matrix is initialized to be spherical

with variance equal to the maximum variance of all data dimensions.

In the case of multinomial mixtures the component densities have the form

Pj
�
x � θ j � � d

∏
i 1

P
�
xi � θi

j � � (5.11)

where d is the number of dimensions and P
�
xi � θi

j � are multinomial distributions. To

initialize θ j we first select a training data point xn from G
�
n � and initialize the multi-

nomial parameters for dimension i by giving a fraction γ of the probability mass to the

value that corresponds to the value of xn
i and split the rest of probability mass uniformly

over the rest of the values.

One crucial point is how we define the uniform distribution U
�
x � . An obvious

way is to find the hypercube/sphere that contains all the training data and express the

uniform density in that space. However, in high dimensional spaces the data often

lies on lower dimensional manifolds and such a “bounding box” uniform distribution

will tend to give very low probability densities to the data points in comparison with

the other components. To overcome this, we set U
�
x � � 1

N ∑N
n 1 P

�
xn � θML � where

P
�
x � θML � is a single component model (e.g. a Gaussian) using maximum likelihood

parameters θML. This can be seen as a rescaling of the α parameter in equation (5.2).

5.2 Related work

In addition to the standard EM algorithm, various initialization strategies have also

been proposed. Cheeseman et al. (1993) and Figueiredo and Jain (2002) among oth-

ers have demonstrated a backwards selection method, starting with many components

and pruning some away using Bayesian type of model selection criteria. The forward

5.3. Experiments 83

sequential (greedy) algorithm for Gaussian mixtures proposed by Vlassis and Likas

(2002) and Verbeek et al. (2003) initializes the Gaussians one after the other by com-

paring at each stage a set of candidate initializations. Once a Gaussian has been ini-

tialized the current mixture model is refined by maximizing the likelihood using EM.

One important difference with our method is that we use the outlier component which

allows the Gaussians at each stage to fit some part of the data, while in Vlassis and

Likas (2002); Verbeek et al. (2003) the Gaussians at each stage fit all the data. Note

also that our method does not use a set of candidate initializations when we fit a new

component and for this reason it requires less running time.

The sequential algorithm can be regarded as a boosting density estimation algo-

rithm. There has been some recent work (Thollard et al., 2002; Meek et al., 2002;

Rosset and Segal, 2003) on extending boosting from the supervised learning problem

to the density estimation problem. Our sequential formulation of fitting process is rem-

iniscent of these boosting algorithms. However, one attractive feature of our scheme

is that the boosting view derives from a constrained EM formulation of the problem

which at each stage derives the weights of the data points based on the outlier compo-

nent.

5.3 Experiments

In this section we demonstrate the sequential algorithm for training Gaussian and

multinomial mixtures. In section 5.3.1 we apply the algorithm to learn a J-component

mixture on two real datasets and provide a comparison with the regular EM as well

as the sequential algorithm of Verbeek et al. (2003). In section 5.3.2 we apply the

sequential algorithm to find the number of components in a case with well-separated

clusters.

5.3.1 Training a J-component mixture model

We present two experiments in real high dimensional data using Gaussian and multino-

mial mixtures respectively. In the first experiment we use the Brodatz textures images

following an experimental setup used in Verbeek et al. (2003). The task is to cluster

84 Chapter 5. Greedy training of mixtures models using robust statistics

a set of 16 � 16 � 256 patches taken from 256 � 256 pixel Brodatz texture images.

We consider the number of clusters (textures) from which patches are extracted to be

J ��� 3 � 5 � 7 � 9 � . For a specific J we randomly choose J textures from the 37 available

textures, create a set of 900J patches and then keep the half
�
450J � for training and the

rest for testing. We repeat this experiment 50 times. Each data set was also projected

from the 256 to 50 dimensions using PCA in order to speed up the experiment. For

each of the 50 datasets of a certain J we train a mixture model with J components

using (i) k-means initialized EM2 (kmeans), (ii) the sequential (greedy) algorithm of

Verbeek et al. (2003) (VVK)3, (iii) the sequential algorithm with refinement (Ref) and

with (iv) no refinement (NoRef) steps. For the Ref and NoRef methods the M1 and

M2 numbers defined in section 5.1.2.2 are set to 50 and 20 respectively. Table 5.1 and

5.2 display the t-statistic values of the difference of the average log likelihoods for

training and test data set respectively. Note that when we consider the differences in

log likelihoods of the method A and B (A � B in the notation in the Tables 5.1 and 5.2)

and the t-statistic is larger than 2 � 01 the method A is significantly better than B at level

5% (t0 ^ 025) 49
� 2 � 01). When the t-statistic is less than � 2 � 01 the method A is signif-

icantly worse. Observe that the sequential fitting algorithm with refinement is better

than EM initiated with k-means and that these differences are significant for J � 7 � 9.

Also the method with refinements is better than the VVK method and this is signifi-

cant for J � 7 � 9. Note that using refinement always improves the results compared to

the algorithm with no refinement steps. We have also run the algorithm for mixture

fitting proposed by Figueiredo and Jain (2002) on this data using their code (available

from http://www.lx.it.pt/˜mtf/mixturecode.zip). However, the pruning strat-

egy they use means that one cannot guarantee to get J components in the final model,

and when fewer than J components are selected the log likelihoods are low leading to

poor performance in comparison to the methods reported in the Tables.

In our experiments the regular EM with few steps of the k-means algorithm for

initialization was the fastest followed by the sequential algorithm with no-refinement

and the algorithm with refinement, while the method of Verbeek et al. (2003) was the

2We used the NETLAB implementation available from http://www.ncrg.aston.ac.uk/netlab.
3The code is provided by the authors at http://carol.science.uva.nl/ _ vlassis/research/learning/ in-

dex en.html.

5.3. Experiments 85

3 5 7 9

NOREF - kMEANS -1.03 -0.27 1.7 1.74

REF - kMEANS 0.74 1.74 3.26 3.5

VVK - kMEANS 1.05 -0.26 1.27 0.48

REF - NOREF 2.34 1.24 2.63 3.48

REF - VVK 0.12 1.38 2.49 2.49

NOREF - VVK -1.46 -0.07 0.83 1.04

Table 5.1: t-statistic values for the differences of the average training set log likelihoods

for the Brodatz textures. Bold face indicates that the test is significant at the 5% level.

3 5 7 9

NOREF - kMEANS -1.02 -0.23 1.66 1.52

REF - kMEANS 0.69 1.75 3.17 3.25

VVK - kMEANS 1.01 -0.24 1.03 0.18

REF - NOREF 2.34 1.3 2.59 3.8

REF - VVK 0.11 1.41 2.57 2.53

NOREF - VVK -1.43 -0.05 0.93 1.09

Table 5.2: t-statistic values for the differences of the average test set log likelihoods for

the Brodatz textures. Bold face indicates that the test is significant at the 5% level.

slowest. For example, choosing J � 7 the real running time of the algorithms (averaged

over 10 runs) was: 25 seconds for the kmeans method, ii) 30 seconds for the NoRef

method, iii) 65 seconds for the Ref method and iv) 102 seconds for the VVK method,

respectively.

The second experiment uses handwritten digits data as employed in Frey et al.

(1996). The digits are quantized to 8 � 8 binary images. Following Meila and Heck-

erman (2001) we use only the digit 6 dataset (but note that different preprocessing

means that our results are not directly comparable to theirs). This dataset consists of

700 training cases and 200 test cases. The implementation of the regular EM (Reg-EM)

is based on initializing the multinomial parameters by picking J data points randomly

and applying the parameter initialization method described in section 5.1.3 (γ was cho-

86 Chapter 5. Greedy training of mixtures models using robust statistics

J REF NOREF REG-EM

3 -28.1 ` 0.21 -27.97 ` 0.2 -28.06 ` 0.21

5 -26.8 ` 0.03 -26.79 ` 0.03 -26.8 ` 0.03

7 -26.23 ` 0.09 -26.25 ` 0.13 -26.28 ` 0.14

9 -25.93 ` 0.14 -25.90 ` 0.12 -25.95 ` 0.14

11 -25.72 ` 0.11 -25.68 ` 0.09 -25.67 ` 0.12

Table 5.3: Mean average log likelihoods for the test data in the digit6 dataset.

sen to be 0 � 75). The mean average log likelihoods over 20 random initializations and

for different choices of the number of components J are displayed in Table 5.3. On

this data there is no significant difference between the performance of the algorithms.

