Bisimulation Equivalence is Decidable
for all Context-Free Processes

Sgren Christensen® Hans Hiittel Colin Stirling*

1 Introduction

Over the past decade much attention has been devoted to the study of process
calculi such as CCS, ACP and CSP [13]. Of particular interest has been the
study of the behavioural semantics of these calculi as given by labelled transition
graphs. One important question is when processes can be said to exhibit the
same behaviour, and a plethora of behavioural equivalences exists today. Their
main rationale has been to capture behavioural aspects that language or trace
equivalences do not take into account.

The theory of finite-state systems and their equivalences can now be said to
be well-established. There are many automatic verification tools for their analysis
which incorporate equivalence checking. Sound and complete equational theories
exist for the various known equivalences, an elegant example is [18].

One may be led to wonder what the results will look like for infinite-state
systems. Although language equivalence is decidable for finite-state processes, it
is undecidable when one moves beyond finite automata to context-free languages.
For finite-state processes all known behavioural equivalences can be seen to be
decidable. In the setting of process algebra, an example of infinite-state systems
is that of the transition graphs of processes in the calculus BPA (Basic Process
Algebra) [4]. These are recursively defined processes with nondeterministic choice
and sequential composition.

A special case is that of normed BPA processes. A process is said to be normed
if it can terminate in finitely many steps at any point during the execution. Even
though normed BPA does not incorporate all regular processes, systems defined
in this calculus can in general have infinitely many states.

In [1, 2] Baeten, Bergstra and Klop proved the remarkable result that bisim-
ulation equivalence is decidable on the class of normed context-free processes.

*Laboratory for Foundations of Computer Science, James Clerk Maxwell Building, Univer-
sity of Edinburgh, Edinburgh EH9 3JZ, Scotland.

"Department of Mathematics and Computer Science, Aalborg University Centre, Fredrik
Bajersvej 7E, 9220 Aalborg @, Denmark.

Their proof is rather lengthy and hard to grasp; it ultimately relies on showing
a periodicity for any transition graph generated from normed context-free pro-
cesses. Caucal presented in [8] a more elegant (and shorter) proof of the same
result utilising rewrite techniques. Finally, in [16] Hiittel and Stirling presented
yet another proof of the decidability result by appealing to the tableau method.
The tableau based approach also supports a sound and complete sequent based
equational theory for normed context-free processes (see [16, 15]).

One remaining question to be answered is whether bisimulation equivalence is
decidable for the full class of context-free processes. We here answer this question
in the affirmative, using a technique inspired by Caucal’s proof of the decidability
of language equivalence for simple algebraic grammars (see [6]).

In the first section we introduce an alternative characterisation of bisimu-
lation equivalence, namely via a sequence of approximations, which will enable
us to conclude semi-decidability of bisimulation inequivalence on the class of
guarded context-free processes. Thus we only need to consider semi-decidability
of bisimulation equivalence in order to establish our result. This is achieved in
the following (and final) section through a finite representability result; here the
emphasis is on decomposition of pairs of bisimilar processes into “smaller” pairs
of bisimilar processes such that only finitely many interesting pairs of bisimilar
processes cannot be decomposed further.

2 BPA processes

The class of recursive BPA (Basic Process Algebra) processes [1, 4] is defined by
the following abstract syntax

E:=a|X|E +E, | E E,

Here a ranges over a set of atomic actions Act, and X over a family of variables.
The operator + is nondeterministic choice while F; - s is the sequential compo-
sition of Fy and E, — we usually omit the ‘-’. In the operational semantics that
follows, we shall also need to refer to the empty process € — this process cannot
occur in a BPA process definition and is thus not mentioned in the syntax. A

BPA process is defined by a finite system of recursive process equations
A={X;YE|1<i<k}

where the X, are distinct, and the E; are BPA expressions with free variables
in Vara = {X1,...,Xx}. In a process definition, one variable (generally X;)
is singled out as the root. Usually one considers relations within the transition
graph for a single A. This can be done without loss of generality, since we can
let A be the disjoint union of any pair A; and A, that we wish to compare (with
suitable renamings of variables, if required).

We restrict our attention to guarded systems of recursive equations.

