
Model Checking Fixed Point Logic with Chop

Martin Lange and Colin Stirling

Laboratory for Foundations of Computer Science
Division of Informatics
University of Edinburgh

{martin,cps}@dcs.ed.ac.uk

Abstract. This paper examines FLC, which is the modal µ-calculus
enriched with a sequential composition operator. Bisimulation invariance
and the tree model property are proved. Its succinctness is compared
to the modal µ-calculus. The main focus lies on FLC’s model checking
problem over finite transition systems. It is proved to be PSPACE-hard.
A tableau model checker is given and an upper EXPTIME bound is
derived from it. For a fixed alternation depth FLC’s model checking
problem turns out to be PSPACE-complete.

1 Introduction

Modal and temporal logics are well established research areas in computer sci-
ence, artificial intelligence, philosophy, etc. [2, 4, 10]. An important temporal
logic is Kozen’s modal µ-calculus Lµ [7] because it contains almost all other
propositional temporal logics. In fact, it is equi-expressive to the bisimulation in-
variant fragment of monadic second-order logic over transition graphs [6]. There-
fore, properties expressed by Lµ formulas are essentially “regular”.

In [9], Müller-Olm introduced FLC, fixed point logic with chop, that extendsLµ with sequential composition. He showed that the expressive power of FLC is
strictly greater than Lµ because FLC can define non-regular properties. Whereas
the semantics of a modal µ-calculus formula is a subset of states of a transition
system, the semantics of an FLC formula is a predicate transformer, a function
from sets of states to sets of states. This makes it easy to introduce a composition
operator in the logic.

Müller-Olm proved that the satisfiability problem for FLC is undecidable
because of its rich expressiveness. However, he notes that model checking finite
transition systems is decidable. There are only finitely many (monotonic) func-
tions from subsets to subsets of a finite set. Using the Tarski-Knaster Theorem
[11], he shows that model checking can be done in the function lattice using fixed
point approximants.

In this paper we examine FLC in more detail. We show that FLC retains
some features of Lµ such as the tree model property. However, most of the paper
is devoted to FLC model checking over finite transition systems. We provide a
tableau based model checker that avoids explicit calculation of functions and
approximants. We also give lower, PSPACE, and upper, EXPTIME, complexity

2 Martin Lange, Colin Stirling

bounds on model checking. The upper bound is derived directly from the tableau
model checker. An interesting open question is whether there is a suitable notion
of automaton that captures FLC model checking.

In Section 2 we recall the syntax and semantics of FLC, example formulas
that express non-regular properties and a proof of the tree model property. The
tableau based model checker is defined and shown to be sound and complete in
Section 3. In Section 4 we examine the complexity of model checking FLC in
the general case and for fixed alternation depth, and we give upper and lower
bounds. The paper concludes with some remarks on possible further research.

2 Preliminaries

Let P = {tt, ff, q, q, . . .} be a set of propositional constants that is closed under
complementation, V = {Z, Y, . . .} a set of propositional variables, and A =
{a, b, . . .} a set of action names. A labelled transition system is a graph T =

(S, { a
→ | a ∈ A}, L) where S is a set of states,

a
→ for each a ∈ A is a binary relation

on states and L : S → 2P labels the states such that, for all s ∈ S : q ∈ L(s)

iff q 6∈ L(s), tt ∈ L(s), and ff 6∈ L(s). We will use infix notation s
a
→ t for

transition relations.
Formulas of FLC are given by

ϕ ::= q | Z | τ | 〈a〉 | [a] | ϕ ∨ ϕ | ϕ ∧ ϕ | µZ.ϕ | νZ.ϕ | ϕ;ϕ

where q ∈ P, Z ∈ V, and a ∈ A.1 We will write σ for µ or ν. To save brackets
we introduce the convention that ; binds stronger than ∧ which binds stronger
than ∨. Formulas are assumed to be well named in the sense that each binder
variable is distinct. Our main interest is with closed formulas, that do not have
free variables. In which case there is a function fp : V → FLC that maps each
variable to its defining fixed point formula (that may contain free variables).

The set Sub(ϕ) of subformulas of ϕ is defined as usual, with Sub(σZ.ψ) =
{σZ.ψ} ∪ Sub(ψ). We say that Y depends on Z in ϕ, written Z ≺ϕ Y , if Y
occurs free in fp(Z). We write Z <ϕ Y iff (Z, Y) is in the transitive closure of
≺ϕ. The alternation depth of ϕ, ad(ϕ), is the maximum number of variables of
ϕ in a chain Z0 <ϕ Z1 <ϕ . . . <ϕ Zk where Zi−1 and Zi are of different fixed
point types for 0 < i ≤ k. FLCk = {ϕ ∈ FLC | ad(ϕ) ≤ k}.

An environment ρ : V→ (2S → 2S) maps variables to monotone functions of
sets to sets. ρ[Z 7→ f] is the function that maps Z to f and agrees with ρ on all

other arguments. The semantics [[·]]Tρ : 2S → 2S of an FLC formula, relative to T
and ρ, is a monotone function on subsets of states with respect to the inclusion
ordering on 2S. These functions together with the partial order given by

f ⊑ g iff ∀X ⊆ S : f(X) ⊆ g(X)

form a complete lattice with joins ⊔ and meets ⊓. By the Tarski-Knaster The-
orem [11] the least and greatest fixed points of functionals F : (2S → 2S) →
(2S → 2S) exist. They are used to interpret fixed point formulas of FLC.
1 In [9], τ is called term.