5.3.2 Finding the number of components

The sequential algorithm can indicate when to stop adding components, since in case

the outlier component fits very few data we probably have reached the required number

of components. We apply this to find the number of components in cases of separate

clusters.

The criterion we use is very simple. Assume that we have trained the jth Gaussian,

we express the set S j
�a� xn : zn

j 9 0 � 5 � which indicates the data points for which the

outlier component obtains the largest responsibility. Now if S j is a large set, we know

that there are some data regions that are not explored by the Gaussian models, so we

have to continue learning. However, when this set contains very few data we can con-

clude that the Gaussians have discovered all the data regions. In our experiments we

assume that 2% of the data is background noise, thus we require � S j � 9 0 � 02N, where

N is the number of training data, otherwise we stop learning. For the data of Figure

5.2 generated from a five-component mixture we applied the sequential algorithm with

refinement steps. The stopping criterion is met when we reach five components, when,

in fact � S5 � � 0.

Note that the above criterion can find the number of components in problems with

well-separated clusters. In cases the data form highly overlapping clusters or where

5.4. Discussion 87

−10 −5 0 5 10
−8

−6

−4

−2

0

2

4

6

−10 −5 0 5 10
−8

−6

−4

−2

0

2

4

6

Figure 5.2: The plot on the left illustrates a data set generated from a 5-component

Gaussian mixture. The plot on the right displays the solution found by the sequential

algorithm once the stopping criterion is met.

there is no clear separation of the data into clusters the above criterion will only roughly

indicate how many components needed to represent the data.

5.4 Discussion

Above we have described a sequential approach for fitting mixture models, and have

demonstrated that for training a J-component mixture model it can produce better per-

formance than rival algorithms. Compared to the sequential method of Verbeek et al.

(2003) our method gave better performance and it is also fastest since we do not use

a set of candidate initializations when we fit a new component. Note that our method

could probably be significantly improved by having a small set of candidate initializa-

tions.

In terms of model selection, Bayesian methods using the marginal likelihood as a

selection criterion or approximations such as BIC penalties are most common. While

our method is unlikely to be able to compete with sophisticated Bayesian methods such

as reversible jump MCMC Green (1995) on densities whose components are not well

88 Chapter 5. Greedy training of mixtures models using robust statistics

separated, it does provide a much more rapid answer.

Chapter 6

General discussion

In section 6.1 we give a summary of the contributions of this thesis. In section 6.2 we

draw some conclusions regarding the usefulness of using robust statistics for learning

models sequentially. Finally, in section 6.3 we describe directions for future work.

6.1 Summary

In this thesis we have dealt with the problem of learning specific multiple objects and

object parts from a set of images using unsupervised learning. The main contributions

of our work are:� The generative model for learning multiple objects, where each image is syn-

thesized by a background object and multiple foreground objects that are rep-

resented by 2D appearances and masks. Each image pixel is generated by a

mixture distribution over all objects so that objects strictly combine by occlu-

sion.� The greedy algorithm for training the generative model, which by utilizing robust

statistics can discover the background and the foreground objects one at each

time.� The tracking algorithm that greatly speeds up the original greedy algorithm in

video data. This algorithm tracks an object (first the background, and then each

89

90 Chapter 6. General discussion

foreground object) by updating an appearance model of the object and matching

this model to the frames through the sequence.� The method for learning parts of articulated objects. This method first uses the

greedy algorithm to find the appearances of the parts and then the joint distri-

bution over parts is modelled by a probabilistic PCA mixture model over some

landmarks assigned above the parts so that full affine relative transformation of

the parts is allowed.� The greedy algorithm for fitting a mixture model for clustering using an outlier

component, which is based on similar principles as the greedy algorithm for

learning objects.

6.2 When is a greedy algorithm using robust statistics

useful?

The use of robust statistics plays a central role in both the greedy algorithm for learn-

ing multiple objects (chapters 3 and 4) and the algorithm for fitting a mixture model

(chapter 5). Notice that the greedy algorithm for learning multiple objects achieves an

approximate training of an originally intractable factorial learning model. An impor-

tant question concerns when learning the components of a model one-at-a-time is more

beneficial than training the whole model simultaneously.

Learning a model (for multiple objects or clustering) sequentially using robust

statistics is generally easier from an optimization point of view. This is because fewer

parameters are fitted each time and the corresponding likelihood surface is a smoothed

version of the original log likelihood1 with all component models present. For this

reason, local maxima problems are reduced since both the objective function surface is

smoother and the search space is smaller. This point was confirmed by our experiments

in all data sets where we applied the greedy algorithm for learning multiple objects.

Particularly, by having a simple mechanism for parameter initialization for each object

1All the contributions of the component models (objects or component density parameters) that are
not fitted yet are explained by an outlier process.

6.3. Directions for future work 91

(see section 3.6) any run of the algorithm was successful without facing local maxima

problems.

However, the above point is useful only if our algorithm is able to sufficiently

approximate the desirable values of the model components, so that the refinement

step (where all the components are simultaneously maximized using the values of the

greedy algorithm as the initial estimate) can easily find these values. The desirable

values are those that would be hypothetically obtained by a global maximization of the

likelihood of the overall model. The greedy algorithm for learning multiple objects

provides good estimates of the objects since each mask and appearance pair describes

quite efficiently the view of a single object (see experiments in sections 3.6 and 4.5).

The refinement step described in section 3.4 converges very quickly and improves the

appearances of the objects (e.g. it cleans the masks as shown in section 3.6) which

indicates that the greedy algorithm had already provided good object models. The

greedy algorithm for clustering is less efficient with respect to the above point, e.g.

the refinement step might not converge in a few iterations and the final mixture model

might differ significantly from that provided by the greedy algorithm. However, this

strongly depends on the characteristics of a data set, since a data set might not admit

an obvious separation into (Gaussian type) clusters.

6.3 Directions for future work

In section 6.3.1 we discuss future improvements of the current framework for learning

multiple objects. In section 6.3.2 we describe a learning scenario where our approach

for learning multiple objects can be used as the first step for training an object cate-

gorization system from unsegmented images with multiple objects using unsupervised

learning.

6.3.1 Further improvements on learning multiple objects

In our current algorithm for learning objects we assume that we know the number of

foreground objects that exist in the images. Generally, we would like to learn this

number automatically. One way to incorporate this into the greedy algorithm is to

92 Chapter 6. General discussion

introduce a model selection criterion as a score for the number objects and evaluate

this criterion each time we learn an object. Bayesian criteria such as BIC and MDL

(Schwarz, 1978; Rissanen, 1987) could be implemented.

One problem that can arise with our current approach is when the appearance of an

object can change markedly due to changes in pose and self-occlusion. For example,

in the beginning of a sequence we may see a front view of a car, while at the end we

may see a side view. In this case the generative model as well as the tracking algorithm

(see chapter 2, 3 and 4) should be modified. Particularly, a suitable enhancement of

the generative model will be to introduce a set of mask and appearance pairs, each

one associated with a different view (or aspect, Koenderink and van Doorn 1979) of

an object. The tracking algorithm should be also modified to track an object even

when the viewpoint changes. Once the transformations of an object are approximated

we could learn the set of different views by clustering similarly to the approach for

clustering images showing a single object in different poses (Frey and Jojic, 2003).

