
matlab toolbox for learning object models from video

Michalis K. Titsias
School of Informatics, University of Edinburgh,

Edinburgh EH1 2QL, UK
michalis titsias@yahoo.gr

1 Introduction

This report provides information for using the toolbox for learning layered object models from
a video which is publically available from http://www.anc.ed.ac.uk/code/titsias/. The
theoretical foundations of the algorithm used in the software can be found in [4]; see also [6].
A complete description of the algorithm can be also found in [3].

The toolbox consists of a set of matlab functions. To run this software you need to have
installed a recent version of matlab (version 6.0 or later) together with the image processing
toolbox. Note that the current version assumes grayscale images, so in case of RGB images the
software will automatically transform the images to grayscale image format. The background
object in each video frame is assumed to follow a translational motion across all frames, while
the foreground objects can undergo similarity transformations (a combination of translation,
rotation and scaling).

Section 2 provides a general description of the algorithm, section 3 gives installation in-
formation together with the list of the supplied files and directories. The use of the main
functions in the toolbox is described in section 4. Finally section 5 discusses in detail one of
the demos.

2 General description of the algorithm

We are given as input a set of images containing views of multiple objects, and wish to
learn appearance-based models of each of the objects. Over the last decade or so a layer-
based approach to this problem has become popular, where each object is modelled in terms
of its appearance and region of support, see e.g. [5] and [1]. In [2] a principled generative
probabilistic framework is described for this task, where each image must be explained by
instantiating a model for each of the objects present with the correct instantiation parameters.
A major problem with this formulation is that as the number of objects increases, there is a
combinatorial explosion of the number of configurations that need to be considered. If there
are L possible objects, and that there are J possible values that the instantiation parameters
of any one object can take on, then we will need to consider O(JL) combinations to explain
any image. Jojic and Frey [2] tackled this problem by using a variational inference scheme,
searching over all instantiation parameters simultaneously. In contrast, in [6] we developed

1

matlab functions GLOMO/ greedy.m

learnbackg.m

learnforegobj.m

occlorder.m

refinement.m

reconstruct.m

readframes.m

imaffineforw.m

imshift.m

Demos GLOMO/ demo1.m

demo2.m

demo3.m

demo4.m

Demos data directories GLOMO/videos/ frey jojic/

panorama/

arms torso/

Documents GLOMO/docs/ licence.txt

doc.pdf

Table 1: Files supplied.

a sequential or greedy approach to object discovery whereby each model is extracted in turn
from the whole dataset using a robust statistical method.

When we have video data, we can greatly speed up the greedy algorithm in [6] by carrying
out approximate localization (or tracking) of the multiple objects in the scene. In [4] we
have developed a method that first localizes each object and then learns its appearance. This
method is applied to raw image sequence data and extracts the objects one at a time. First,
the (possibly moving) background is learned, and moving objects are found at later stages.
The localization (or tracking) algorithm recursively updates an appearance model so that
occlusion is taken into account, and matches this model to the frames through the sequence.
The matlab toolbox we present here implements the method in [4].

3 Files supplied

The software consists of a compressed tar-file that can be downloaded from
http://www.dai.ed.ac.uk/homes/s0129556. Once you decompress the tar-file, a root direc-
tory is created with the name GLOMO/ that contains the files and subdirectories displayed in
the Table 1.

Note that in order to run the demos demo1.m, demo2.m and demo3.m you should also
download the videos-tar files frejojic.tar.gz, panorama.tar.gz and armstorso.tar.gz.
frejojic.tar.gz should be decompressed inside the directory GLOMO/videos/frey jojic/,
the panorama.tar.gz inside the directory GLOMO/videos/panorama/ and the armstorso.tar.gz
inside the directory GLOMO/videos/arms torso/.

2

4 Main functions

In this section we provide a tutorial for using the main features of the toolbox. Section 4.1 and
4.2 discuss readframes.m and greedy.m which are the functions you need to explicitly call in
order to run the software. Section 4.3 discusses the usage of the function reconstruct.m.