Figure 1: Transition graph for X © o+ bXY:, Y L . (Example 2.1)

Definition 2.1 A BPA expression is guarded if every variable occurrence is with-
in the scope of an atomic action. The system A = {X; def E; |1 <i<k}is
guarded if each E; is quarded for 1 <1 < k.

We use X,Y,... to range over variables in Vara and Greek letters o, (3, ...
to range over elements in Varjy. In particular, e denotes the empty variable
sequence.

Definition 2.2 Any system of process equations A defines a labelled transition
graph. The transition relations are given as the least relations satisfying the
following rules:

a ESE e
a—e€,a € Act TXd:fEGA
X = F
E%FE F5F
E+F5%FE E+F5%F
ES%E E%e

—— o B Fe T o
EF = E'F EF = F

Example 2.1 Consider the system A = {X © o+ bXY:; Y dof c}. By the

transition rules in Definition 2.2 X generates the transition graph in Figure 1. O

2.1 Bisimulation equivalence and Greibach Normal Form

Definition 2.3 A relation R between processes is a bisimulation if whenever pRq
then for each a € Act

1.p3p =3¢ :q> ¢ with pRq

2. ¢35 q¢ =3 pSp with pRq

Two processes p and ¢ are bisimulation equivalent, written as p ~ g, if there is
a bisimulation relation R such that pRq. The relation ~ is an equivalence, and
moreover it is a congruence relation with respect to the operators + and -, [4].
An alternative characterization of ~ is via a sequence of approximations.

Definition 2.4 The sequence of bisimulation approzimations {~,}¥_, is defined
inductively as follows.

e p ~yq q for all processes p and q,
e p~yi1 qiff for each a € Act

— p 35 p implies ¢ = ¢ and p' ~, ¢ for some ¢

—q5 ¢ implies p > p' and p' ~, ¢ for some p'

It is a standard result, see [19] for instance, that for any image-finite labelled
transition graph (that is, where for each p and a the set {q | p = ¢} is finite):

Clearly, the transition graph for any family A of guarded BPA processes is image-
finite.

Any system A of guarded BPA equations has a unique solution up to bisim-
ulation equivalence [3]. Moreover, in [1] it is shown that any such system can be
effectively presented in a normal form

n;
{Xz d:ef Z(IZ’J‘OQ‘]' ‘ 1 S 1 S m}
j=1

such that bisimilarity is preserved. From the transition rules we see that if X; = F
then F is just a sequence « of variables. The normal form is called Greibach Nor-
mal Form, GNF, by analogy with context-free grammars (without the empty pro-
duction) in GNF (see e.g. [14]). There is an obvious correspondence with gram-
mars in GNF': process variables correspond to non-terminals, the root is the start
symbol, actions correspond to terminals, and each equation X; def Z?;l @;jCyj can
be viewed as the family of productions {X; — a;;a;; |1 < j < n;}.

3 Decidability of bisimulation equivalence

Assume a fixed system A of BPA equations in GNF whose variable set is Var.
The bisimulation equivalence problem is whether or not & ~ 3 when «a and [are
sequences of variables drawn from Var. In the case that these are finite-state pro-
cesses, a very naive decision procedure consists of enumerating all binary relations

over the finite state space generated by o and 3 using the rules for transitions and
determining if there is a relation among them which is a bisimulation containing
the pair (a, 3). But of course BPA processes are not generally finite-state, and
therefore bisimulations can now be infinite.

On the other hand for any n, the n-bisimulation equivalence problem (whether
or not & ~,) is decidable. This means that bisimulation inequivalence is semi-
decidable via the simple procedure which seeks the least ¢ such that o «; (.
Therefore we just need to establish the semi-decidability of bisimulation equiva-
lence. The proof of this (inspired by [6, 7, 8]) relies on showing that there is a
finite self-bisimulation relation which generates the bisimulation equivalence.

3.1 Self-bisimulations

The notion of self-bisimulation was introduced by Didier Caucal in [8] (originally
published as [7]). Here the notion of a least congruence is essential.

Definition 3.1 For any binary relation R on Var*, 2 15 the least precongruence
w.r.t. sequential composition that contains R, <— the symmetric closure of =
and o the reflexive and transitive closure of Ny and thus the least congruence
w.r.t. sequential composition containing R.