Additionally, when for a fixed viewpoint the appearance of an object can still vary

due to some internal deformation, e.g. a face that changes expressions, we need to

further enhance our model to account for internal object variability. One way to achieve

this is to assume that the appearance of each foreground object (i.e. f %) in each image

is modelled by a low-dimensional eigenspace (Black and Jepson, 1996) or a factor

analysis model (Jojic et al., 2003).

The tracking algorithm presented in chapter 4 operates in image pixels. Particu-

larly, it approximates the transformations of the objects by updating masks and appear-

ances and matching them to each frame. This can be slow especially for large images.

An alternative and possibly much faster approach to approximate the transformations

is to extract features from the original images and then perform the computations in

this features space; see e.g. Torr (1998), Wills et al. (2003). An interesting approach

toward this direction is to to use features that are stable to various transformations such

as SIFT features (Lowe, 2004). Once such features are detected in all frames, then the

objective will be to cluster them into different moving objects and thus compute the

transformation of an object within an frame using the locations of the objects’ detected

features.

6.3. Directions for future work 93

The approach for learning parts using the greedy algorithm assumes that we know

when a detected model is an object part or an independent object. Thus, to fully au-

tomate our method we should be able to group different models together when they

belong to the same object. A way to do this can be based on the mutual information.

Particularly, since we expect parts of the same object to have significant statistical de-

pendence we can compute the mutual information between pairs of models that have

been discovered by the greedy algorithm and group them into the same object as long

as their mutual information is sufficiently large.

6.3.2 Unsupervised object recognition from images with multiple

objects

Consider the case where we have a set of video sequences with each sequence showing

the views of multiple moving objects. Such data might come from very realistic envi-

ronments (e.g. from cameras in public places). Moving objects, for example, can be

humans and cars. Learning starts by extracting the multiple objects from each video

sequence using the method presented at chapter 4. This procedure will output a set

of specific objects and particularly an intensity appearance image of each object and a

mask.

The next step will be to consider each learned appearance of an object as a data

point of a new training set and cluster these data using a mixture model where each

component generates the appearance as a collection of object parts. Specifically, as-

sume that there is only one underlying object class (e.g. humans). We first introduce a

probabilistic generative model (similar to that described in chapter 2) that considers the

appearance of the object as a mosaic of non-overlapping parts. The variation of each

part can be modelled by assuming a continuous latent variable (subspace variable) in

some lower dimensional space similar to probabilistic PCA or factor analysis models

and also some image transformation latent variable that makes the part invariant under

few transformations (e.g. translations and scalings) around a certain location. Given

that we know the number of parts we can fit this model to the data using a variational

EM algorithm and discover parts of arbitrary sizes and shapes2. When there are mul-
2The object part that a given pixel is generated from is found automatically by EM.

94 Chapter 6. General discussion

tiple underlying object classes (e.g. humans and cars), then the probabilistic model

becomes a mixture model of the above type which can be fitted by an EM kind of

algorithm.

The above procedure will output a class-conditional model corresponding to each

cluster that describes an underlying object category. However, so far such a class-

conditional model assumes that the parts are independent. We can improve on this by

learning a joint distribution that connects the parts. This can be done as follows. Once

we have applied the clustering algorithm described in the previous paragraph, we use

the objects falling within a specific cluster to learn a joint distribution for the configu-

rations of the parts. For each object in the cluster and for each part we find the most

probable configuration of the latent variables (the subspace variable and the transfor-

mation variable) and fit a distribution to these data. Specifically, by assuming that this

distribution is factorized over the subspace variables and the transformation variables,

we can fit a Gaussian to the subspace variables and also a mixture of Gaussians to

the transformation variables (using landmarks as discussed in section 4.3.2). The esti-

mated joint distribution will model the relationships of the parts, which together with

the model trained at the clustering stage will provide the final class-conditional density

model for the object class.

With the above framework we can train in an unsupervised way a generative model

for object categories from images with multiple objects. In addition, we learn class-

specific parts of arbitrary shapes from the data that are described by subspace mani-

folds and can also undergo transformations.

Appendix A

Transformation matrices and EM for

one foreground object

A.1 Transformation matrices

In chapters 2, 3 and 4, when we described algorithms for learning objects, we store

images as vectors and express image transformations through matrix multiplications.

For example, the appearance of a foreground object f (see e.g. section 2.2.1) is a P-

dimensional vector, where P is the size of the data image vector x, and corresponds

to a column-wise unfold of an Px � Py image. Furthermore, a transformation is repre-

sented by T f, where T is a P � P matrix1. Denoting images by vectors and expressing

transformations through matrix multiplications is useful to derive the EM algorithms

needed for learning (see appendix A.2). However, we never need to naively express

a transformation as a matrix multiplication or explicitly store a P � P transformation

matrix. As explained below, the transformation matrices are sparse and thus sparse

algebra can be used to efficiently carry out all the necessary computations.

We first discuss how we compute a transformation matrix from a set of transforma-

tion parameters that operate in the two-dimensional image coordinates space. A trans-

formation can be thought as a two-dimensional warping or motion from a source (or

1In general, we could choose f to have different size than the data image x, which will make the
matrix T rectangular. For example, this will be case for a moving background b, which is larger than x;
see section 2.2.2.

95

96 Appendix A. Transformation matrices and EM for one foreground object

untransformed) image Î
�
x � y � to the destination (or transformed) image I

�
x � y � , where�

x � y � is a pixel location in the image coordinates and Î and I can generally have dif-

ferent sizes. To compute this transformation, we should for each pixel location
�
x � y �

at the destination image I ask where did the pixel come from the source image Î. This

means that we need to find the location
�
x̂ � ŷ � (that might not be an integer-valued pixel

location) within the source image Î and then specify the destination pixel value I
�
x � y �

using interpolation. For example, in case of an affine transformation, described by the

parameters
�
A � � tx ty � T � , where A is a two dimensional invertible matrix and � tx ty � T a

translation, the destination pixel
�
x � y � and the source location

�
x̂ � ŷ � are associated byb

x

y c � A

b
x̂ � mx

ŷ � my c � b
mx

my c � b
tx
ty c � (A.1)

where �mx my � T is the centre of the transformation2. Solving equation (A.1) with re-

spect to
�
x̂ � ŷ � we obtain b

x̂

ŷ c � A � 1

b
x � mx

� tx
y � my

� ty c � b
mx

my c � (A.2)

To determine the pixel value I
�
x � y � , we need to interpolate the pixels values in the

source image Î that are in the neighbourhood of
�
x̂ � ŷ � . The simplest interpolation

method is the nearest neighbour interpolation, where we set I
�
x � y � � Î

�
u � v � with

�
u � v �

being the nearest pixel location from
�
x̂ � ŷ � . A more satisfactory interpolation is the bi-

linear interpolation which computes I
�
x � y � as a weighted sum (with the weights being

positive and summing to one) of the four nearest pixels of
�
x̂ � ŷ � .

The above procedure allows us to construct the underlying transformation matrix

T that can equivalently perform the transformation through a matrix multiplication.

Particularly, for each pixel location
�
x � y � there is a row T p in the transformation matrix

T computed as follows. When we use nearest neighbour interpolation, the row T p has

1 in the column corresponding to the nearest neighbour of
�
x̂ � ŷ � and 0 everywhere

else. When we use bilinear interpolation, the row has at most four non-zero elements

at appropriate locations that store the interpolation weights of the four neighbours of

2Note that if Amx my C T is the origin of the pixels coordinates system (i.e. Amx my C T QdA 0 0 C T), thenAmx my C T disappears from all the above derivations.

A.2. EM for learning one object against a static background 97�
x̂ � ŷ � . Clearly, we can store the transformation matrix T as a sparse matrix and thus

using sparse algebra any matrix multiplication can be carried out fast in O
�
P � time,

where P is the number of rows of T .