Model Checking Fixed Point Logic with Chop 3

To simplify the notation we assume a transition system T to be fixed for the
remainder of the paper, and drop it from the semantic brackets.

[[q]]ρ = λX.{s ∈ S | q ∈ L(s)}
[[Z]]ρ = ρ(Z)

[[τ]]ρ = λX.X

[[ϕ ∨ ψ]]ρ = λX.[[ϕ]]ρ(X) ∪ [[ψ]]ρ(X)

[[ϕ ∧ ψ]]ρ = λX.[[ϕ]]ρ(X) ∩ [[ψ]]ρ(X)

[[〈a〉]]ρ = λX.{s ∈ S | ∃t ∈ X, s.t. s
a
→ t}

[[[a]]]ρ = λX.{s ∈ S | ∀t ∈ S, s a
→ t⇒ t ∈ X}

[[µZ.ϕ]]ρ =
d
{f : 2S → 2S | f monotone, [[ϕ]]ρ[Z 7→f] ⊑ f}

[[νZ.ϕ]]ρ =
⊔

{f : 2S → 2S | f monotone, f ⊑ [[ϕ]]ρ[Z 7→f]}

[[ϕ;ψ]]ρ = [[ϕ]]ρ ◦ [[ψ]]ρ

A state s satisfies a formula ϕ, written s |=ρ ϕ, iff s ∈ [[ϕ]]ρ(S) for some ρ. If ϕ
is a closed formula then ρ can be omitted and we write s |= ϕ.

Two formulas ϕ and ψ are equivalent, written ϕ ≡ ψ, iff their semantics
are the same, i.e. for every T and every ρ: [[ϕ]]

T
ρ = [[ψ]]

T
ρ . This equivalence is a

congruence and thus allows substituitivity. It is easy to see that there is no FLC
formula ϕ that does not contain τ as a subformula, s.t. ϕ ≡ τ .

For model checking purposes it is useful to consider a weaker equivalence. ϕ
and ψ are called weakly equivalent, written ϕ ≈ ψ, iff they are satisfied by the
same states, i.e. s |=ρ ϕ iff s |=ρ ψ for any state s of any transition system T
and every ρ. Note that weak equivalence is not a congruence.

Lemma 1. (Equivalences)
a) If ϕ ≡ ψ then ϕ ≈ ψ.
b) If ϕ ≈ ψ then ϕ; tt ≡ ψ; tt.
c) ϕ ≈ ϕ; tt.
d) (ϕ ∨ ψ);χ ≡ ϕ;χ ∨ ψ;χ and (ϕ ∧ ψ);χ ≡ ϕ;χ ∧ ψ;χ
e) τ ;ϕ ≡ ϕ ≡ ϕ; τ .
f) q;ϕ ≡ q for q ∈ P.

Proof. a) If ϕ ≡ ψ then [[ϕ]]ρ(S) = [[ψ]]ρ(S) for every set of states S and every ρ,
and therefore ϕ ≈ ψ. b) [[ϕ; tt]]ρ = [[ϕ]]ρ ◦ [[tt]]ρ = λX.[[ϕ]]ρ(S) for any transition
system with state set S and any ρ. But ϕ ≈ ψ implies [[ϕ]]ρ(S) = [[ψ]]ρ(S) and
therefore ϕ; tt ≡ ψ; tt. c) Trivial. d) [[(ϕ ∨ ψ);χ]]ρ = (λX.[[ϕ]]ρ(X) ∪ [[ψ]]ρ(X)) ◦
[[χ]]ρ = λX.[[ϕ]]ρ([[χ]]ρ(X)) ∪ [[ψ]]ρ([[χ]]ρ(X)) = [[ϕ;χ ∨ ψ;χ]]ρ and similar for ∧.
e)–f) Trivial. ⊓⊔

In [9] it is shown how to embed Lµ into FLC by using sequential composi-
tion: for instance, 〈a〉ϕ becomes 〈a〉;ϕ. Therefore, we will sometimes omit the
semicolon to maintain a strong resemblance to the syntax of Lµ. For example,
〈a〉Z〈a〉 abbreviates 〈a〉;Z; 〈a〉.

In order to prove correctness of the tableau construction in Section 3 we
introduce approximants of fixed point formulas. Let fp(Z) = µZ.ϕ for some ϕ

4 Martin Lange, Colin Stirling

and let α, λ ∈ Ord, the ordinals, where λ is a limit ordinal. Then Z0 := ff,
Zα+1 = ϕ[Zα/Z], Zλ =

∨

α<λ Z
α. If fp(Z) = νZ.ϕ then Z0 := tt, Zα+1 =

ϕ[Zα/Z], Zλ =
∧

α<λ Z
α. Note that µZ.ϕ ≡

∨

α∈Ord Z
α and νZ.ϕ ≡

∧

α∈Ord Z
α.

If only finite transition systems are considered Ord can be replaced by N.
First we recall some properties of FLC shown by Müller-Olm.

Theorem 1. [9]
a) Satisfiability for FLC is undecidable.
b) FLC does not have the finite model property.