A self-bisimulation is then simply a bisimulation up to congruence w.r.t. se-
quential composition.

Definition 3.2 A relation R C Var* x Var* is called a self-bisimulation iff a R
implies that for each a € Act

1. if a3 o then B2 ' for some B with o o o4
2. if B35 B then a = o for some o' with o e o4

The following lemma, due to Didier Caucal, shows that a self-bisimulation is
a witness for bisimulation equivalence.

Lemma 3.1 [8] If R is a self-bisimulation then e S

Corollary 3.1 a ~ (3 iff there is a self-bisimulation R such that aR[3.

3.2 Decompositions

Our aim is to show that bisimulation equivalence on Var* is generable from
a finite self-bisimulation. To do this we must find techniques for decomposing
bisimilar sequences of variables a and [into “smaller” subsequences aj...a,
and ;... 0, with a; ~ (; for each 7 in such a way that there are only “finitely”
many pairs a and 3 that can not be decomposed. Extra definitions and some
preliminary results are needed to achieve this.

A process a € Var™ is normed if there is a w € Act™ such that o = e. When
« is normed we let the norm of a, written as |a| following [1], be defined as:

la| = min{length(w) | a = e,w € Actt}

By convention we also assume that |¢| = 0. Clearly « is normed just in case each
variable occurring in it has a norm. We divide the variable set Var into disjoint
subsets Vi, = {X € Var| X is normed} and Voo = Var \ Vy;,. The system of
equations, example 2.1, only contains normed variables with |X| = [Y| = 1, so
Vim = {X,Y} and V = (). Example 3.1 contains an unnormed X so in this case
Vi ={Y} and V, = {X}.

Example 3.1 In the system of equations A = {X def aX; Y Loy aX} the
variable X is not normed since there is no w such that X = ¢ whereas |Y| = 1.
(I

A straightforward consequence of the definition of having a norm is the fol-
lowing:

if X eV, then aXf~ aX

Therefore we can assume that our fixed system of BPA equations in normal
form A = {X; def Yiiiagag; | 1 < i < m} has the property that each a;; €
(Viin Vo) UV,

The next definition stipulates what we mean by decomposition:

Definition 3.3 When Xa ~ Y we say that the pair (X, Y 3) is decomposable
if X,Y € Vi and there is a v such that

e 0~ B and Xy~ Y if|X] <[V
e ya~ 3 and X ~Yv if |Y] < |X].

In the case of normed processes (where each variable in Var is normed) the impor-
tant property underpinning decidability of ~ is that any bisimilar pair (X«, Y)
is decomposable (see [6]). Assuming that |X| < |Y| and that (3 is not empty this

6

means that there is a decomposition of X« into the two smaller (with respect to
norm) subsequences X~ and § with X ~ Y. Consequently bisimulation equiv-
alence is then generable from a finite self-bisimulation consisting of pairs of the
form (X, a).

However, in the presence of unnormed variables the situation is much more
complex, as there can be bisimilar pairs (X a, Y 3) which are not decomposable.
We therefore need to show that in some sense there are only finitely many of
them. A special class of pairs have the form («, Xya). The following lemma
provides some information about them.

Lemma 3.2 Ifa~ Xvya and § ~ X0 then a ~ [3.

Proor: If a ~ X~va and § ~ X7 then both o and 3 are solutions to the same
(guarded) equation. As any system of guarded equations has a unique solution
up to bisimulation equivalence [1] it follows that « ~ (. O

Let us call a ¢ € Var* a unifier for a, 5 € Var* if a & [but agp ~ [¢.
Intuitively, a unifier repairs a bisimulation error by introducing a tail of infinite
transitions.

Example 3.2 Consider the system A = {X; = aXo+aX3; Xo =b; X3 =¢; X, =
aXo+bX3+a;Y =0Y; 7 = cZ}. Clearly X; # X4. However, Y and Z are unifiers
of the pair (X, Xy) as X1V ~ X,V and X7 ~ X, Z. Tt is not difficult to check
that any other unifier must be bisimilar to either Y or Z. 4

We now present a crucial lemma which shows that there can only be finitely
many different unifiers for any pair of non-bisimilar processes. For an arbitrary
pair of non-bisimilar processes we do not know the upper bound on the number of
such unifiers. However if we know that the pair is not in approximation relation
~, then there is a bound which depends on the degree of A, deg(A), defined as
the size of the largest set {a| X % a, a € Act} when X € Var: for instance,
both systems of equations in Examples 2.1 and 3.1 have degree 2.