The above procedure for computing transformation matrices is general and it can

be applied to more complex transformations than affines such as projective transfor-

mations. We should point out that how much sparse the matrix T will be depends on

the interpolation method used in the warping procedure and not on the type of trans-

formation. Note that in all algorithms we have implemented for learning objects, we

use nearest neighbour interpolation which is fast.

One can ask if we really need to worry about constructing a transformation matrix

in the first place since we can compute the transformations in any way we wish e.g. as

described above. It turns out that during the EM algorithm we need at least to perform

a matrix multiplication of the transpose matrix T T with some vector image x, and

generally computing T T x without having stored the matrix T is not obvious. However,

for simple translations in integer number of pixels, where T simply shifts the image

forwards, we know that the transpose T T shifts the image backwards, and thus in this

case we can do all the computations without needed to express the matrix T .

As part of this appendix we have implemented a MATLAB function called warp-

ing.m that takes as input an image Î and the affine transformation parameters
�
A � � tx ty � T �

and returns the transformed image I and the corresponding matrix T . Also the user can

choose between nearest neighbour or bilinear interpolation. This function is available

from http://www.dai.ed.ac.uk/homes/s0129556/PhDthesis.

A.2 EM for learning one object against a static back-

ground

In this section we present the EM algorithm for the case we have one foreground

object against a static background (see section 2.2.2). We also describe in detail all

the differentiations that involve the transformation matrices and are required in the

M-step of the EM algorithm. Note that the EM algorithm for learning one foreground

object against clutter as well as the k-means described in section 2.2.1 will be expressed

98 Appendix A. Transformation matrices and EM for one foreground object

similarly to the above EM algorithm.

We introduce first some notation. If y and z are two vectors of the same size, then

y � z defines the element-wise product between these vectors and y � y is written as y2

for compactness. Similarly, the element-wise division between two vectors is denoted

by y ��� z. A vector containing ones is denoted by 1. Also summations of the form

∑P
p 1 ypzp are written in vector notation yT z, e.g. yT 1 denotes the sum of elements of

y.

In our implementation the transformation matrices Tj f of the foreground object

have at most one 1 (and the other entries 0) in each row and correspond to translations

or full affine transformations. Our derivations below regarding these matrices only

require two constraints: (1) that the value of each element of T j f πππ is a valid probability

(i.e. lies in � 0 � 1 �) and (2) that log
�
Tj f πππ � � Tj f logπππ and log

�
1 � Tj f πππ � � Tj f log

�
1 �

πππ � , where logv denotes the element-wise logarithm of a vector v. These constraints

certainly hold for matrices which have only one non-zero element in each row.

Assume we have a set of images � x1 �
�
�
��� xN � showing one movable object against

a static background. To maximize the likelihood of the model discussed in 2.2.2, we

need the EM algorithm to deal with the missing transformations j f and the binary

variables s. The EM operates in the following expected complete data log likelihood

(also call it Q function)

Q � N

∑
n 1

J f

∑
j f 1

P
�
j f � xn � & � sn

j f
� T � logTj f πππ � � � 1

2σ2
f

�
xn � Tj f f � 2 � 1

2
logσ2

f 1 �
� �

1 � sn
j f
� T � log

�
1 � Tj f πππ ��� � � 1

2σ2
b

�
xn � b � 2 � 1

2σ2
b

logσ2
b1 �5'6� const � (A.3)

where const denotes a constant term. In the E-step the posterior probability P
�
j f � xn �

over the transformations and the vector sn
j f

are computed according to (2.10) and

(2.11), respectively. In the M-step Q is maximized with respect to the parameters� πππ � f � b � σ2
f
� σ2

b
� . It is straightforward to find the updates for the parameters � b � σ2

f
� σ2

b
�

which are given by

b G N

∑
n 1

* J f

∑
j f 1

P
�
j f � xn � � 1 � sn

j f
�$+e� xn ��� N

∑
n 1

J f

∑
j f 1

P
�
j f � xn � � 1 � sn

j f
� � (A.4)

A.2. EM for learning one object against a static background 99

σ2
f
G ∑N

n 1 ∑
J f
j f 1 P

�
j f � xn � � � sn

j f
� T � xn � Tj f f � 2 �

∑N
n 1 ∑

J f
j f 1 P

�
j f � xn � � � sn

j f
� T 1 � � (A.5)

σ2
b
G ∑N

n 1 ∑
J f
j f 1 P

�
j f � xn � � � 1 � sn

j f
� T � xn � b � 2 �

∑N
n 1 ∑

J f
j f 1 P

�
j f � xn � � � 1 � sn

j f
� T 1 � � (A.6)

Taking the derivatives of Q with respect to f and πππ is more complicated. To express the

derivative with respect to f we write Q as

Q � � 1
2σ2

f

N

∑
n 1

J f

∑
j f 1

P
�
j f � xn � � P

∑
p 1

�
sn

j f
� p
�
xn

p
� �

T p
j f
� T f � 2 ,f� const � (A.7)

where T p
j f

is the pth row of the matrix Tj f arranged as a column vector and const

denotes all the terms not involving f. If we differentiate the term qn
j f
� ∑P

p 1
�
sn

j f
� p
�
xn

p
�

T p
j f

f � 2 with respect to f, then to express the whole derivative we only need to sum over

n and j f (weighted by P
�
j f � xn �). Particularly, we have

∇f qn
j f

� 2
P

∑
p 1

�
sn

j f
� pT p

j f

�
xn

p
� �

T p
j f
� T f � � 2

P

∑
p 1

�
sn

j f
� pxn

pT p
j f
� 2 * P

∑
p 1

�
sn

j f
� pT p

j f

�
T p

j f
� T � + f� 2T T

j f

�
sn

j f
� xn � � 2T T

j f
Sn

j f
Tj f f

� (A.8)

where Sn
j f

is a diagonal matrix having as diagonal elements the entries of the vector sn
j f

.

Now by taking the derivative of Q with respect to f, using equation (A.8) and setting

to zero we obtain* N

∑
n 1

J f

∑
j f 1

P
�
j f � xn � � T T

j f
Sn

j f
Tj f � + f � N

∑
n 1

J f

∑
j f 1

P
�
j f � xn � T T

j f

�
sn

j f
� xn � �

or

f � * N

∑
n 1

J f

∑
j f 1

P
�
j f � xn � � T T

j f
Sn

j f
Tj f � + � 1

N

∑
n 1

J f

∑
j f 1

P
�
j f � xn � T T

j f

�
sn

j f
� xn � � (A.9)

Note that equation (A.9) is the general solution for f and holds for any choice of the

transformation matrices Tj. We can solve the above linear system fast without requiring

to carry out Gauss elimination. Particularly, since each T j f matrix has at most a single

1 in each row the matrix T T
j f

Sn
j f

Tj f becomes diagonal where the diagonal elements

100 Appendix A. Transformation matrices and EM for one foreground object

grouped into a vector are given by the vector T T
j f

sn
j f

. Thus, equation (A.9) can be

computed fast by taking the element-wise division of two vectors:

f � N

∑
n 1

J f

∑
j f 1

P
�
j f � xn � � T T

j f

�
sn

j f
� xn ��� ��� N

∑
n 1

J f

∑
j f 1

P
�
j f � xn � � T T

j f
sn

j f
� � (A.10)

To derive the update for the mask πππ we write equation (A.3) as follows:

Q � �
logπππ � T N

∑
n 1

J f

∑
j f 1

P
�
j f � xn � T T

j f
sn

j f
� �

log
�
1 � πππ �
� T N

∑
n 1

J f

∑
j f 1

P
�
j f � xn � T T

j f

�
1 � sn

j f
�� const � (A.11)

where we used the fact that log
�
Tjπππ � � Tj f log

�
πππ � and log

�
1 � Tj f πππ � � Tj f log

�
1 � πππ � .