4.1 readframes.m

readframes.m is the function that loads the frames into matlab from a given directory. The
frames can be in any matlab-recognizable image format. This function is called as follows:

>> frames = readframes(imdir, downsamp)

The imdir argument specifies the name of the directory in your machine where the images are
located, as well as the image format. For example, if imdir = ’/disk/home/frames/*.png’,
then all the png images stored in the directory /disk/home/frames/ are loaded. You can also
give information about the name of frames. For example,
imdir = ’/disk/home/frames/mich*.png’ means that that all png images with the name
starting with ’mich’ are of interest. The downsamp argument can be 0 or a positive integer and
specifies the degree of down-sampling you wish to apply to the frames, while loading them
into to matlab. For example, if dowsamp = 0 the frames are loaded in their original size and
if it is 1 then the images will be half of the original size (in both axes) etc. The downsamp and
argument is optional, so the command

>> frames = readframes(imdir)

is equivalent to

>> frames = readframes(imdir, 0)

The output variable frames is a Px × Py × N table where Px is the number of rows of each
image, Py is the number of columns and N is the number of images and it stores the images
in grayscale format. If the frames are in RGB the function will transform them to grayscale.
Note that frames is a uint8-matlab type variable. You can plot the nth image using e.g.
imshow(frames(:,:,n))1.

1Notice that if you wish you can use your favourite way to load the frames into matlab (e.g. you might
already have the frames stored in a .mat file). The only constraint for using the software is that you have to
store the frames in a Px×Py×N table and in the temporal order according to which they appear in the video.

3

4.2 greedy.m

greedy.m is the function that you need to call in order to learn the background and foreground
objects in the video sequence. It is called as follows:

>> [objs, transforms, order] = greedy(frames, op, wtrs, wrots, wscales)

frames is the video frames having the format specified in the previous section.
op is a vector of user-defined options. op(1) is the maximum number of iterations of each

EM algorithm applied for learning the background and each foreground object. op(2) is the
number of foreground objects to be found. Note that if op(2)=0, then only the background
is learned. op(3) and op(4) can be 0 or positive integers and allow for increasing the size
of each foreground appearance and mask pair2, so as to be larger than the frame size. Note
that making the masks and appearances larger than the frame size is useful when the object
overlaps with the borders of the image or it is larger than the frame size. In particular, the
size of each foreground appearance and mask is increased by op(3) in the upper and lower
borders of an Px × Py image and by op(4) in the left and right borders, so each of them will
be an (Px +2 ∗ op(3))× (Py +2 ∗ op(4)) image. op(9) takes the value 1 if you wish to find the
occlusion ordering of the foreground objects in the video sequence (see section 3.4 in [3]), the
value 2 if at the end you wish to refine jointly all the object parameters (see again section 3.4
in [3]). Finally, op(10) is set to a non-zero value in order to turn on the visualization features
during running (see section 5). If op(10)= 0 the visualization features are turned off.

The remaining three inputs wtrs, wrots and wscales, specify the number and the type
of the discrete transformations used during tracking3. wtrs is a two-dimensional vector that
specifies the window of vertical and horizontal shifts in units of one pixel. For example, if wtrs
= [2 3], the search window will be 2 shifts up and 2 shifts down in the vertical axis and 3 shifts
left and right across the horizontal axis. Thus, generally the size of the search window over
translations is (2∗wtrs(1) + 1) × (2∗wtrs(2) + 1). Similarly, wrots is 0 or a positive integer
that specifies the number of discrete rotations. Particularly, the rotations are spaced in a
one-dimensional grid where two neighbouring rotations in the grid differ by a unit of runit

= 360/ max(Px, Py) degrees, where Px × Py is the image frame size. Thus, the window search
for rotations will be the set {−wrts*runit, . . . ,−runit,0,runit, . . . ,wrts*runit}, which in
total consists of 2∗wrots+1 rotations. Similarly, wscales specifies the number of scalings so
as the corresponding window size is 2∗wscales+1. Each discrete scaling resizes the image
in (1/max(Px, Py)) units. Thus each scaling changes the size by a factor of (1 + i

max(Px,Py)
)

where i = −wscales, . . . ,−1, 0, 1, . . . ,wscales. Note that the total search window has a size
of (2 ∗ wtrs(1) + 1)× (2 ∗ wtrs(2) + 1)× (2 ∗ wrots+ 1)× (2 ∗ wscales+ 1) transformations.

To speed up the search over the discrete set of transformations during tracking, and also
allow for large object motions we have implemented a coarse-to-fine strategy. Particularly, we
form of Gaussian pyramid of all images involved in the matching criterion given in equations
(10) and (12) in [4]. Then, starting from the coarsest level, we find the most probable transfor-
mation by searching over (2∗wtrs(1) + 1)× (2∗wtrs(2) + 1)× (2∗wrots+1)× (2∗wscales+1)

2The foreground appearance and mask is denoted by (π` and f`) in the referred papers.
3When we estimate the transformation jt+1 at frame at time t+1 given that we have already approximated

the transformation jt at the previous frames; see section 3 in [4] or section 4.2 in [3].