Lemma 3.3 For any o, 8 € Var*, if a «, (3 then there are at most (deg(A))"~!
different unifiers up to ~.

PROOF: Induction on n using the previous lemma. For the base case if a0 ¢y
then without loss of generality & = but 3 - for some a. But there can not be
unifier ¢ giving agp ~ (¢, unless § = e. By Lemma 3.2 there is only one ¢ up to
~ such that agp ~ ¢. If a %, 1 O then without loss of generality o b o' and for
all 4 such that LN (' it is the case that o' #,, 3. Now suppose a¢ ~ (3¢. Any
transition o N a'¢ can be matched by a transition S¢ N B¢ with o'¢p ~ §'¢.
By the induction hypothesis there are only (deg(A))"~! distinct ¢ such that

o'py ~ B'é1. Let S = {a;a | aga;,VB’ B8 B = aj oy, B'}. S can have at
most deg(A) distinct elements. We can write a ~ 3, o csaj05 + 34,525 biB),
and from this we see that since for each a;o; € S there are at most (deg(A))"!
distinct unifiers ¢ such that a;¢ ~ (¢, there are all in all at most (deg(A))"
distinct unifiers ¢ such that a¢p ~ [F¢. a

We say that the pairs (X, Y) and (Xay,Y ;) are distinct when « o oy
or 3 o (. The next surprising result shows that there are only finitely many
interesting pairs (X «, Y 3) that are not decomposable.

Lemma 3.4 For any X,Y € Var any set R of the form

{(Xa,YB) | X, YB € (Vi Voo) UV, X~
Y3, (Xa,Y) is not decomposable}

such that all pairs are distinct is finite.

ProOOF: First, if both X and Y belong to V,, then R contains just one member.
Otherwise assume only one of them is in V, without loss of generality let this
be X. AsY is normed let |Y| = n. Therefore Y = € for some w of length n. But
there are only finitely many v such that X =% ~. If R were infinite containing
pairs (X, Y f3;) for all 7, then as every (; should be bisimilar to some 7, we would
have that for some j 3; ~ [for infinitely many k. But this would contradict
distinctness. There can thus only be finitely many ; such that X ~ Y 3;. Now,
assume that both X,Y € V};, and without loss of generality let | X| < |Y| with
|X| = n. Consider a w = a;---a, such that X =€ Since Xa; ~ Y for
all (Xa;,Y3;) € R we must have Y =~ for some . But then consider the
set B = {v;|3u:Y = ;,length(u) = n}. This set is finite and has at most
(deg(A))™ elements. But then for some v € B, since o; ~ v(3;, it must be the
case that for infinitely many (Xo;, Y 3;)) € R we have Xvf3; ~ Y[;. But this
would imply an unbounded number of unifiers for (X, Y") and this is impossible
by Lemma 3.3, as Xy «¢ Y follows from the assumption that the pairs are not
decomposable. O

3.3 Finite representability of ~

We are now almost in a position to prove our main theorem, which relies on an
induction on size, defined for every a € (V};, Vo) UV}, and denoted by s(a):

aX| i X € Vi
af otherwise

s(aX) = {

We let C be the well-founded ordering on (V/;, Vi) U Vi, x (Vi Ve) U VS, given
by (1, an) C (B, f2) if max{s(ai), s(az)} < max{s(51),s(0)}.

8

Theorem 3.1 There is a finite relation R on (Vf;,Vae) UV}, such that ~ = o

ProOOF: We define R as the union of two finite relations R; and Ry. R; is a
largest relation of the form

{(X,a) | X,a€ Vi, X ~ a}
and R, is a largest relation of the form

{(Xa,YB) | Xa,YB € (Vf*mvoo) U Vi, Xa~
Y3, (Xa,Y3) is not decomposable}

such that each pair (X, Y), (X', Y3') in R, is distinct. Moreover, we assume
minimal elements w.r.t. C, i.e. if (Xa,Y) € Ry is not distinct from (Xo/, Y)
then (o, 8) C (o/,). Notice that both R; and R, are finite; the finiteness of
R, follows from the fact that there are only finitely many elements of V7, with
a given finite norm and the finiteness of Ry follows from lemma 3.4. Thus R is
finite.