By differentiating with respect to πππ and setting to zero we get

πππ � N

∑
n 1

J f

∑
j f 1

P
�
j f � xn � � T T

j f
sn

j f
� ��� N

∑
n 1

J f

∑
j f 1

P
�
j f � xn � � T T

j f
1 � � (A.12)

To express the EM algorithm for learning one foreground object against clutter (see

section 2.2.1), the derivation are analogous to the above but simpler since now the

background disappears. For example, the update for f is given as in equation (A.10)

but with all sn
j f

be equal to 1. Particularly, the update for f is

f � N

∑
n 1

J

∑
j 1

P
�
j � xn � � T T

j xn � �g� N

∑
n 1

J

∑
j 1

P
�
j � xn � � T T

j 1 � � (A.13)

Note that in case the transformation matrices are exact permutations, T T
j 1 � 1, and thus

the denominator in (A.13) will be equal to N, which explains equation (2.5). Deriving

equation (2.6) is straightforward. Finally, for the k-means algorithm the update (2.1)

that minimizes the error function (2.2) is derived similarly3.

3It can be also shown that the k-means is derived by the EM algorithm by letting the variance of the
spherical covariance matrix σ2

f I go to 0. See Bishop (1995) at page 190 for a similar explanation.

Appendix B

Details of the greedy algorithm

As also mentioned in appendix A.2, in our implementation the transformation matrices

of the foreground objects Tj (have at most one 1 (and the other entries 0) in each row

and correspond to translations or full affine transformations.

B.1 Learning the background

Here we derive the EM algorithm for learning a static or moving background. Learning

the background consists of the first stage of the greedy algorithm and is carried out by

maximizing the following log likelihood:

Lb
� N

∑
n 1

log
Jb

∑
jb 1

Pjb

P

∏
p 1

� αbN
�
xn

p;
�
Tjbb � p

� σ2
b ��� �

1 � αb � U �
xn

p � �X� (B.1)

Clearly, this log likelihood corresponds to a mixture model (with Jb components)

where the component densities are factorized over the pixels and each pixel density

is a two-component mixture. Application of the EM is straightforward and we can

easily show that the expected complete data log likelihood in the EM framework is:

Qb
� N

∑
n 1

Jb

∑
jb 1

P
�
jb � xn � V � rn

jb � T hL� 1
2σ2

b

�
xn � Tjbb � 2 � 1

2
logσ2

b1 i W � const � (B.2)

where P
�
jb � xn � � Pjb p 1 xn j jb 2

∑
Jb
i k 1 Pi p 1 xn j i 2 is the posterior probability of the transformation hidden

variable jb given the image xn and rn
jb is a P length vector with the pth element storing

101

102 Appendix B. Details of the greedy algorithm

the probability according to which the pth pixel of image xn is part of the non-occluded

background given jb:�
rn

jb � p
� αbN

�
xn

p;
�
Tjbb � p

� σ2
b �

αbN
�
xn

p;
�
Tjbb � p

� σ2
b ��� �

1 � αb � U �
xn

p � � (B.3)

In the E-step of the algorithm P
�
jb � xn � and rn

jb are obtained using the current parameter

values. In the M-step the Q function is maximized with respect to the parameters� b � σ2
b
� giving the following update equations:

b G N

∑
n 1

Jb

∑
jb 1

P
�
jb � xn � � T T

jb

�
rn

jb � xn ��� �g� N

∑
n 1

Jb

∑
jb 1

P
�
jb � xn � � T T

jb rn
jb � � (B.4)

σ2
b
G ∑N

n 1 ∑Jb
jb 1 P

�
jb � xn � � � rn

jb � T � xn � Tjbb � 2 �
∑N

n 1 ∑Jb
jb 1 P

�
jb � xn � � � rn

jb � T 1 � � (B.5)

The above equations provide an exact M-step. The update for the background ap-

pearance b is very intuitive. For example consider the case when P
�
jb � xn � � 1 for

jb � j and 0 otherwise. For pixels which are ascribed to non-occluded background

(i.e.
�
rn

jb � p � 1) the values of xn are transformed by T T
j ! which maps the Px � Py image

xn into a larger image of size Mx � My so that xn is located in the position specified

by jb and the rest of image pixels are filled with zero values. Thus, the non-occluded

pixels found in each training image are located properly into the big panorama image

and averaged to produce b.

Note also that in the special case where the background is static the effect of trans-

formation jb is removed from all update equations and the parameters b and σ2
b are

updated according to b G ∑N
n 1

�
rn � xn � �g� ∑N

n 1 rn and σ2
b
G ∑N

n k 1 1 rn 2 T 1 xn � b 2 2
∑N

n k 1 1 rn 2 T 1 , respec-

tively.

For random backgrounds, the above EM algorithm is not needed. In this case we

simply set b to the mean of all training images and σ2
b to the mean variance of all

different pixel variances. These background parameters are kept fixed for later stages.

B.2 Learning the foreground objects

Assume that we have already found the background as described previously. At each

next stage the greedy algorithm searches for a foreground object. Below we describe

B.2. Learning the foreground objects 103

how the # th foreground object is found, where # � 1 �
�
�	�$� L.

When we search for the # th object, the background as well as the # � 1 foreground

objects have been found in previous stages1. As explained in section 3.3.3 we learn the# th object by maximizing the objective function

F% � N

∑
n 1

J f

∑
j(l 1

Qn � j %$� & P

∑
p 1

�
zn% � 1 � p log � � Tj (πππ %	� p p f (� xn

p;
�
Tj (f %	� p �
��

1 � Tj (πππ % � p pb
�
xn

p;
�
Tjn

b
b � p ��� � logQn � j % �5' � (B.6)

The above maximization can be done by a variational EM algorithm. In the E-step we

maximize F% with respect to the Qn � j %	� which gives

Qn � j % � ∝ exp

�
P

∑
p 1

�
zn% � 1 � p log � � Tj (πππ% � p p f (� xn

p;
�
Tj (f % � p ��� �

1 � Tj(πππ % � p pb
�
xn

p;
�
Tjn

b
b � p ���
, �
(B.7)

with Qn � j % � normalized to sum to one. In the M-step we maximize F% with respect

to the object parameters � f % � πππ % � σ2% � . For this maximization we need again the EM

algorithm. The EM algorithm operates in the following Q function

Q % � N

∑
n 1

J f

∑
j (1

Qn � j %�� � zn% � 1 � T � sn
j(� logTj (πππ %�� �

1 � sn
j(�m� log

�
1 � Tj(πππ %	�� sn

j(� rn
j(� � � 1

2σ2% � xn � Tj (f %	� 2 � 1
2

logσ2% 1 ���n� const � (B.8)

where each element of the vector sn
j (stores the value1 Tj (π(2 p p f (1 xn

p; 1 Tj (f(2 p 21 Tj (πππ(2 p p f (1 xn
p; 1 Tj (f(2 p 243 1 1 � 1 Tj(πππ (2 p 2 pb 1 xn

p; 1 Tjnb
b 2 p 2 expressing the probability the pixel to be

part of the object. Each element of rn
j(stores the probability the pixel to be non-

occluded:
�
rn

j (� p
� α f N 1 xn

p; 1 Tj (f(2 p) σ2(2
α f N 1 xn

p; 1 Tj (f(2 p) σ2(243 1 1 � α f 2 U 1 xn
p 2 . The algorithm in the E-step computes

the quantities, Qn � j % � , sn
j(and rn

j (as described above and in the M-step we update the

parameters as follows:

πππ % G N

∑
n 1

J f

∑
j (o 1

Qn � j % � T T
j (� zn% � 1 � sn

j(� ��� N

∑
n 1

J f

∑
j(l 1

Qn � j % � T T
j (zn% � 1

� (B.9)

1Of course when we search for the first object there will be no previously learned foreground objects.

