
Bisimulation Equivalence is Decidablefor all Context-Free ProcessesS�ren Christensen� Hans H�uttely Colin Stirling�
1 IntroductionOver the past decade much attention has been devoted to the study of processcalculi such as CCS, ACP and CSP [13]. Of particular interest has been thestudy of the behavioural semantics of these calculi as given by labelled transitiongraphs. One important question is when processes can be said to exhibit thesame behaviour, and a plethora of behavioural equivalences exists today. Theirmain rationale has been to capture behavioural aspects that language or traceequivalences do not take into account.The theory of �nite-state systems and their equivalences can now be said tobe well-established. There are many automatic veri�cation tools for their analysiswhich incorporate equivalence checking. Sound and complete equational theoriesexist for the various known equivalences, an elegant example is [18].One may be led to wonder what the results will look like for in�nite-statesystems. Although language equivalence is decidable for �nite-state processes, itis undecidable when one moves beyond �nite automata to context-free languages.For �nite-state processes all known behavioural equivalences can be seen to bedecidable. In the setting of process algebra, an example of in�nite-state systemsis that of the transition graphs of processes in the calculus BPA (Basic ProcessAlgebra) [4]. These are recursively de�ned processes with nondeterministic choiceand sequential composition.A special case is that of normed BPA processes. A process is said to be normedif it can terminate in �nitely many steps at any point during the execution. Eventhough normed BPA does not incorporate all regular processes, systems de�nedin this calculus can in general have in�nitely many states.In [1, 2] Baeten, Bergstra and Klop proved the remarkable result that bisim-ulation equivalence is decidable on the class of normed context-free processes.�Laboratory for Foundations of Computer Science, James Clerk Maxwell Building, Univer-sity of Edinburgh, Edinburgh EH9 3JZ, Scotland.yDepartment of Mathematics and Computer Science, Aalborg University Centre, FredrikBajersvej 7E, 9220 Aalborg �, Denmark. 1



Their proof is rather lengthy and hard to grasp; it ultimately relies on showinga periodicity for any transition graph generated from normed context-free pro-cesses. Caucal presented in [8] a more elegant (and shorter) proof of the sameresult utilising rewrite techniques. Finally, in [16] H�uttel and Stirling presentedyet another proof of the decidability result by appealing to the tableau method.The tableau based approach also supports a sound and complete sequent basedequational theory for normed context-free processes (see [16, 15]).One remaining question to be answered is whether bisimulation equivalence isdecidable for the full class of context-free processes. We here answer this questionin the a�rmative, using a technique inspired by Caucal's proof of the decidabilityof language equivalence for simple algebraic grammars (see [6]).In the �rst section we introduce an alternative characterisation of bisimu-lation equivalence, namely via a sequence of approximations, which will enableus to conclude semi-decidability of bisimulation inequivalence on the class ofguarded context-free processes. Thus we only need to consider semi-decidabilityof bisimulation equivalence in order to establish our result. This is achieved inthe following (and �nal) section through a �nite representability result; here theemphasis is on decomposition of pairs of bisimilar processes into \smaller" pairsof bisimilar processes such that only �nitely many interesting pairs of bisimilarprocesses cannot be decomposed further.2 BPA processesThe class of recursive BPA (Basic Process Algebra) processes [1, 4] is de�ned bythe following abstract syntaxE ::= a j X j E1 + E2 j E1 � E2Here a ranges over a set of atomic actions Act, and X over a family of variables.The