The proof of part a) uses a reduction from the simulation equivalence problem
for Basic Process Algebra which is undecidable [5]. For every BPA process P
one can construct two characteristic FLC formulas φP− that is satisfied by all
processes that simulate P , and φP+ that is satisfied by all processes that are
simulated by P . Hence the formula φP− ∧ φP+ ∧ φQ− ∧ φQ+ is satisfiable iff P
is simulation equivalent to Q. Part b) also follows from the existence of such
characteristic formulas: however, also see example 2 later.

Example 1. Let A = {a, b} and ϕ = νY.[b]ff ∧ [a](νZ.[b] ∧ [a](Z;Z)); (([a]ff ∧
[b]ff) ∨ Y). Formula ϕ expresses “the number of bs never exceeds the number
of as” which is non-regular and, therefore, is not expressible in Lµ. This is an
interesting property of protocols when a and b are the actions send and receive.

The subformula ψ = νZ.[b] ∧ [a](Z;Z) expresses “there can be at most one
b more than there are as”. This can be understood best by unfolding the fixed
point formula and thus obtaining sequences of modalities and variables. It is easy
to see that replacing a Z with a [b] reduces the number of Zs whereas replacing
it with the other conjunct adds a new Z to the sequence.

Then, [b]ff ∧ [a]ψ postulates that at the beginning no b is possible and for
every n as there can be at most n bs. Finally, the Y in ϕ allows such sequences
to be composed or finished in a deadlock state.

We now establish that FLC has the tree model property, by showing that
each closed formula defines a bisimulation invariant property2.

Theorem 2. (Bisimulation invariance) Let T = (S, { a
→ | a ∈ A}, L) and

s, t ∈ S. If s and t are bisimilar, s ∼ t, then for all closed ϕ ∈ FLC: s |= ϕ iff
t |= ϕ.

Proof. Let ϕ ∈ FLC be closed. ϕ is equivalent to an infinitary formula of
FLC without fixed point operators and variables, using µZ.ϕ ≡

∨

i∈NZi and
νZ.ϕ ≡

∧

i∈N Zi since T is assumed to be finite. Lemma 1 c) says that the re-
sulting ϕ′ is weakly equivalent to ϕ′; tt. Using parts d)–f) of Lemma 1 one can
transform ϕ′; tt into a formula that does not contain τ , and which is a (possibly
infinitary) boolean combination of sequences of the form q or 〈a〉;ψ or [a];ψ
where ψ again is of the described form. Every α, obtained in such a way, is

2 The definition of bisimulation here includes the condition that states also preserve
atomic properties in P.

Model Checking Fixed Point Logic with Chop 5

equivalent to an infinitary modal formula q or 〈a〉ψ or [a]ψ, where equivalence
means being satisfied by the same states. But a formula of infinitary modal logic
cannot distinguish between bisimilar states and weak equivalence preserves this
property. ⊓⊔

An immediate corollary of Theorem 2 is the tree model property.

Corollary 1. FLC has the tree model property.

Example 2. Let A = {a, b}. An FLC formula that is satisfiable but does not have
any finite model is ϕ = (νZ.〈a〉(Z ∧ τ); ([b] ∧ 〈b〉)); ([a]ff ∧ [b]ff). The formula
postulates the existence of an infinite a-path, s.t. after every prefix of n as
exactly n bs are possible. The body of the fixed point formula can be rewritten
as 〈a〉(([b]∧〈b〉)∧Z; ([b]∧〈b〉)). This expresses that there must be a path labelled
ab and all such bs lead to states that have similar properties. Moreover, after the
a there is another path of the same style with one more b at its end.

Clearly, ϕ has an infinite model. Suppose ϕ has a finite model, too. This could
be regarded as a finite automaton A with final states being the deadlock states.
But A would accept the context-free and non-regular language L = {anbn | n ∈N}.

The proof of Theorem 2 is similar to showing bisimulation invariance of Lµ

formulas. If the transition system is image-finite, i.e. |{t ∈ S | s a
→ t}| < ∞

for every s ∈ S, a ∈ A, the converse implication in Theorem 2 holds, too. It is
well-known that, if the transition system is finite and fixed, Lµ formulas become

equivalent to formulas of finitary modal logic. In particular, µZ.ϕ ≡
∨

i≤n Z
i

and νZ.ϕ ≡
∧

i≤n Z
i where n = |S|. In the case of an FLC formula, |S| ·2|S| is an

upper bound for n according to Tarski-Knaster since this is the maximal length
of a chain f0 ⊑ f1 ⊑ . . . ⊑ fn. From Theorem 2 follows that, in fact, there is
a linear upper bound for the number of approximants needed to eliminate fixed
points in FLC.

Theorem 3. (Approximants) Let T = (S, { a
→ | a ∈ A}, L) be finite with

s ∈ S, S ⊆ S.
a) s ∈ [[µZ.ϕ]]

T
ρ (S) iff ∃k ≤ |S|, s.t. s ∈ [[Zk]]

T
ρ (S).

b) s ∈ [[νZ.ϕ]]
T
ρ (S) iff ∀k ≤ |S|: s ∈ [[Zk]]

T
ρ (S).

Proof. a) The “if” part is trivial. For the “only if” part consider the general
approximant characterisation of fixed point formulas. It implies the existence of

a k ∈ N that makes s ∈ [[Zk]]
T
ρ (S) true. To show that it is bounded we introduce

a new proposition qS s.t. [[qS]]
T

= λX.S. Then s ∈ [[µZ.ϕ]]
T
ρ (S) iff s |= (µZ.ϕ); qS .