104 Appendix B. Details of the greedy algorithm

f % G N

∑
n 1

J f

∑
j (o 1

Qn � j % � T T
j (� zn% � 1 � sn

j(� rn
j (� xn � �g� N

∑
n 1

J f

∑
j(l 1

Qn � j % � T T
j (� zn% � 1 � sn

j (� rn
j(� � (B.10)

σ2% G ∑N
n 1 ∑

J f
j(l 1 Qn � j %	� � zn% � 1 � T � sn

j (� rn
j(� � xn � Tj(f %
� 2 �

∑N
n 1 ∑

J f
j (l 1 Qn

�
j % � � zn% � 1 � T � sn

j(� rn
j (� � (B.11)

As with the updates for b and σ2
b these updates make intuitive sense. Consider, for

example, the # th appearance model f % when Qn � j % � � 1 for j % � j and 0 other-

wise. For pixels which are ascribed to the # th foreground and are not occluded (i.e.�
zn% � 1 � sn

j ! � rn
j ! � p � 1), the values in xn are transformed by T T

j ! (which is T � 1
j ! in case

the transformations are permutation matrices). This removes the effect of the trans-

formation and thus allows the foreground pixels found in each training image to be

averaged to produce f % .
B.3 Computation of the occlusion ordering

As explained in section 3.4, a naive computation of the occlusion ordering for L fore-

ground objects in an image takes L! time. This can be very computationally expensive,

e.g. for L � 7 there are 5040 permutations of the foreground layers that we must con-

sider. Here we discuss how we can speed up this computation and thus deal with large

numbers of objects.

The key idea to efficiently compute the occlusion ordering of the objects is to iden-

tify how the objects overlap with each other in the observed image. It will be intuitive

to explain this point with an example. Consider the images shown in the top row of

Figure B.1, which have been also used in the Experiment 4 in section 3.6. These im-

ages show five objects and particularly a f loppy, a cd, a passport, a marker and a

watch. Now in Figure B.1b the f loppy overlaps with the cd and the marker but does

not overlap with the passport and the watch. Similarly, the watch and the passport

overlap only with each other. By exploiting this property we can factorize the compu-

tation of the overall occlusion ordering of the objects. Roughly speaking, it is possible

only by taking permutations between groups of overlapping objects to infer the overall

occlusion ordering in the image. Next, we describe how we achieve this.

B.3. Computation of the occlusion ordering 105

(a) (b) (c) (d)

floppy
cd

marker watch

passport
floppy

cd

marker watch

passport
floppy

cd

marker watch

passport
floppy

cd

marker watch

passport

(e) (f) (g) (h)

Figure B.1: The panels in the top row, i.e. (a) to (d), show 4 images of five objects (a

f loppy, a cd, a passport, a marker and a watch) that can arbitrary move and occlude

one another. The panels in the bottom row show the corresponding overlap graphs

that describe how the objects interact with each other (either occlude or are occluded).

Particularly, the graphs in each column correspond to each other, e.g. panel (e) shows

the overlap graph for the image (a) etc.

First of all, for each object # we identify the set of overlapping objects denoted

by N
� #p� . This can be easily done by first making each mask πππ % binary, expressing

the transformed masks (using the known transformations that instantiate the objects

in the image) and checking which objects overlap with each other2. For example,

for the Figure B.1b the overlap set will be N
�
f loppy � �Y� cd � marker � , N

�
cd � �� f loppy � marker � , N

�
watch � �S� passport � , etc. Equivalently these overlap sets de-

fine an undirected graph, where the nodes are the objects and edges indicate over-

lapping objects. For example, the graph that corresponds to Figure B.1b is shown in

Figure B.1f.

Now, it can be shown that the occlusion ordering with the maximum log likeli-

hood (and assuming binary masks) can be found by taking relative permutations of

the objects within the same clique (a maximal complete subgraph). We omit a formal

2Particularly, we first compute all the transformed masks: < Tj1 πππ1 BlqlqrqrB TjL πππL ? . Then, we determine if
any pair < k B l ? of objects overlap by checking if the pixel-wise sum T j1πππk ; Tjl πππl has at least one element
with the value 2.

106 Appendix B. Details of the greedy algorithm

derivation of this result and simply state the steps of the algorithm: i) find the overlap

set N
� #@� , for any object # using the transformed binary masks, ii) find the cliques in the

underlying graph, iii) for any clique in graph take all the permutations of the objects

within the clique and choose the one with the maximum log likelihood measured by

ignoring all the image pixels that belong to the background and to objects out of the

clique and iv) find the overall occlusion ordering by fusing the within-cliques orderings

using the connectivity of the different cliques.

The complexity of finding the occlusion ordering is O
�
G! � where G is the maxi-

mum clique size over all cliques in the graph. Let us see some examples of how the

algorithm works. For the image of Figure B.1a, the corresponding graph is shown

in Figure B.1e. Clearly all cliques have size one, thus we don’t have to make any

computation and all the occlusion orderings of the objects are equally suitable. For

the image of Figure B.1b, the cliques in the corresponding graph shown in Figure

B.1f are C1
�s� f loppy � cd � marker � and C2

�s� passport � watch � . The relative oc-

clusion ordering of the first clique is O1
�t� marker� f loppy � cd � and for the sec-

ond clique is O2
�u� watch � passport � . Since the two cliques are not connected we

can fuse the relative orderings O1 and O2 in several equivalent ways, e.g. two (out

of many) possible orderings are O �v� marker� f loppy � cd � watch � passport � and O �� marker� f loppy � watch � cd � passport � . Note that the number of permutations needed

for this examples is 3! � 2! � 8, while the naive computation needs 5! � 120 permuta-

tions. Similarly we can work for the graphs in Figure B.1g and B.1h.

Appendix C

Focused search as variational EM

In section 4.2 we mentioned that once the tracking algorithm provides an approxi-

mation to the sequence of transformations that explain the motion of an object, the

object model is learned using a focused search around these transformations. Here we

describe this focused search algorithm.

We will consider only the case we learn the background, since the case of the

foreground objects is treated similarly. To learn the background the greedy algorithm

maximizes the log likelihood (B.1) with an exact EM as described in appendix B.1.

Now we need to modify this algorithm so that to take into account the fact that tracking

provides with some approximate transformations
�
j1
b
�	�
�
��� jN

b � for all training images.

We express a lower bound (using Jensen’s inequality) of the log likelihood (B.1):

Fb
� N

∑
n 1

Jb

∑
jb 1

Qn � jb � � log

�
Pjb

P

∏
p 1

� αbN
�
xn

p;
�
Tjbb � p

� σ2
b ��� �

1 � αb � U �
xn

p � � ,� logQn � jb �-, � (C.1)

which is true for any choice of the distributions Qn � jb � . Since tracking gives us an

approximation of the transformation jn
b of the background in the image xn, we assume

that the true unknown transformation exists in the neighbourhood of jn
b. We express

this by considering a set of neighbouring transformation N
�
jn
b � around jn

b and con-

107

108 Appendix C. Focused search as variational EM

straining Qn � jb � � 0 for any jb �w N
�
jn
b � . Thus, the lower bound becomes

Fb
� N

∑
n 1

∑
jb x N 1 jn

b 2 Qn � jb � � log

�
Pjb

P

∏
p 1

� αbN
�
xn

p;
�
Tjbb � p

� σ2
b ��� �

1 � αb � U �
xn

p � � ,� logQn � jb � , � (C.2)

which is the function that is maximized by EM (in the E-step over Qns and in the M-

step over the parameters b and σ2
b). Note that the case we do not consider any search

at all is when each neighbouring set N
�
jn
b � contains only jn

b.

Bibliography

Attias, H. (2000). A variational Bayesian framework for graphical models. In Ad-

vances in Neural Information Processing Systems 12. MIT Press.