operator + is nondeterministic choice while E1 �E2 is the sequential compo-sition of E1 and E2 { we usually omit the `�'. In the operational semantics thatfollows, we shall also need to refer to the empty process � { this process cannotoccur in a BPA process de�nition and is thus not mentioned in the syntax. ABPA process is de�ned by a �nite system of recursive process equations� = fXi def= Ei j 1 � i � kgwhere the Xi are distinct, and the Ei are BPA expressions with free variablesin V ar� = fX1; : : : ; Xkg. In a process de�nition, one variable (generally X1)is singled out as the root. Usually one considers relations within the transitiongraph for a single �. This can be done without loss of generality, since we canlet � be the disjoint union of any pair �1 and �2 that we wish to compare (withsuitable renamings of variables, if required).We restrict our attention to guarded systems of recursive equations.2



�X?a YXY?a-�cb -b� c XY 2Y 2?a -b� c . . .. . . . . .. . ........ ....... -b� c XY nY n?a -b� c . . .. . . . . .. . ........Figure 1: Transition graph for X def= a+ bXY ; Y def= c (Example 2.1)De�nition 2.1 A BPA expression is guarded if every variable occurrence is with-in the scope of an atomic action. The system � = fXi def= Ei j 1 � i � kg isguarded if each Ei is guarded for 1 � i � k.We use X; Y; : : : to range over variables in V ar� and Greek letters �; �; : : :to range over elements in V ar��. In particular, � denotes the empty variablesequence.De�nition 2.2 Any system of process equations � de�nes a labelled transitiongraph. The transition relations are given as the least relations satisfying thefollowing rules: a a! �; a 2 Act E a!E 0X a! E 0 X def= E 2 �E a! E 0E + F a! E 0 F a! F 0E + F a! F 0E a! E 0EF a! E 0F E 0 6= � E a! �EF a! FExample 2.1 Consider the system � = fX def= a + bXY ; Y def= cg. By thetransition rules in De�nition 2.2 X generates the transition graph in Figure 1. 22.1 Bisimulation equivalence and Greibach Normal FormDe�nition 2.3 A relation R between processes is a bisimulation if whenever pRqthen for each a 2 Act1. p a! p0 ) 9q0 : q a! q0 with p0Rq02. q a! q0 ) 9p0 : p a! p0 with p0Rq0 3



Two processes p and q are bisimulation equivalent, written as p � q, if there isa bisimulation relation R such that pRq. The relation � is an equivalence, andmoreover it is a congruence relation with respect to the operators + and �, [4].An alternative characterization of � is via a sequence of approximations.De�nition 2.4 The sequence of bisimulation approximations f�ng!n=1 is de�nedinductively as follows.� p �0 q for all processes p and q,� p �n+1 q i� for each a 2 Act{ p a! p0 implies q a! q0 and p0 �n q0 for some q0{ q a! q0 implies p a! p0 and p0 �n q0 for some p0It is a standard result, see [19] for instance, that for any image-�nite labelledtransition graph (that is, where for each p and a the set fq j p a! qg is �nite):� = !\n=0 �nClearly, the transition graph for any family � of guarded BPA processes is image-�nite.Any system � of guarded BPA equations has a unique solution up to bisim-ulation equivalence [3]. Moreover, in [1] it is shown that any such system can bee�ectively presented in a normal formfXi def= niXj=1 aij�ij j 1 � i � mgsuch that bisimilarity is preserved. From the transition rules we see that ifXi w! Ethen E is just a sequence � of variables. The normal form is called Greibach Nor-mal Form, GNF, by analogy with context-free grammars (without the empty pro-duction) in GNF (see e.g. [14]). There is an obvious correspondence with gram-mars in GNF: process variables correspond to non-terminals, the root is the startsymbol, actions correspond to terminals, and each equation Xi def= Pnij=1 aij�ij canbe viewed as the family of productions fXi ! aij�ij j 1 � j � nig.3 Decidability of bisimulation equivalenceAssume a �xed system � of BPA equations in GNF whose variable set is V ar.The bisimulation equivalence problem is whether or not � � � when � and � aresequences of variables drawn from V ar. In the case that these are �nite-state pro-cesses, a very naive decision procedure consists of enumerating all binary relations4