According to Theorem 2 (µZ.ϕ); qS can be translated into a sequence {αi | i ∈ N}
of formulas of infinitary modal logic. We show by induction on the fixed point
depth of ϕ that finitary modal logic suffices.

Suppose ϕ does not contain any σY.ψ. Clearly, in this case every αi is a
formula of finitary modal logic. Consider now the function f : αi 7→ αi+1 for

6 Martin Lange, Colin Stirling

every i ∈ N. f is monotone since αi+1 arises from αi by variable substitution
and transformations that preserve equivalence. This means that s |= (µZ.ϕ); qS

implies the existence of a k ≤ |S| s.t. s |= αk. But then s ∈ [[Zk]]
T
ρ (S).

Suppose now that ϕ has fixed point depth n + 1 and every σY.ψ ∈ Sub(ϕ)
has fixed point depth at most n and can therefore be translated into a formula

of finitary modal logic. Replacing every such µY.ψ in ϕ by
∨|S|

k=0 Z
k, and every

νY.ψ with
∧|S|

k=0 Z
k, yields a formula ϕ′ of fixed point depth 0 that is equivalent

to ϕ. The latter substitution uses part b) of the Lemma on a smaller formula.
The same argument as above holds now for translating µZ.ϕ′ into a sequence
{αi | i ≤ |S|}.

b) Here, the “only if” part is trivial. The “if” part is dual to the “only if”
part of a). ⊓⊔

Theorem 4. FLC is exponentially more succinct than Lµ.

Proof. Let A = {a0, b0, . . . , an, bn}. Consider the binary, finite tree of depth n+1
whose nodes at level i have two transitions labelled ai and bi. It is easy to see
that the minimal characteristic Lµ formula χn for this tree is exponential in n.
Consider now the infinite tree that arises from the finite one by pasting itself
iteratively to its leaves. Again, every Lµ formula describing this tree must be
exponentially long in n. However, νZ.(〈a0〉 ∧ 〈b0〉); . . . ; (〈an〉 ∧ 〈bn〉);Z describes
this tree too and has linear length in n. ⊓⊔

For each a ∈ A one can regard converse modalities 〈a−〉, [a−]. Their semantics
is

[[〈a−〉]] = λX.{s ∈ S | ∃t ∈ X, s.t. t
a
→ s}

[[[a−]]] = λX.{s ∈ S | ∀t ∈ S, t a
→ s⇒ t ∈ X}

The tableaux of section 3 can easily be extended to handle these formulas as
well. Indeed, all the complexity results of section 4 also hold for the extended
logic.

Example 3. This extension of FLC is capable of defining uniform inevitability, ψ
holds in all paths of a transition system at the same moment. Let A = {a} and
ϕ = µY.〈a〉Y ∨ (ψ ∧ (νZ.[a−]; (Z ∧ τ); [a]);ψ). ϕ is an instance of an eventually
formula of Lµ, i.e. µY.〈a〉Y ∨ψ′ says that there is a path on which ψ′ eventually
holds. (νZ.[a−]; (Z ∧ τ); [a]);ψ says that at every state that can be reached by
a sequence of n as backwards and then n as forwards ψ holds. Composing these
two formulas achieves uniform inevitability. In [3] it is shown that ϕ has no
equivalent in Lµ.

3 A tableau based model checker for FLC

For the remainder of the paper we restrict ourselves to finite transition systems
only. In this section we present a tableau based model checker for FLC that is

Model Checking Fixed Point Logic with Chop 7

(∨)
(T, S) ⊢ ϕ0 ∨ ϕ1

(T0, S) ⊢ ϕ0 (T1, S) ⊢ ϕ1

T = T0 ∪ T1

(∧)
(T, S) ⊢ ϕ0 ∧ ϕ1

(T0, S) ⊢ ϕ0 (T1, S) ⊢ ϕ1

T = T0 ∩ T1

(;)
(T, S) ⊢ ϕ0; ϕ1

(T, T ′) ⊢ ϕ0 (T ′, S) ⊢ ϕ1

FP
(T, S) ⊢ σZ.ϕ

(T, S) ⊢ Z
VAR

(T, S) ⊢ Z

(T, S) ⊢ ϕ
if fp(Z) = σZ.ϕ

Fig. 1. The tableau rules for FLC.

sound and complete and that avoids explicit calculation of functions and approx-
imants. The extra expressiveness of FLC and its succinctness suggest that the
complexity of model checking FLC is higher than Lµ: exact bounds are presented
in the next section.

Let T = (S, { a
→ | a ∈ A}, L) and assume that T, S ⊆ S. A tableau for T, S and

ϕ ∈ FLC is a finite tree whose nodes are labelled (T ′, S′) ⊢ ψ, where T ′, S′ ⊆ S,
and ψ ∈ Sub(ϕ). The intended meaning of such a configuration is T ′ ⊆ [[ψ]](S′),
i.e. all the states in T ′ satisfy ψ relative to S′.

The tableau rules for the boolean connectives and the sequential composition
operator are justified by the semantics of FLC. Fixed point formulas are replaced
by their corresponding variables. A variable itself is replaced by the body of its
fixed point definition. The rules are shown in figure 1.

