
A Compositional Proof System for theModal �-CalculusHenrik Reif Andersen� Colin Stirling Glynn WinskelDepartment of Computer Science Lab. for Foundations of Comp. Sc. BRICSy, Comp. Sc. Dept.Technical University of Denmark University of Edinburgh Aarhus UniversityDK-2800 Lyngby, Denmark Edinburgh EH9 3JZ, UK DK-8000 Aarhus C, DenmarkE-mail: hra@id.dtu.dk E-mail: cps@dcs.edinburgh.ac.uk E-mail: gwinskel@daimi.aau.dkAbstractWe present a proof system for determiningsatisfaction between processes in a fairly generalprocess algebra and assertions of the modal �-calculus. The proof system is compositional inthe structure of processes. It extends earlier workon compositional reasoning within the modal �-calculus and combines it with techniques fromwork on local model checking. The proof systemis sound for all processes and complete for a classof �nite-state processes.1 IntroductionThe propositional �-calculus of Kozen [11] whichwas introduced as a powerful extension of propo-sitional dynamic logic, has received growing in-terest as a logic for concurrent systems. Thisis mainly due to the expressiveness of the logic,which is known to subsume many modal and tem-poral logics, and the fact that very few opera-tors are needed in achieving this: The logic isan extension of relativized, minimal modal logicK { also known as Hennessy-Milner logic in theprocess algebra community { with minimum andmaximum �xed points. It is due to this connec-tion (explained in Stirling [18]) that we use thename the modal �-calculus.It is customary to consider Kripke models or,equivalently, labelled transition systems as mod-els for interpretation of the logic. Since labelledtransition systems are used in giving operationalsemantics of process languages, it is straightfor-ward to view the modal �-calculus as a languagefor expressing properties of processes. Despite theexpressiveness, it turns out that validity is de-cidable for the modal �-calculus, and for �nite-state processes the problem of deciding satisfac-tion between a process and an assertion is decid-able too. A range of algorithms and proof systemsfor this problem has been given in the literature,e.g. [10, 5, 12, 19, 7, 26, 9, 3, 22, 13, 8, 2]. Theymostly rely on globally or locally computing the�Supported by the Danish Technical Research Council.yBasic Research in Computer Science, Centre of theDanish National Research Foundation.

underlying transition system. However, what weseek here is a method that is compositional in thestructure of processes, and which does not rely oncomputing the underlying transition system.Compositionality is important for at least thefollowing reasons. Firstly, it makes the veri�ca-tionmodular, so that when changing part of a sys-tem only the veri�cation concerning that particu-lar part must be redone. Secondly, when designinga system or synthesising a process the composi-tionality makes it possible to have unde�ned partsof a process and still be able to reason about it.For instance, it might be possible to reveal incon-sistencies in the speci�cation or prove that withthe choices already taken in the design no com-ponent supplied for the missing parts will ever beable to make the overall system satisfy the orig-inal speci�cation. Thirdly, it makes it possibleto decompose the veri�cation task into potentiallysimpler tasks. Finally, it can make possible thereuse of veri�ed components; their previous veri-�cation can be used to show that they meet therequirements on the components of a larger sys-tem.Our method will be a compositional proof sys-tem, sound for arbitrary processes and completefor a class of �nite-state processes. Earlier work oncompositional proof systems related to the modal�-calculus includes work by Stirling [16, 15, 17],Winskel [24, 25, 27, 28], Larsen and Xinxin [14],Andersen and Winskel [4]. The proof system pre-sented here is along the lines of the work by Stir-ling and Winskel, but it extends their early workfor Hennessy-Milner logic to a proper treatment ofrecursive processes and the full modal �-calculus.It also gives new rules for parallel compositionand the other static operators. Actually, to a cer-tain extent, the system can be seen as a result ofturning the operational reductions of Larsen andXinxin and the syntactic reductions of AndersenandWinskel into proof rules. But the match is notexact; apart from the new static rules the treat-ment of �xed points is closer to the work on localmodel checking [12, 19, 7, 26].