4

objs.B ←→ b
objs.Bmask ←→ m
objs.F{`} ←→ f`

objs.Mask{`} ←→ π`

objs.b var ←→ σ2
b

objs.f var(`) ←→ σ2
`

Table 2: Correspondence between the fields in the struct objs and the parameters names used
in the published papers.

transformations where all the discretization units (see previous paragraph) are re-defined for
the image size in this level. Then, we move to next finer level and we repeat the search over a
window centred at the most probable transformation (properly interpolated to account for the
current size of the images) of the previous level. This process is continued until we arrive the
finest level of the pyramid, where the images have the original size. The final transformation
is the one selected from the last search in the finest level.

We should point that for the background we only consider translational motion (as men-
tioned in the introduction), thus only the wtrs is used, while each the foreground objects all
wtrs, wrots, wscales are relevant which allow the objects to undergo similarity transforma-
tions. Also passing the arguments wrots and wscales is optional and if they are omitted,
only translational motion for the foreground objects will be considered. Thus, the command

>> [objs, transforms, order] = greedy(frames, op, wtrs)

is equivalent to

>> [objs, transforms, order] = greedy(frames, op, wtrs, 0)

and

>> [objs, transforms, order] = greedy(frames, op, wtrs, 0, 0)

The output variable objs is a struct that stores the parameters for the background and the
foreground objects that are identified by the algorithm. The correspondence between the
fields in the struct objs and the parameters they represent as they have been named in the
published papers is illustrated in Table 2.

transforms is an L+1 dimensional struct that stores the transformations of the foreground
objects and the background in each video frame. transforms{`}, ` = 1, . . . , L corresponds
to the transformations of the foreground objects and transforms{L + 1} to the background.
The subfields of the transforms variable are explained in Table 3.

order represents the computed occlusion ordering of the foreground objects. It is a 1× L
vector that represents a permutation of the integers from 1 to L, so that the first element
in the vector points the object closest to the camera, the second element the second object
closest to the camera and so on. .

5

Variable Size Description
transforms{`}.transls N × 2 The nth line stores the vertical and

` = 1, . . . , L horizontal shifts of the transformation of
the nth frame

transforms{`}.matrices 2× 2×N Every nth element is a 2× 2 matrix
` = 1, . . . , L that stores the transformation synthesized

by the best rotation θ and scaling s
found for the nth frame

according to

[
s ∗ cos(θ) −s ∗ sin(θ)
s ∗ sin(θ) s ∗ cos(θ)

]
transforms{L + 1}.btransls N × 2 The nth line stores the translation of the

background for the nth frame. Each
translation is represented by the location

of the upper-left corner in b so that a
Px × Py block can be selected

Table 3: The subfields of the transforms variable.

4.3 reconstruct.m

reconstruct.m is a special function that can be used once you have learned the parameters of
objects using greedy.m. This function has the following uses: it can reconstruct the original
frames from the learned object parameters and the inferred transformations, it can create
imaginary videos where some of the objects have been removed or the occlusion ordering has
been changed, it can output the segmentation of the original video frames and others. The
reconstruct.m is called as follows:

>> rframes = reconstruct(objs, transforms, order, Pxy, inout);

where the input arguments objs, transforms and order represent the objects parameters, the
transformations in the training frames, and the occlusion ordering, respectively (see section
4.2). Pxy is a 2-dimensional vector that gives the size of training images, i.e. Pxy = [Px Py].
inout is a L + 1-dimensional binary vector where the first L elements correspond to the
L foreground objects (in the order that have been stored in objs.F) and the last element
refers to the background. If inout(i)=1, the corresponding object will be included in the
reconstruction, while if inout(i)=0 the object will be ignored. Thus, inout can be used
to remove certain objects. Note that if we choose to ignore the background, then a neutral
background with 0 grayscale value will be used instead. The output variable rframes stores
the created video frames in a Px × Py ×N table.

See demo4.m to get some ideas about how this function can be used to reconstruct the
original frames, to obtain segmentation labels for the training frames and to create imaginary
videos.

6

%%%%%%%%%%%%%%% demo1.m %%%%%%%%%%%%%%%
% Runs the algorithm for the Frey-Jojic sequence

% read the frames
imdir = ’videos/frey-jojic/*.png’;
frames = readframes(imdir);

% user-defined inputs
op(1)=35; % number of iterations
op(2)=2; % number of foreground objects

op(3)=5; % enlargement of lower and upper borders of the foreground appearances
op(4)=15; % enlargement of left and right borders of the foreground appearances

op(9)=2; % occlusion ordering/refinement
op(10)=1; % visualization

% specify the window of translations
wtrs = [2 3];

[objs, transforms, order] = greedy(frames, op, wtrs);

Table 4: demo1.m file.