over the �nite state space generated by � and � using the rules for transitions anddetermining if there is a relation among them which is a bisimulation containingthe pair (�; �). But of course BPA processes are not generally �nite-state, andtherefore bisimulations can now be in�nite.On the other hand for any n, the n-bisimulation equivalence problem (whetheror not � �n �) is decidable. This means that bisimulation inequivalence is semi-decidable via the simple procedure which seeks the least i such that � 6�i �.Therefore we just need to establish the semi-decidability of bisimulation equiva-lence. The proof of this (inspired by [6, 7, 8]) relies on showing that there is a�nite self-bisimulation relation which generates the bisimulation equivalence.3.1 Self-bisimulationsThe notion of self-bisimulation was introduced by Didier Caucal in [8] (originallypublished as [7]). Here the notion of a least congruence is essential.De�nition 3.1 For any binary relation R on V ar�, !R is the least precongruencew.r.t. sequential composition that contains R,  !R the symmetric closure of !Rand  !R � the re
exive and transitive closure of  !R and thus the least congruencew.r.t. sequential composition containing R.A self-bisimulation is then simply a bisimulation up to congruence w.r.t. se-quential composition.De�nition 3.2 A relation R � V ar��V ar� is called a self-bisimulation i� �R�implies that for each a 2 Act1. if � a! �0 then � a! � 0 for some � 0 with �0  !R � � 02. if � a! � 0 then � a! �0 for some �0 with �0  !R � � 0The following lemma, due to Didier Caucal, shows that a self-bisimulation isa witness for bisimulation equivalence.Lemma 3.1 [8] If R is a self-bisimulation then  !R � � �.Corollary 3.1 � � � i� there is a self-bisimulation R such that �R�.
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3.2 DecompositionsOur aim is to show that bisimulation equivalence on V ar� is generable froma �nite self-bisimulation. To do this we must �nd techniques for decomposingbisimilar sequences of variables � and � into \smaller" subsequences �1 : : : �nand �1 : : : �n with �i � �i for each i in such a way that there are only \�nitely"many pairs � and � that can not be decomposed. Extra de�nitions and somepreliminary results are needed to achieve this.A process � 2 V ar+ is normed if there is a w 2 Act+ such that � w! �. When� is normed we let the norm of �, written as j�j following [1], be de�ned as:j�j = minflength(w) j � w! �; w 2 Act+gBy convention we also assume that j�j = 0. Clearly � is normed just in case eachvariable occurring in it has a norm. We divide the variable set V ar into disjointsubsets Vfin = fX 2 V ar j X is normedg and V1 = V ar n Vfin. The system ofequations, example 2.1, only contains normed variables with jXj = jY j = 1, soVfin = fX; Y g and V1 = ;. Example 3.1 contains an unnormed X so in this caseVfin = fY g and V1 = fXg.Example 3.1 In the system of equations � = fX def= aX; Y def= c + aXg thevariable X is not normed since there is no w such that X w! � whereas jY j = 1.2 A straightforward consequence of the de�nition of having a norm is the fol-lowing: if X 2 V1 then �X� � �XTherefore we can assume that our �xed system of BPA equations in normalform � = fXi def= Pnij=1 aij�ij j 1 � i � mg has the property that each �ij 2(V �finV1) [ V �fin.The next de�nition stipulates what we mean by decomposition:De�nition 3.3 When X� � Y � we say that the pair (X�; Y �) is decomposableif X; Y 2 Vfin and there is a 
 such that� � � 
� and X
 � Y if jXj � jY j� 
� � � and X � Y 
 if jY j � jXj.In the case of normed processes (where each variable in V ar is normed) the impor-tant property underpinning decidability of � is that any bisimilar pair (X�; Y �)is decomposable (see [6]). Assuming that jXj � jY j and that � is not empty this6