We now want to show that ~ = e As R C ~ and ~ is a congruence w.r.t.
sequential composition we immediately have «—+ C ~. So we consider proving
~ C o and proceed by induction on C. Let Xa ~ Y 3. There are two cases:

e Suppose that (X, Y 3) is not decomposable. Then by the maximality of Ry
we have (X', Y 3') in Ry such that (¢/, ') C (o, §) witha ~ o/ and 3 ~ (.
If X,Y € Vpy, then clearly (o/,3') C (o, 3) T (Xa,Y3) from which it
follows that (o, o) C (Xa,Y) and (5, 3') C (Xa,Y3). By the induction
hypothesis we now conclude that o o o' and (8 e (' from which we get
Xa . Y3 as desired. If X € Vo and YV € Vj;;, we get @ = o' = € and
therefore X ~ Y 3. As Y € Vp;, we have s(3') < s(f) < s(Y3) hence
(8,') C (X,Y3) which by the induction hypothesis implies (3 o A'. But
then X o Y o Y 3 as desired. Finally, if X,Y € V, then a =o' = ¢
and also § = 8 = e. Hence we have (X,Y) € R, from which X e Y
follows.

e Suppose (Xa,Y3) is decomposable. By the definition of decomposability
it follows that X,Y € V};,,. Assume without loss of generality that we have
v such that ya ~ f and X ~ Y~v. As X is normed and X ~ Y~ clearly
s(ya) < s(Xa). Similarly as YV is normed we also have s(3) < s(Y) and
therefore (ya,) C (X a, Y 3) from which ya o 3 follows by the induction
hypothesis. As X ~ Y~ with X € Vj;,, we have (X,Yy) € Ry from the
maximality of R;. But then X« o Yva o Y 3 as desired.

This completes the proof. O

Thus, Corollary 3.1 can be strengthened to: «a ~ [iff there is a finite self-
bisimulation R such that aR3. We now show that this is sufficient for semi-
decidability of ~. For given a finite relation R on (V};, Vi) UV}, it is semi-
decidable whether it is a self-bisimulation. The procedure consists in defining
a derivation or proof system: the axioms are the pairs in R, and the rules are
congruence rules for sequential composition together with the usual equivalence
rules. Consequently, for each n let D,(R) be the finite set of pairs («, 3) which
are derivable within n steps of the proof system.

Definition 3.4 A finite relation R on (V};,Vie) UV}, is an n-self-bisimulation
iff aRB implies that for all a € Act

1. if a o then B-% B for some B with (o/, ') € D,(R)
2. if B B then a - o for some o' with (o', ') € D,(R)

For each n clearly it is decidable whether a finite relation R on (V5;, Vo) U VS, is
an n-self-bisimulation. Moreover, if R is a finite self-bisimulation then for some
n it is an n-self-bisimulation.

We now complete the proof that bisimulation equivalence is semi-decidable
using a dovetailing technique (compare [6]). Let Ry...R;... be an effective
enumeration of all finite relations on (V};,Va) U V5, and let g : N* — N be an
effective bijection. To check whether o ~ 3, for each n > 0 in turn consider the
pair (7,7) = g~ '(n): if aR;(then test if R; is a j-self-bisimulation. Consequently,
if o ~ 3 this must be established at the n* stage of this procedure for some n.
The decidability result is now established.

Theorem 3.2 Bisimulation equivalence is decidable for all guarded BPA pro-
cesses.

4 Conclusion

We have shown that bisimulation equivalence is decidable for BPA. As the proof
involves two semi-decision procedures it is not obvious how to determine the
complexity of solving this problem. Moreover it does not provide us with an
intuitive technique for deciding bisimilarity as does the tableau method in [16, 15]
which also has the advantage of providing us with a way of extracting a complete
axiomatization for normed BPA processes. A similar result for full BPA would
be a proper extension of Milner’s axiom system for regular processes [18].