7

5 Demos

In this section we go through one of the demos, and particularly the demo1.m. We also explain
the visualization features that optionally can be used during running. The matlab code of
demo1.m is displayed in Table 4. This demo runs the algorithm in the Frey-jojic sequence (see
webpage). The used-defined options (variable op) in the order they appear in the demo1.m

(from top to bottom) have the following meanings: the number of EM iterations when we
learn each object is 35, the number of foreground objects is 2, the masks and the foreground
appearances are enlarged compared to the frame size by 5 pixels in the lower and upper image
borders and 15 pixels in left and right borders. Also the computation of the occlusion order
together with joint refinement of all the parameters will take place, and visualization features
will be displayed.

Once the user-defined options are specified the next command in the demo1.m specifies the
window of translations (variable wtrs) that is used during tracking the background and each
foreground object. Particularly, 2 shifts up ans 2 down, and 3 left and right will be considered
(in a coarse-to-fine way as explained in section 4.2). Note that we consider only translations
for the foreground objects, so we don’t need to specify the arguments related to rotation and
scaling.

The next command in demo1.m runs the greedy.m function which carries out the learning
of the objects. As explained above, when you run the greedy.m function we have the option
to turn on the visualization features by setting op(9) to a non-zero value. This has the effect
that several plots become visible during different stages of the program. Next we explain this
features. When the function greedy.m is run we get the following messages:

>> [objs, transforms, order] = greedy(frames, op, wtrs, 0, 0)

***** Tracking the background *****

...

***** Learning the background using EM *****

..

***** Tracking foreground object #1 *****

...

***** Learning foreground object #1 using EM *****

..

***** Tracking foreground object #2 *****

...

***** Learning foreground object #2 using EM *****

..

***** Compute the occlusion order of the foreground layers *****

***** Joint refinement of the parameters *****

Each message surrounded by “****” indicates a separate stage of the algorithm. In the first
stage, during tracking the background, a plot will open showing three images. The upper-
left plot will show the current frame, the lower-left plot the background4 and the lower-right

4As it updated in each frame according to equation (11) in [4].

8

plot will display the background mask (see section 3 in [4]) that indicates the area of the
background that has been explored5.

In the next stage the background is learned and a single plot is displayed showing the value
of the background as EM iterates.

In the next stage the first foreground object is tracked. A panel with four plots will
be visible in your screen where the upper-left plot is the current frame, the lower-left plot
is the element-wise product of the foreground appearance and mask transformed by the best
transformation for the current frame (i.e. what is displayed is the image (Tjt+11 f1)∗(Tjt+11π1)),
the lower-right plot is the transformation mask, (i.e. the image (Tjt+11π1)). Note that f1 and
π1 are updated as we process the frames according to section 3.2 in [4]. Finally the upper-right
plot displays all the pixels that have been removed from consideration in the current frame6.

In the next stage the first foreground object’s parameters are refined by EM (see section
3.2 in [4]) and the mask π1 as well the the element-wise product π1 ∗ f1 are displayed.

The visualization features for the second object and any other object are the same with
the first object. When the occlusion ordering of the foreground objects is computed there
is no visualization, while during the final refinement of the parameters all the appearance
parameters of the foreground objects and the background are plotted.

References

[1] M. Irani, B. Rousso, and S. Peleg. Computing Occluding and Transparent Motions. In-
ternational Journal of Computer Vision, 12(1):5–16, 1994.

[2] N. Jojic and B. J. Frey. Learning Flexible Sprites in Video Layers. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition 2001. IEEE Computer
Society Press, 2001. Kauai, Hawaii.

[3] M. K. Titsias. Unsupervised Learning of Multiple Objects in Images. PhD thesis, School
of Informatics, University of Edinburgh, 2005.

[4] M. K. Titsias and C. K. I. Williams. Fast unsupervised greedy learning of multiple objects
and parts from video. In Proc. Generative-Model Based Vision Workshop, 2004.

[5] J. Y. A. Wang and E. H. Adelson. Representing Moving Images with Layers. IEEE
Transactions on Image Processing, 3(5):625–638, 1994.

[6] C. K. I. Williams and M. K. Titsias. Greedy Learning of Multiple Objects in Images using
Robust Statistics and Factorial Learning. Neural Computation, 16(5):1039–1062, 2004.

5Note that if the background remains static though the frames, as it the case for the video in demo1.m, the
visualization of m is not that interesting. Try running demo2.m to see a more interesting visualization for m
when we have a moving background.

6What is plotted is the vector wt
1 the semantics of which are explained the section 3.2 in [4].

9