Let C0 = (T0, S0) ⊢ ϕ. A branch C0, C1, . . . , Cn of a tableau for T0, S0 and
ϕ is successful iff

– Cn = (∅, S) ⊢ ψ for some S and ψ, or
– Cn = (T, S) ⊢ ψ, ψ ∈ {τ, q, 〈a〉, [a]}, and T ⊆ [[ψ]](S), or
– Cn = (Tn, Sn) ⊢ Z with fp(Z) = νZ.ϕ for some ϕ, and
• ∃i < n, s.t. Ci = (Ti, Si) ⊢ Z, and
• Tn ⊆ Ti and Sn ⊇ Si, and
• �j, s.t. i < j < n and Cj = (T, S) ⊢ Y and Z <ϕ Y .

It is unsuccessful iff

– Cn = (T, S) ⊢ ψ, ψ ∈ {τ, q, 〈a〉, [a]}, and T 6⊆ [[ψ]](S), or
– Cn = (Tn, Sn) ⊢ Z with fp(Z) = µZ.ϕ for some ϕ, and
• ∃i < n, s.t. Ci = (Ti, Si) ⊢ Z, and
• Tn ⊇ Ti and Sn ⊆ Si, and
• �j, s.t. i < j < n and Cj = (T, S) ⊢ Y and Z <ϕ Y .

In all cases, Cn is called a leaf. A tableau is successful if all its branches are
successful.

8 Martin Lange, Colin Stirling

({s}, S) ⊢ νZ.µY.〈a〉Z ∧ ([b]; (Y ∨ τ); 〈b〉)

({s}, S) ⊢ Z

({s}, S) ⊢ µY.〈a〉Z ∧ ([b]; (Y ∨ τ); 〈b〉)

({s}, S) ⊢ Y

({s}, S) ⊢ 〈a〉Z ∧ ([b]; (Y ∨ τ); 〈b〉)

({s}, S) ⊢ 〈a〉Z (S, S) ⊢ [b]; (Y ∨ τ); 〈b〉

({s}, {s}) ⊢ 〈a〉 ({s}, S) ⊢ Z (S, S) ⊢ [b] (S, S) ⊢ Y ∨ τ (S, S) ⊢ 〈b〉

(∅, S) ⊢ Y (S, S) ⊢ τ

Fig. 2. The tableau for example 4.

Example 4. Let ϕ = νZ.µY.〈a〉Z ∧ ([b]; (Y ∨ τ); 〈b〉) and T be the transition

system consisting of states S = {s, t} and transitions s
a
→ s, s

b
→ t, and t

b
→ s.

Φ says “there exists an infinite a-path from which every sequence of n b-actions
can be repeated by another n b-actions.”. The tableau of figure 2 shows that
state s satisfies ϕ. To save space, rule (;) has been extended to

(T, S) ⊢ ϕ0; . . . ;ϕk

(T, T0) ⊢ ϕ0 (T0, T1) ⊢ ϕ1 . . . (Tk−1, S) ⊢ ϕk

3.1 Correctness

Theorem 5. (Soundness) Let T = (S, { a
→ | a ∈ A}, L) be a finite transition

system, T0, S0 ⊆ S, and ϕ ∈ FLC. If there is a successful tableau with root
(T0, S0) ⊢ ϕ, then T0 ⊆ [[ϕ]](S0).

Proof. Let C = (T, S) ⊢ ψ be a configuration with a t ∈ T s.t. t 6∈ [[ψ]](S). C
will be called false in this case. The tableau rules are backwards sound, i.e. if
all the successors of a configuration C are not false then C is not false. This
holds for rule VAR because a fixed point is equivalent to its unfolding, and for
rule FP when variables are interpreted as approximants. We show that rule (∨)
is backwards sound. Suppose there is a t ∈ T , s.t. t 6∈ [[ϕ0 ∨ ϕ1]](S). Then t ∈ Ti

for some i ∈ {0, 1} because T = T0 ∪ T1. But [[ϕ0 ∨ ϕ1]](S) = [[ϕ0]](S) ∪ [[ϕ1]](S)
and therefore t 6∈ [[ϕi]](S) which means that (Ti, S) ⊢ ϕi is false. Backwards
soundness of rules (∧) and (;) is established similarly.

Suppose now that the tableau for C0 = (T0, S0) ⊢ ϕ is successful but T0 6⊆
[[ϕ]](S0), i.e. C0 is false. From backwards soundness follows that at least one
leaf (T, S) ⊢ ψ of the tableau must be false. ψ ∈ {τ, q, 〈a〉, [a]} is impossible
because the branch to this leaf would be unsuccessful and, hence, the tableau
itself cannot be successful.

Model Checking Fixed Point Logic with Chop 9

Suppose therefore it is a configuration C = (T, S) ⊢ Z0 with Z0 denoting a
greatest fixed point. Then Z0 is interpreted as the least approximant Zk0

0 , s.t.
T 6⊆ [[Zk0

0]](S) but T ⊆ [[Zk0−1
0]](S). Note that k0 > 0 because it is impossible to

have a false configuration (T, S) ⊢ Z where Z is interpreted as Z0. Starting from
C one can continue to build a tableau and using backwards soundness again,
falsity of a configuration can be pushed through this tableau towards a leaf
C′ = (T ′, S′) ⊢ Z1. Note that the false successor of a configuration may depend
on the index of an approximant and therefore Z1 need not equal Z0. However,
Z1 is interpreted as the least approximant Zk1

1 in the same way as above and the
argument can be iterated. Since ϕ contains only a finite number of variables and
the transition system at hand is finite too, the tableau must contain a branch
C0, . . . , Cj , . . . , C

′
j s.t. Cj = (T, S) ⊢ Zj , C

′
j = (T ′, S′) ⊢ Zj, T

′ ⊆ T , S′ ⊇ S and
C′

j is false. But if there is a t s.t. t 6∈ T then t 6∈ T ′, and [[Zj]](S) ⊆ [[Zj]](S
′).