More generally this work addresses the area of infinite-state processes. Be-
sides deciding equivalences there is also the question of model checking: a recent
result [5] shows decidability for fragments of the modal mu-calculus in the case of
normed BPA. There is also the question of pushdown automata processes (which

10

generate a richer family of transition graphs than BPA processes). [20] contains
a very elegant characterization of their graphs.

Of more interest to concurrency theory are process languages with parallel
combinators. Although bisimulation equivalence is undecidable for ACP, CCS,
and CSP it is decidable for the calculus BPP (Basic Parallel processes), which is
the recursive fragment of CCS with parallel but without the restriction operator
[9, 10]. An open question is whether bisimulation is decidable in the case of the
PA calculus which is BPA with an added parallel operator. Moreover there may
be even finer useful equivalences which permit general decidability results.

Acknowledgements

The authors would like to thank Didier Caucal and Robin Milner for useful dis-
cussions and insights.

References

[1] J.C.M. Baeten, J.A. Bergstra, and J.W. Klop. Decidability of bisimula-
tion equivalence for processes generating context-free languages. Technical
Report CS-R8632, CWI, September 1987.

[2] J.C.M. Baeten, J.A. Bergstra, and J.W. Klop. Decidability of bisimulation
equivalence for processes generating context-free languages. JACM, 40:653-
682, 1993.

(3] J.A. Bergstra and J.W. Klop. Process algebra for synchronous communica-
tion. Information and Control, 60:109-137, 1984.

[4] J.A. Bergstra and J.W. Klop. Process theory based on bisimulation seman-
tics. In J.W. de Bakker, W.P de Roever, and G. Rozenberg, editors, LNCS
354, pages 50—-122. Springer-Verlag, 1988.

[5] O. Burkart and B. Steffen. Model checking for context-free processes. Pro-
ceedings of CONCUR’92, LNCS 630, 1992.

[6] D. Caucal. Décidabilité de 1‘egalité des langages algébriques infinitaires sim-
ples. In Proceedings of STACS 86, LNCS 210, pages 37-48. Springer-Verlag,
1986.

[7] D. Caucal. Graphes canoniques de graphes algébriques. Rapport de
Recherche 872, INRIA, Juillet 1988.

[8] D. Caucal. Graphes canoniques de graphes algébriques. Informatique
théorique et Applications (RAIRO), 24(4):339-352, 1990.

11

[9]

[10]

[11]

[12]

[17]

[18]

[19]

[20]

S. Christensen. Decidability and decomposition in process algebra. PhD
thesis, University of Edinburgh, 1993.

S. Christensen, Y. Hirshfeld and F. Moller Bisimulation equivalence is de-
cidable for basic parallel processes. Proceedings of CONCUR’93, LNCS 715,
143-157, 1993.

J. F. Groote. A short proof of the decidability of bisimulation for normed
BPA-processes. Tech. Report Utrecht University 1992.

J.F. Groote and H. Hiittel. Undecidable equivalences for basic process alge-
bra. Technical Report ECS-LFCS-91-169, Department of Computer Science,
University of Edinburgh, August 1991.

C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1988.

J. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Languages,
and Computation. Addison-Wesley, 1979.

H. Hiittel. Decidability, Behavioural Equivalences and Infinite Transition
Graphs. PhD thesis, University of Edinburgh, December 1991.

H. Hiittel and C. Stirling. Actions speak louder than words: Proving bisim-
ilarity for context-free processes. In Proceedings of 6th Annual Symposium
on Logic in Computer Science (LICS 91), pages 376-386. IEEE Computer
Society Press, 1991.

Dung T. Huynh and Lu Tian. On deciding readiness and failure equivalences
for processes. Technical Report UTDCS-31-90, University of Texas at Dallas,
September 1990.

R. Milner. A complete inference system for a class of regular behaviours.
Journal of Computer and System Sciences, 28:439-466, 1984.

R. Milner. Communication and Concurrency. Prentice-Hall International,
1989.

D. Muller and P. Schupp. The theory of ends, pushdown automata, and
second-order logic. Theoretical Computer Science, 37:51-75, 1985.

12