Barlow, H. (1989). Unsupervised Learning. Neural Computation, 1:295–311.

Bergen, J. R., Burt, P. J., Hingorani, R., and Peleg, S. (1992). A Three-Frame Algo-

rithm for Estimating Two-Component Image Motion. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 14(9):886–896.

Biederman, I. (1987). Recognition-by-components: A theory of human image under-

standing. Psychological Review, 94(2):115–147.

Bishop, C. M. (1995). Neural Networks for Pattern Recognition. Oxford University

Press, Oxford.

Black, M. and Jepson, A. (1996). EigenTracking: Robust Matching and Tracking of

Articulated Objects Using a View-Based Representation. Proc. ECCV, pages 329–

342.

Black, M. J. and Anandan, P. (1996). The Robust Estimation of Multiple Motions:

Parametric and Piecewise-Smooth Flow Fields. Computer Vision and Image Under-

standing, 63(1):75–104.

Bregler, C. and Omohundro, S. (1994). Surface learning with application to lipreading.

In Becker, S., Thrun, S., and Obermayer, K., editors, Advances in Neural Informa-

tion Processing Systems 6.

109

110 Bibliography

Brunelli, R. and Poggio, T. (1995). Template matching: Matched spatial filters and

beyond. Technical report, CBCL Paper 123/AI Memo 1549, Massachusetts Institute

of Technology, Cambridge.

Burl, M. C., Weber, M., and Perona, P. (1998). A probabilistic approach to object

recognition using local photometry and global geometry. In Proceedings in ECCV,

pages 628–641.

Cheeseman, P., Kelly, J., Self, M., Stutz, J., Taylor, W., and Freeman, D. (1993).

AutoClass: A Bayesian Classification System. In Buchanan, B. G. and Wilkins,

D. C., editors, Readings in Knowledge Acquisition and Learning: Automating the

Construction and Improvement of Expert Systems, pages 431–441. Kaufmann, San

Mateo, CA.

Cootes, T. F., Taylor, C., Cooper, D., and Graham, J. (1992). Training models of shape

from sets of examples. In Proc. BMVC, pages 9–18. Springer-Verlag.

Csurka, G., Bray, C., Dance, C., and Fan, L. (2004). Visual categorization with bags

of keypoints. In ECCV workshop on Statistical Learning in Computer Vision, pages

59–74.

Darrell, T. and Pentland, A. P. (1995). Cooperative Robust Estimation Using Lay-

ers of Support. IEEE Transactions on Pattern Analysis and Machine Intelligence,

17(5):474–487.

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from

incomplete data via the EM algorithm. Journal of the Royal Statistical Society, B,

39(1):1–38.

Duda, R. O. and Hart, P. E. (1973). Pattern Classification and Scene Analysis. Wiley,

New York.

Felzenszwalb, P. F. and Huttenlocher, D. P. (2000). Efficient Matching of Pictorial

Structures. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, CVPR 2000, pages II:66–73.

Bibliography 111

Felzenszwalb, P. F. and Huttenlocher, D. P. (2005). Pictorial structures for object recog-

nition. International Journal of Computer Vision, 61(1):55–79.

Fergus, R., Perona, P., and Zisserman, A. (2003). Object class recognition by unsuper-

vised scale-invariant learning. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 264–271.

Figueiredo, M. A. T. and Jain, A. K. (2002). Unsupervised learning of finite mixture

models. PAMI, 24(3):381–396.

Fischler, M. A. and Elschlager, R. A. (1973). The representation and matching of

pictorial structures. IEEE Transactions on Computers, 21(1):67–92.

Fitzgibbon, A. and Zisserman, A. (2002). On Affine Invariant Clustering and Auto-

matic Cast Listing in Movies. In Heyden, A., Sparr, G., Nielsen, M., and Johansen,

P., editors, Proceedings of the Seventh European Conference on Computer Vision,

ECCV 2002, pages III 304–320. Springer. Lecture Notes in Computer Science 2353.

Forsyth, D., Malik, J., Fleck, M., and Ponce, J. (1997). Primitives, Perceptual Organi-

zation and Object Recognition. Technical report, Beckman Institute, University of

Illinois.

Forsyth, D. A. and Ponce, J. (2003). Computer Vision: A Modern Approach. Prentice

Hall, Upper Saddle River, New Jersey.

Frey, B., Hinton, G., and Dayan, P. (1996). Does the wake-sleep algorithm produce

good density estimators. In Touretsky, D., Mozer, M., and Hasselmo, M., editors,

Advances in Neural Information Processing Systems 8. MIT Press.

Frey, B. J. and Jojic, N. (1999). Estimating mixture models of images and inferring

spatial transformations using the EM algorithm. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition 1999. IEEE Computer Society

Press. Ft. Collins, CO.

Frey, B. J. and Jojic, N. (2001). Fast, Large-Scale Transformation-Invariant Clustering.

In Advances in Neural Information Processing Systems 14. MIT press.

112 Bibliography

Frey, B. J. and Jojic, N. (2003). Transformation Invariant Clustering Using the EM

Algorithm. IEEE Trans Pattern Analysis and Machine Intelligence, 25(1):1–17.

Frey, B. J. and Jojic, N. (2004). Advances in algorithms for inference and learning

in complex probability models. To appear in IEEE Trans Pattern Analysis and

Machine Intelligence.

Ghahramani, Z. (1995). Factorial Learning and the EM Algorithm. In Tesauro, G.,

Touretzky, D. S., and Leen, T. K., editors, Advances in Neural Information Process-

ing Systems 7, pages 617–624. Morgan Kaufmann, San Mateo, CA.

Ghahramani, Z. and Jordan, M. (1997). Factorial hidden markov models. Machine

Learning, 29:245–275.

Green, P. J. (1995). Reversible Jump Markov chain Monte Carlo computation and

Bayesian model determination. Biometrika, 82(4):711–732.

Grenander, U., Chow, Y., and Keenan, D. M. (1991). Hands: A pattern theoretic study

of biological shapes.

Heap, A. J. and Hogg, D. C. (1995). Extending the point distribution method using

polar coordinates. Image and Vision Computing, 14(8):589–599.

Heisele, B., Serre, T., Pontil, M., Vetter, T., and Poggio, T. (2002). Categorization by

learning and combining object parts. In Advances in Neural Information Processing

Systems 14. MIT Press.

Hinton, G. E. and Zemel, R. S. (1994). Autoencoders, minimum description length,

and Helmholtz free energy. In Cowan, J., Tesauro, G., and Alspector, J., editors,

Advances in Neural Information Processing Systems 6. Morgan Kaufmann.

Horn, B. K. P. and Schunck, B. G. (1981). Determining optical flow. Artificial Intelli-

gence, 17(1-3):185–203.

Ioffe, S. and Forsyth, D. A. (2001). Probabilistic methods for finding people. In

International Journal of Computer Vision, pages 45–68.

Bibliography 113

Irani, M., Rousso, B., and Peleg, S. (1994). Computing Occluding and Transparent

Motions. International Journal of Computer Vision, 12(1):5–16.

Jepson, A. and Black, M. (1993). Mixture models for optical flow computation. In

Partitioning Data Sets DIMACS Workshop, pages 271–286.

Jepson, A. D., Fleet, D. J., and Black, M. J. (2002). A Layered Motion Representation

with Occlusion and Compact Spatial Support. In Heyden, A., Sparr, G., Nielsen, M.,

and Johansen, P., editors, Proceedings of the Seventh European Conference on Com-

puter Vision, ECCV 2002, pages I 692–706. Springer. Lecture Notes in Computer

Science 2353.

Jojic, N., Frey, B., and Kannan, A. (2003). Learning appearance and transparency

manifolds of occluded objects in layers. In Proc. of IEEE Conf. on Computer Vision

and Pattern Recognition.