By monotonicity Cj must be false too. Note that in Cj Zj was interpreted as

the least approximant Z
kj

j in the described sense. Since between Cj and C′
j rule

VAR must have been applied at least once and no greater variable occurs, C′
j

contradicts the assumption that kj was the least approximant index for which
Cj is false. ⊓⊔

Theorem 6. (Completeness) Let T = (S, { a
→ | a ∈ A}, L) be a finite transi-

tion system, T0, S0 ⊆ S, and ϕ ∈ FLC. If T0 ⊆ [[ϕ]](S0) then there is a successful
tableau rooted (T0, S0) ⊢ ϕ.

Proof. Let C = (T, S) ⊢ ψ be a configuration s.t. T ⊆ [[ψ]](S). In this case C will
be called true. Note that the tableau rules can always be applied so that they
preserve truth: if the antecedent of a rule is true then so are the consequents.
This remains true when variables are interpreted by their approximants. The
proof proceeds by constructing a tableau such that each node is true, and then
stopping a branch whenever there is a leaf. However, if the application of the
rule is FP and fp(Z) = µZ.ψ then the formula in the consequent is interpreted
as the least approximant Zk s.t. T ⊆ [[Zk]](S) but T 6⊆ [[Zk−1]](S). Note that
k > 0 since T ⊆ [[Z0]](S) only if T = ∅ and so a leaf is already reached.

Continuing from this configuration (T, S) ⊢ Z a tableau is built preserving
truth. Suppose this tableau is unsuccessful, i.e. it has an unsuccessful branch.
This branch cannot end on a configuration (T ′, S′) ⊢ ψ where ψ is atomic because
this configuration would be false. As in the proof of Theorem 5 a configuration
(T ′, S′) ⊢ Z with T ′ ⊆ T and S′ ⊇ S must eventually be reached. But this
contradicts the assumption that Zk is the least approximant. We conclude that
there is no least approximant and therefore that T 6⊆ [[µZ.ψ]](S) which means
the configuration (T, S) ⊢ µZ.ψ could not have been true. ⊓⊔

Corollary 2. If there is a successful tableau for (T, S) ⊢ ϕ then there are suc-
cessful tableaux (T ′, S′) ⊢ ϕ for every T ′ ⊆ T and every S′ ⊇ S.

10 Martin Lange, Colin Stirling

4 Complexity of model checking

In this section we provide upper and lower bounds on the complexity of model
checking FLC over finite transition systems.

Theorem 7. (General upper bound) FLC model checking is in EXPTIME.

Proof. We describe an alternating algorithm that, given a finite transition sys-
tem T = (S, { a

→ | a ∈ A}, L), a set S0 ⊆ S, and an FLC formula ϕ, finds
a successful tableau for (S0, S) ⊢ ϕ if one exists. Alternating algorithms allow
both nondeterministic and co-nondeterministic choices. They are taken by play-
ers ∃ and ∀. ∃ wants to show that a successful tableau exists. ∀ wants to show
the opposite. Therefore he will choose which branch of the tableau is inspected,
whereas ∃ is in charge of choosing the correct elements of the next configuration
on this branch. She wins the play if the branch is successful. ∀ wins if they ex-
hibit an unsuccessful branch of the tableau. It is easy to see that ∃ has a winning
strategy iff there is a successful tableau for (S0, S) ⊢ ϕ.

During the play each player is allowed to store one configuration Ci =
(T, S) ⊢ Z. If the play visits another configuration C′ = (T ′, S′) ⊢ Y with
Z <ϕ Y then Ci will be deleted or overwritten by C′. Note that only an ac-
tual configuration can be stored. If the actual configuration is (T, S) ⊢ ψ and
ψ = ψ0∨ψ1 or ψ = ψ0∧ψ1 player ∃ chooses two sets T0 and T1 s.t. T = T0∪T1,
resp. T = T0∩T1, and player ∀ chooses an i ∈ {0, 1}. The next configuration will
be (Ti, S) ⊢ ψi. If ψ = ψ0;ψ1 player ∃ chooses a T ′ ⊆ S. Again, ∀ determines
which branch of rule (;) to follow. The rules for fixed points and variables are
deterministic. The stored configurations are used to determine whether a branch
is successful or unsuccessful.

A play can be implemented using polynomial space since three configurations
only need to be kept in memory, namely the actual one and a Ci for each player
in the sense of the condition for success and unsuccess. Their sizes are polynomial
in both the size of the transition system and the size of the formula. Therefore,
FLC model checking can be done in alternating PSPACE. This is the same as
EXPTIME [1]. ⊓⊔

Theorem 8. (Upper bounds) FLCk model checking is in PSPACE for every
k ∈ N.