means that there is a decomposition of X� into the two smaller (with respect tonorm) subsequences X
 and � with X
 � Y . Consequently bisimulation equiv-alence is then generable from a �nite self-bisimulation consisting of pairs of theform (X;�).However, in the presence of unnormed variables the situation is much morecomplex, as there can be bisimilar pairs (X�; Y �) which are not decomposable.We therefore need to show that in some sense there are only �nitely many ofthem. A special class of pairs have the form (�;X
�). The following lemmaprovides some information about them.Lemma 3.2 If � � X
� and � � X
� then � � �.Proof: If � � X
� and � � X
� then both � and � are solutions to the same(guarded) equation. As any system of guarded equations has a unique solutionup to bisimulation equivalence [1] it follows that � � �. 2Let us call a � 2 V ar� a uni�er for �; � 2 V ar� if � 6� � but �� � ��.Intuitively, a uni�er repairs a bisimulation error by introducing a tail of in�nitetransitions.Example 3.2 Consider the system � = fX1 = aX2+aX3;X2 = b;X3 = c;X4 =aX2+bX3+a;Y = bY ;Z = cZg. ClearlyX1 6� X4. However, Y and Z are uni�ersof the pair (X1; X4) as X1Y � X4Y and X1Z � X4Z. It is not di�cult to checkthat any other uni�er must be bisimilar to either Y or Z. 2We now present a crucial lemma which shows that there can only be �nitelymany di�erent uni�ers for any pair of non-bisimilar processes. For an arbitrarypair of non-bisimilar processes we do not know the upper bound on the number ofsuch uni�ers. However if we know that the pair is not in approximation relation�n then there is a bound which depends on the degree of �, deg(�), de�ned asthe size of the largest set f�j X a! �; a 2 Actg when X 2 V ar: for instance,both systems of equations in Examples 2.1 and 3.1 have degree 2.Lemma 3.3 For any �; � 2 V ar�, if � 6�n � then there are at most (deg(�))n�1di�erent uni�ers up to �.Proof: Induction on n using the previous lemma. For the base case if � 6�1 �then without loss of generality � a! but � 6 a! for some a. But there can not beuni�er � giving �� � ��, unless � = �. By Lemma 3.2 there is only one � up to� such that �� � �. If � 6�n+1 � then without loss of generality � b! �0 and forall � 0 such that � b! � 0 it is the case that �0 6�n � 0. Now suppose �� � ��. Anytransition �� b! �0� can be matched by a transition �� b! � 0� with �0� � � 0�.By the induction hypothesis there are only (deg(�))n�1 distinct �1 such that7



�0�1 � � 0�1. Let S = faj�0j j � aj! �0j; 8� 0 : � aj! � 0 ) �j 6�n � 0g. S can have atmost deg(�) distinct elements. We can write � � Paj�j2S aj�j +Pbj�j 62S bj�j,and from this we see that since for each aj�j 2 S there are at most (deg(�))n�1distinct uni�ers � such that �j� � � 0�, there are all in all at most (deg(�))ndistinct uni�ers � such that �� � ��. 2We say that the pairs (X�; Y �) and (X�1; Y �1) are distinct when � 6� �1or � 6� �1. The next surprising result shows that there are only �nitely manyinteresting pairs (X�; Y �) that are not decomposable.Lemma 3.4 For any X; Y 2 V ar any set R of the formf(X�; Y �) j X�; Y � 2 (V �finV1) [ V �fin; X� �Y �; (X�; Y �) is not decomposablegsuch that all pairs are distinct is �nite.Proof: First, if both X and Y belong to V1 then R contains just one member.Otherwise assume only one of them is in V1, without loss of generality let thisbe X. As Y is normed let jY j = n. Therefore Y w! � for some w of length n. Butthere are only �nitely many 
 such that X w! 
. If R were in�nite containingpairs (X; Y �i) for all i, then as every �i should be bisimilar to some 
, we wouldhave that for some j �j � �k for in�nitely many k. But this would contradictdistinctness. There can thus only be �nitely many �i such that X � Y �i. Now,assume that both X; Y 2 Vfin and without loss of generality let jXj � jY j withjXj = n. Consider a w = a1 � � �an such that X w! �. Since X�i � Y �i forall (X�i; Y �i) 2 R we must have Y w! 
 for some 
. But then consider theset B = f
j j 9u : Y u! 