Jojic, N. and Frey, B. J. (2001). Learning Flexible Sprites in Video Layers. In Pro-

ceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2001.

IEEE Computer Society Press. Kauai, Hawaii.

Jojic, N., Petrovic, N., Frey, B. J., and Huang, T. S. (2000). Transformed hidden

Markov models: Estimating mixture models of images and inferring spatial trans-

formations in video sequences. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition.

Kanizsa, G. (1979). Organization in Vision: Essays on Gestalt Perception. New York:

Praeger.

Kannan, A., Jojic, N., and Frey, B. (2005). Generative model for layers of appear-

ance and deformation. In 10th International Workshop on Artificial Intelligence and

Statistics.

Koenderink, J. J. and van Doorn, A. J. (1979). The internal representation of solid

shape with respect to vision. Biological Cybernetics, 32:211–216.

114 Bibliography

Lee, D. D. and Seung, H. S. (1999). Learning the parts of objects by non-negative

matrix factorization. Nature, 401:788–791.

Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. Inter-

national Journal of Computer Vision, 60(2):91–110.

McLachlan, B. G. and Peel, D. (2000). Finite Mixture Models. Wiley, New York.

Meek, C., Thiesson, B., and Heckerman, D. (2002). Staged Mixture Modelling and

Boosting. In Proceedings of the 18th Annual Conference on Uncertainty in Artifi-

cial Intelligence (UAI-02), pages 335–343, San Francisco, CA. Morgan Kaufmann

Publishers.

Meila, M. and Heckerman, D. (2001). An experimental comparison of model-based

clustering methods. Machine Learning, 42:9–29.

Murase, H. and Nayar, S. (1995). Visual learning and recognition of 3D objects from

appearance. International Journal of Computer Vision, 14(1):5–24.

Neal, R. and Hinton, G. (1998). A view of the EM algorithm that justifies incremental,

sparse and other variants. In Jordan, M., editor, Learning in Graphical Models,

pages 355–368. Kluwer Academic Publishers, Dordrecht, The Netherlands.

Oren, M., Papageorgiou, C., Sinha, P., Osuna, E., and Poggio, T. (1997). Pedestrian

detection using wavelet templates. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, pages 193–199.

Poggio, T. and Beymer, D. (1996). Regularization networks for visual learning. In

Early Visual Learning, pages 43–67.

Rissanen, J. (1987). Stochastic Complexity and the MDL Principle. Econometric

Reviews, 6:85–102.

Ross, D. A. and Zemel, R. S. (2003). Multiple Cause Vector Quantization. In Becker,

S., Thrun, S., and Obermayer, K., editors, Advances in Neural Information Process-

ing Systems 15. MIT Press.

Bibliography 115

Rosset, S. and Segal, E. (2003). Boosting density estimation. In Becker, S., Thrun,

S., and Obermayer, K., editors, Advances in Neural Information Processing Systems

15. MIT Press.

Rowe, S. and Blake, A. (1995). Statistical Background Modelling For Tracking With

A Virtual Camera. In Pycock, D., editor, Proceedings of the 6th British Machine

Vision Conference, volume volume 2, pages 423–432. BMVA Press.

Roweis, S. (1998). EM algorithms for PCA and SPCA. In Jordan, M. I., Kearns,

M. J., and Solla, S. A., editors, Advances in Neural Information Processing Systems,

volume 10. The MIT Press.

Rowley, H. A., Baluja, S., and Kanade, T. (1998). Neural Network-based Face Detec-

tion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(1):23–38.

Sanger, T. D. (1989). Optimal unsupervised learning in a single-layer linear feedfor-

ward neural network. Neural Networks, 2:459–473.

Saund, E. (1995). A multiple cause mixture model for unsupervised learning. Neural

Computation, 7:51–71.

Sawhney, H. S. and Ayer, S. (1996). Compact Representations of Videos Through

Dominant and Multiple Motion Estimation. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 18(8):814–830.

Schneiderman, H. and Kanade, T. (2004). Object Detection Using the Statistics of

Parts. International Journal of Computer Vision, 56(3):151–177.

Schwarz, G. (1978). Estimating the Dimension of a Model. Annals of Statistics,

6:461–464.

Shams, L. and von der Malsburg, C. (1999). Are object shape primitives learnable?

Neurocomputing, 26-27:855–863.

Sirovich, L. and Kirby, M. (1987). Low-dimensional procedure for the characterization

of human faces. Journal of Optical Society of America, 4(3):519–524.

116 Bibliography

Tao, H., Sawhney, H. S., and Kumar, R. (2000). Dynamic Layer Representation with

Applications to Tracking. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages II:134–141.

Thollard, F., Sebban, M., and Ezequel, P. (2002). Boosting density function estimators.

In 13th European Conference on Machine Learning, pages 431–443.

Tipping, M. E. and Bishop, C. M. (1999). Mixtures of probabilistic principal compo-

nent analyzers. Neural Computation, 11:443–482.

Titsias, M. K. and Williams, C. K. I. (2004). Fast unsupervised greedy learning of

multiple objects and parts from video. In Proc. Generative-Model Based Vision

Workshop.

Torr, P. H. S. (1998). Geometric motion segmentation and model selection. Phil. Trans.

Roy. Soc. Lond. A, 356:1321–1340.

Turk, M. and Pentland, A. (1991). Eigenfaces for Recognition. Journal of Cognitive

Neuroscience, 3(1):71–86.

Ullman, S. (1996). High-Level Vision: Object Recognition and Visual Cognition. MIT

Press.

Ullman, S., Vidal-Naquet, M., and Sali, E. (2002). Visual features of intermediate

complexity and their use in classification. Nature Neuroscience, 5(7):1–6.

Vapnik, V. N. (1998). Statistical Learning Theory. John Wiley and Sons.

Vasconcelos, N. and Lippman, A. (2001). Empirical Bayesian Motion Segmentation.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(2):217–221.

Verbeek, J., Vlassis, N., and Krose, B. (2003). Efficient greedy learning of Gaussian

mixture models. Neural Computation, 15:469–485.

Vlassis, N. and Likas, A. (2002). A greedy EM for Gaussian mixture learning. Neural

Processing Letters, 15:77–87.

Bibliography 117

Wang, J. Y. A. and Adelson, E. H. (1994). Representing Moving Images with Layers.

IEEE Transactions on Image Processing, 3(5):625–638.

Weber, M., Welling, M., and Perona, P. (2000). Unsupervised Learning of Models for

Recognition. In Proceedings of the Fifth European Conference on Computer Vision,

ECCV 2000, pages 18–32.

Weiss, Y. and Adelson, E. (1996). A unified mixture framework for motion segmen-

tation: incorporating spatial coherence and estimating the number of models. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.

Wertheimer, M. (1923). Laws of organization in perceptual forms. Pscycol. Forsch.,

4:301–350. English translation in: W.B. Ellis, A source book of Gestalt (1973)

71-88.

Williams, C. K. I. (1994). Combining deformable models and neural networks for

handprinted digit recognition. PhD thesis, Department of Computer Science, Uni-

versity of Toronto.

Williams, C. K. I. and Titsias, M. K. (2004). Greedy Learning of Multiple Objects

in Images using Robust Statistics and Factorial Learning. Neural Computation,

16(5):1039–1062.

Williams, C. K. I. and Titsias, M. T. (2003). Learning about multiple objects in images:

Factorial learning without factorial search. In Becker, S., Thrun, S., and Obermayer,

K., editors, Advances in Neural Information Processing Systems. MIT Press.

Wills, J., Agarwal, S., and Belongie, S. (2003). What Went Where. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2003,

pages I:37–44.

Winn, J. and Blake, A. (2005). Generative Affine Localisation and Tracking. In Saul,

L. K., Weiss, Y., and Bottou, L., editors, Advances in Neural Information Processing

Systems 17. MIT Press.