Proof. Let T = (S, { a
→ | a ∈ A}, L) be finite and ϕ ∈ FLC. Using Theorems 2

and 3 one can translate a fixed point formula σZ.ϕ into a series {αi | 0 ≤ i ≤ |S|}
of modal formulas, where αi is allowed to contain the subformula Zi−1. Every
such αi can be stored as a directed acyclic graph with atomic formulas as nodes
and the connectives ∨, ∧ and ; as labelled edges. In fact, the entire sequence can
be represented as one directed acyclic graph with a counter for the approximant.
Evaluating a formula in a state corresponds to tracing the paths of this graph.
This avoids a possible exponential blow-up in the size of αi which could occur if
the technique described in the proofs of Theorems 2 and 3 was explicitly used.

Model Checking Fixed Point Logic with Chop 11

To establish whether for some s ∈ S, s |= σZ.ϕ holds, it is enough to check
s |= αi for 0 ≤ i ≤ |S|. This might involve checking whether t |= Zi−1 for some
t ∈ S. It is possible to store this information in a table of size |S| · O(ϕ)ad(ϕ),
which is polynomial in the size of the input if the alternation depth of ϕ is fixed.

⊓⊔

Theorem 9. (Lower bound) FLC model checking is PSPACE-hard.

Proof. It is known that QBF (quantified boolean logic) is PSPACE-hard [8].
We show a reduction from QBF to the model checking problem for FLC. Let
Φ = Q1x1 . . . Qkxk(C1 ∧ . . . ∧ Cn) with each Ci = li,1 ∨ li,2 ∨ li,3 and each li,j ∈
{xh, xh | 1 ≤ h ≤ k}. We construct a finite transition system T and a formula ϕ,
s.t. T |= ϕ iff Φ is valid. The actions of T will be A = {c, 0, 1, x1, . . . , xk, x1, . . . ,
xk}.

For each clause Ci construct a tree of depth k + 1 in the following way.
Beginning with j = k introduce a node that has two transitions labelled xj and
xj to two different subtrees if xj appears in clause Ci, and to the same subtree if
it does not. Continue with j − 1 at the successor(s) until j = 1. Every path π in
this tree induces a valuation function ηπ : {x1, . . . , xk} → {0, 1} by ηπ(xi) = 1 if
xi occurs on π. The leaves at the end of each path π are now extended with one
further transition which is labelled 1, resp. 0, if ηπ makes the clause evaluate to
true, resp. false.

The second part of the transition system consists of the states {0, 1, 1, . . . , k, k}.

The transitions are 0
x1→ 1, 0

x1→ 1, z
xi→ i, z

xi→ i for z ∈ {i−1, i− 1} and 2 ≤ i ≤ k.
Finally, there are transitions labelled c from nodes k, k to every root of the

trees representing the clauses. As an example the corresponding transition sys-
tem for Φ = ∃x1∀x2∀x3∃x4(x1 ∨ x2 ∨ x4) ∧ (x2 ∨ x3 ∨ x4) is given in figure 3.

The formula ϕ is constructed in the following way.

ψi =

{

〈xi〉Z〈xi〉 ∨ 〈xi〉Z〈xi〉 if Qi = ∃
〈xi〉Z〈xi〉 ∧ 〈xi〉Z〈xi〉 if Qi = ∀

for 1 ≤ i < k

ψk =

{

〈xk〉[c]〈xk〉 ∨ 〈xk〉[c]〈xk〉 if Qi = ∃
〈xk〉[c]〈xk〉 ∧ 〈xk〉[c]〈xk〉 if Qi = ∀

ϕ = (µZ.
k
∨

i=1

ψi); 〈1〉

Intuitively for a Φ that has existential quantification only ϕ says: There exists a
path labelled with a w ∈ A∗ s.t. after every c action there is a path labelled with
←−w and after that a 1 action is possible. If Φ contains universal quantification the
path becomes a tree.

The resulting transition system has O(|Φ|2) transitions, and |ϕ| = O(|Φ|).
Therefore the reduction can be computed in polynomial time. Since only counters
for the clauses and variables are needed it can even be computed in logarithmic
space. It remains to show that the reduction is correct.

12 Martin Lange, Colin Stirling

x1 x1
x1 x1x1 x1x1 x1

x1 x1x1 x1x1 x1

4

3

2

1

0

4

3

2

1

c c

c c

x2

x3

x3

x4

x3

x2x2

x4

x4

x1x1

x2

x3

x4

x4 x4

x3 x3
x3 x3x3

x3 x3x3

x4 x4

x2x2x2x2x2x2x2 x2 x2 x2 x2 x2

x1 x1

x1x1x1x1x1x1x1x1

1 1 1 11 110 1 1 1 1 1 1 10

Fig. 3. The transition system for Φ.

Suppose T, 0 |= ϕ. Since T is acyclic and an action 1 only occurs at the end
of a path through T this is only possible if 0 |= Zk; 〈1〉. Then Zk; 〈1〉 describes
a tree through T starting with node 0 s.t. every path of the tree ends on an
action 1. Furthermore, every universally quantified variable xi corresponds to

a genuine branching •
xi→ • and •

xi→ • whereas every existentially quantified
variable corresponds to either of these transitions. It is now easy to see that this
tree is a witness for the validity of Φ.