j; length(u) = ng. This set is �nite and has at most(deg(�))n elements. But then for some 
 2 B, since �i � 
�i, it must be thecase that for in�nitely many (X�i; Y �i) 2 R we have X
�i � Y �i. But thiswould imply an unbounded number of uni�ers for (X
; Y ) and this is impossibleby Lemma 3.3, as X
 6� Y follows from the assumption that the pairs are notdecomposable. 23.3 Finite representability of �We are now almost in a position to prove our main theorem, which relies on aninduction on size, de�ned for every � 2 (V �finV1) [ V �fin and denoted by s(�):s(�X) = ( j�Xj if X 2 Vfinj�j otherwiseWe let v be the well-founded ordering on (V �finV1) [ V �fin�(V �finV1) [ V �fin givenby (�1; �2) v (�1; �2) if maxfs(�1); s(�2)g � maxfs(�1); s(�2)g.8



Theorem 3.1 There is a �nite relation R on (V �finV1) [ V �fin such that � =  !R � .Proof: We de�ne R as the union of two �nite relations R1 and R2. R1 is alargest relation of the formf(X;�) j X;� 2 V �fin; X � �gand R2 is a largest relation of the formf(X�; Y �) j X�; Y � 2 (V �finV1) [ V �fin; X� �Y �; (X�; Y �) is not decomposablegsuch that each pair (X�; Y �), (X�0; Y � 0) in R2 is distinct. Moreover, we assumeminimal elements w.r.t. v, i.e. if (X�; Y �) 2 R2 is not distinct from (X�0; Y � 0)then (�; �) v (�0; � 0). Notice that both R1 and R2 are �nite; the �niteness ofR1 follows from the fact that there are only �nitely many elements of V �fin witha given �nite norm and the �niteness of R2 follows from lemma 3.4. Thus R is�nite.We now want to show that � =  !R � . As R � � and � is a congruence w.r.t.sequential composition we immediately have  !R � � �. So we consider proving� �  !R � and proceed by induction on v. Let X� � Y �. There are two cases:� Suppose that (X�; Y �) is not decomposable. Then by the maximality of R2we have (X�0; Y � 0) in R2 such that (�0; � 0) v (�; �) with � � �0 and � � � 0.If X; Y 2 Vfin then clearly (�0; � 0) v (�; �) < (X�; Y �) from which itfollows that (�; �0) < (X�; Y �) and (�; � 0) < (X�; Y �). By the inductionhypothesis we now conclude that �  !R � �0 and �  !R � � 0 from which we getX�  !R � Y � as desired. If X 2 V1 and Y 2 Vfin we get � = �0 = � andtherefore X � Y �. As Y 2 Vfin we have s(� 0) � s(�) < s(Y �) hence(�; � 0) < (X; Y �) which by the induction hypothesis implies �  !R � � 0. Butthen X  !R � Y � 0  !R � Y � as desired. Finally, if X; Y 2 V1 then � = �0 = �and also � = � 0 = �. Hence we have (X; Y ) 2 R2 from which X  !R � Yfollows.� Suppose (X�; Y �) is decomposable. By the de�nition of decomposabilityit follows that X; Y 2 Vfin. Assume without loss of generality that we have
 such that 
� � � and X � Y 
. As X is normed and X � Y 
 clearlys(
�) < s(X�). Similarly as Y is normed we also have s(�) < s(Y �) andtherefore (
�; �) < (X�; Y �) from which 
�  !R � � follows by the inductionhypothesis. As X � Y 
 with X 2 Vfin we have (X; Y 
) 2 R1 from themaximality of R1. But then X�  !R � Y 
�  !R � Y � as desired.This completes the proof. 29



Thus, Corollary 3.1 can be strengthened to: � � � i� there is a �nite self-bisimulation R such that �R�. We now show that this is su�cient for semi-decidability of �. For given a �nite relation R on (V �finV1) [ V �fin it is semi-decidable whether it is a self-bisimulation. The procedure consists in de�ninga derivation or proof system: the axioms are the pairs in R, and the rules arecongruence rules for sequential composition together with the usual equivalencerules. Consequently, for each n let Dn(R) be the �nite set of pairs (�; �) whichare derivable within n steps of the proof system.De�nition 3.4 A �nite relation R on (V �finV1) [ V �fin is an n-self-bisimulationi� �R� implies that for all a 2 Act1. if � a! �0 then � a! � 0 for some � 0 with (�0; � 0) 2 Dn(R)2. if � a! � 0 then � a! �0 for some �0 with (�0; � 0) 2 Dn(R)For each n clearly it is decidable whether a �nite relation R on (V �finV1) [ V �fin isan n-self-bisimulation. Moreover, if R is a �nite self-bisimulation then for somen it is an n-self-bisimulation.We now complete the proof that bisimulation equivalence is semi-decidableusing a dovetailing technique (compare [6]). Let R0 : : : Ri : : : be an e�ectiveenumeration of all �nite relations on (V �finV1) [ V �fin and let g : N2 ! N be ane�ective bijection. To check whether � � �, for each n � 0 in turn consider thepair (i; j) = g�1(n): if �Ri� then test if Ri is a j-self-bisimulation. Consequently,if � � � this must be established at the nth stage of this procedure for some n.The decidability result is now established.Theorem 3.2 Bisimulation equivalence is decidable for all guarded BPA pro-cesses.4 ConclusionWe have shown that bisimulation equivalence is decidable for BPA. As the proofinvolves two semi-decision procedures it is not obvious how to determine thecomplexity of solving this problem. Moreover it does not provide us with anintuitive technique for deciding bisimilarity as does the tableau method in [16, 15]which also has the advantage of providing us with a way of extracting a completeaxiomatization for normed BPA processes. A similar result for full BPA wouldbe a proper extension of Milner's axiom system for regular processes [18].More generally this work addresses the area of in�nite-state processes. Be-sides deciding equivalences there is also the question of model checking: a recentresult [5] shows decidability for fragments of the modal mu-calculus in the case ofnormed BPA. There is also the question of pushdown automata processes (which10



generate a richer family of transition graphs than BPA processes). [20] containsa very elegant characterization of their graphs.Of more interest to concurrency theory are process languages with parallelcombinators. Although bisimulation equivalence is undecidable for ACP, CCS,and CSP it is decidable for the calculus BPP (Basic Parallel processes), which isthe recursive fragment of CCS with parallel but without the restriction operator[9, 10]. An open question is whether bisimulation is decidable in the case of thePA calculus which is BPA with an added parallel operator. Moreover there maybe even �ner useful equivalences which permit general decidability results.AcknowledgementsThe authors would like to thank Didier Caucal and Robin Milner for useful dis-cussions and insights.References[1] J.C.M. Baeten, J.A. Bergstra, and J.W. Klop. Decidability of bisimula-tion equivalence for processes generating context-free languages. TechnicalReport CS-R8632, CWI, September 1987.[2] J.C.M. Baeten, J.A. Bergstra, and J.W. Klop. Decidability of bisimulationequivalence for processes generating context-free languages. JACM, 40:653-682, 1993.[3] J.A. Bergstra and J.W. Klop. Process algebra for synchronous communica-tion. Information and Control, 60:109{137, 1984.[4] J.A. Bergstra and J.W. Klop. Process theory based on bisimulation seman-tics. In J.W. de Bakker, W.P de Roever, and G. Rozenberg, editors, LNCS354, pages 50{122. Springer-Verlag, 1988.[5] O. Burkart and B. Ste�en. Model checking for context-free processes. Pro-ceedings of CONCUR'92, LNCS 630, 1992.[6] D. Caucal. D�ecidabilit�e de l`egalit�e des langages alg�ebriques in�nitaires sim-ples. In Proceedings of STACS 86, LNCS 210, pages 37{48. Springer-Verlag,1986.[7] D. Caucal. Graphes canoniques de graphes alg�ebriques. Rapport deRecherche 872, INRIA, Juillet 1988.[8] D. Caucal. Graphes canoniques de graphes alg�ebriques. Informatiqueth�eorique et Applications (RAIRO), 24(4):339{352, 1990.11
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