Suppose now that Φ is valid. Let Φ = Q1x1Φ
′. Case Q1 = ∃. Φ is valid if

there exists v ∈ {0, 1} s.t. Φ′[v/x1] is valid. By hypothesis there exists a tree
through T, starting with node 1 if v = 1 or with node 1 if v = 0, that witnesses
the validity of Φ′[v/x1]. Extend this tree at its root with a transition •

x1→ • if

v = 1, and •
x1→ • if v = 0. In the case of Q1 = ∀ there are two trees through T

that witness the validity of Φ′[0/x1] and Φ′[1/x1]. It remains to show that this
tree witnesses that T, 0 |= ϕ.

Again, let Φ = ∃x1Φ
′ and Φ′[v/x1] be valid, and assume w.l.o.g. that v = 1.

Then 0 |= ϕ iff 1 |= (µZ.
k
∨

i=2

ψi); 〈x1〉; 〈1〉. Suppose Φ = ∀x1Φ
′. Then 0 |= ϕ iff

1 |= (µZ.
k
∨

i=2

ψi); 〈x1〉; 〈1〉 and 1 |= (µZ.
k
∨

i=2

ψi); 〈x1〉; 〈1〉. The fixed point formula

Model Checking Fixed Point Logic with Chop 13

can be unfolded further, ruling out those disjuncts that can obviously not be
satisfied by the current state. Finally, after (k − 1) unfoldings one obtains a
formula that implies Zk; 〈1〉 by propositional reasoning already. ⊓⊔

Müller-Olm has found a simpler proof of PSPACE-hardness but not pub-
lished it. He uses a reduction from the universal acceptance problem for non-
deterministic finite automata. Given an NFA A over the alphabet Σ, does A
accept Σ∗? For the reduction, A is regarded as a transition system that satisfies
(νZ.τ ∧

∧

a∈Σ Z; 〈a〉); qfin iff A accepts Σ∗ where qfin is true in all final states ofA.
This proves the even stronger result that model checking FLC is PSPACE-

hard for fixed formulas already. The reduction does not work for Lµ since fixed
point formulas in Lµ are right-linear. But the automaton at hand is nondeter-
ministic and a left-linear formula is needed to allow prefixes of a word w to be
accepted along paths that are not prefixes of the one accepting w.

Corollary 3. FLCk model checking is PSPACE-complete for every k ≥ 0.

5 Conclusion

FLC is a very interesting general temporal logic. Its expressive power goes be-
yond regular properties: indeed it can express both context-free and context-
sensitive features (such as, “every path has the label sequence anbncn”, see
[9]). Although satisfiability is undecidable, model checking finite transition sys-
tems is decidable. In the paper we have provided a reasonably simple tableau
based model checker that does not explicitly calculate functions and approxi-
mants. This model checker yields an EXPTIME complexity upper bound. We
also showed a PSPACE lower bound and PSPACE-completeness when alterna-
tion depth is fixed. There is a similarity with the model checking Lµ problem.
It is P-complete for fixed alternation depth and is in NP∩co-NP for the general
case.

An interesting open question is whether there is a suitable notion of (alter-
nating) automaton or graph game that is equivalent to model checking FLC.

Acknowledgments We would like to thank Markus Müller-Olm and the people
of the Concurrency Workshop at BRICS for helpful comments on this topic.

References

[1] A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer. Alternation. Journal of the
ACM, 28(1):114–133, January 1981.

[2] E. A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor, Hand-
book of Theoretical Computer Science, volume B: Formal Models and Semantics,
chapter 14, pages 996–1072. Elsevier Science Publishers B.V.: Amsterdam, The
Netherlands, New York, N.Y., 1990.

14 Martin Lange, Colin Stirling

[3] E. Allen Emerson. Uniform inevitability is tree automaton ineffable. Information
Processing Letters, 24(2):77–79, January 1987.

[4] R. Goré. Tableau methods for modal and temporal logics. In M. D’Agostino,
D. Gabbay, R. Hähnle, and J. Posegga, editors, Handbook of Tableau Methods.
Kluwer, Dordrecht, 1999.

[5] J. F. Groote and H. Hüttel. Undecidable equivalences for basic process algebra.
Information and Computation, 115(2):354–371, December 1994.

[6] D. Janin and I. Walukiewicz. On the expressive completeness of the propositional
µ-calculus with respect to monadic second order logic. In U. Montanari and
V. Sassone, editors, CONCUR ’96: Concurrency Theory, 7th Int. Conf., volume
1119 of LNCS, pages 263–277, Pisa, Italy, 26–29 August 1996. Springer.

[7] D. Kozen. Results on the propositional mu-calculus. TCS, 27:333–354, December
1983.

[8] A. R. Meyer and L. J. Stockmeyer. Word problems requiring exponential time. In
ACM Symp. on Theory of Computing (STOC ’73), pages 1–9, New York, April
1973. ACM Press.

[9] M. Müller-Olm. A modal fixpoint logic with chop. In C. Meinel and S. Tison,
editors, Proc. 16th Annual Symp. on Theoretical Aspects of Computer Science,
STACS’99, volume 1563 of LNCS, pages 510–520, Trier, Germany, 1999. Springer.

[10] C. Stirling. Modal and temporal logics. In Handbook of Logic in Computer Science,
volume 2 (Background: Computational Structures), pages 477–563. Clarendon
Press, Oxford, 1992.

[11] A. Tarski. A lattice-theoretical fixpoint theorem and its application. Pacific
J.Math., 5:285–309, 1955.