p �! p a:p a! p p �! p0p + q �! p0 � 6= � q �! q0p+ q �! q0 � 6= � t[rec x:t=x] �! t0rec x:t �! t0 � 6= �p �! p0 q �! q0p� q ���! p0 � q0 p �! p0pf�g �! p0f�g �(�) = � p �! p0p�� �! p0 �� � 2 �Figure 1: Operational rules.2 LanguagesThe process language has a general parallel com-position operator called a product, t0 � t1, thatallows the components to proceed both syn-chronously and asynchronously. Synchronizationcan then be enforced { or disallowed { through arestriction operator and synchronized actions canbe given proper names through a relabelling oper-ator. We refrain from giving details of how thisallows a wide range of parallel operators to be en-coded (see for example [23] or [2]), and we stickto introducing the language.Let Act be a set of basic actions not containingthe idling action �. The set of composite actionsAct� is the free �;�-algebra over Act [f�g suchthat � � � = �. We let a; b; : : : range over ba-sic actions, �; �; : : : over composite actions, and �over sets of composite actions. The set of processterms are generated from the grammar:t ::= 0 j a:t j t0 + t1 j t0 � t1 j tf�g j t�� jx j rec x:tThe term constructors are called: nil, pre�x, sum,product, relabelling, restriction, process variable,and recursion. The restricting set � is any sub-set of Act� containing f�g; the relabelling func-tion � : Act� ! Act� must be strict on idlingactions, i.e. �(�) = �. The operational semanticsof this process language is given as a labelled tran-sition system T = (P ;Act�;!), where P is the setof closed process terms (the notions of open andclosed terms are as usual) and !� P � Act� � Pis given as the least relation satisfying the rules of�gure 1. We shall refer to elements of P simplyas processes.The assertions of the modal �-calculus will begiven in a negation-free version and we use theconstruction from Winskel [26] of tagging �xedpoints with sets of processes. Thus the assertionsare constructed from the following grammar:A ::= A0 _A1 j A0 ^A1 j h�iA j [�]A jX j �XfUgA j �XfUgAwhere U � P is a set of tags and X ranges overa set of assertion variables. The usual tag-free�xed points �X:A and �X:A are special cases withempty tag sets.The semantics of assertions [[A]]� � P is givenby induction on the structure of A; the map � isan environment taking all free variables of A tosubsets of P . For the �xed points we observe that

the bodies, when considered as functions ofX, aremonotonic on the complete lattice (Pow(P);�)and then appeal to the Knaster-Tarski �xed-pointtheorem [20] for supplying a minimum�xed point,denoted by �, and a maximum �xed point, de-noted by �:[[A0 _A1]]� = [[A0]]� [[[A1]]�[[A0 ^A1]]� = [[A0]]� \ [[A1]]�[[h�iA]]� = fp 2 P j 9� 2 �9p0: p �! p0 & p0 2 [[A]]�g[[[�]A]]� = fp 2 P j 8� 2 �8p0: p �! p0) p0 2 [[A]]�g[[X]]� = �(X)[[�XfUgA]]� = �V:([[A]]�[V=X] n U)[[�XfUgA]]� = �V:([[A]]�[V=X] [U)Satisfaction between a process p and a closed as-sertion A is now de�ned by, p j= A, i�, p 2 [[A]]�for all �. For future reference we de�ne:De�nition 1 Let Sp be the set of sub-term reach-able states of the process p. I.e. the least set ofstates closed under(i) p 2 Sp;(ii) if q 2 Sp and q �! q0 then q0 2 Sp;(iii) if q 2 Sp and q0 is a closed subterm of qthen q0 2 Sp:Let Rp, the reachable states of p, be the least sub-set of Sp closed under (i) and (ii). �It is not hard to prove that if all recursive termsin a process p are regular (i.e. the body is builtentirely from 0, +, a:, x, and rec) then Sp is �nite.A recursion rec x:t is said to be guarded if anyoccurrence of x in t is inside a pre�x.3 The proof systemThe proof system will be presented as \goal-oriented" proof rules de�ning inductively the rela-tion `� P �ClAssn between processes and closedassertions. The rules naturally fall into threeclasses: Rules that do not involve the process op-erators, rules for the dynamic process operators,and �nally rules for the static process operators.

t ` A0 ^A1t ` A0 t ` A1t ` A0 _A1t ` A0 t ` A0 _A1t ` A1t ` [�; �]At ` A t ` [�]At ` h�; �iAt ` A t ` h�; �iAt ` h�iAt ` �XfUgAt ` A[�XfU; tgA=X]t ` �XfU; tgA t ` �XfUgAt ` A[�XfU; tgA=X]Figure 2: Rules for the boolean connectives, idlingmodalities and �xed points.3.1 Rules for the �xed points, booleanconnectives and idling modalitiesThe �rst class of rules, given in �gure 2, only de-pend on the structure of assertions. They encom-pass rules for the boolean connectives, modalitieswith the idling action and for the �xed points.These are straightforward rules that need littlecomment, except for the �xed-point rules. Theyare based on the following observation, originallydue to Kozen, and later used as the key step in alocal model checker by Winskel:Lemma 1 (Reduction lemma) (Kozen [11],Winskel [26]) For a monotonic function on apowerset Pow(D) with p 2 D, we havep 2 �V: (V) , p 2 (�V:((V) n fpg));p 2 �V: (V) , p 2 (�V:((V) [fpg)):(The last holds for an arbitrary set P and inclu-sion instead of just for a singleton; the �rst not.)The right-hand sides of the bi-implications in-volve a slightly modi�ed unfolding of the �xedpoints. For the minimum �xed point a singleelement, p, is removed in the unfolding; for themaximum it is added. The tagged �xed-point as-sertions were introduced to make this unfoldingexpressible directly in the logic. Thus the �rst bi-implication shows that p j= �XfUgA, if and onlyif, p j= A[�XfU; pgA=X], which shows soundnessof the rule (�). Similarly, for the maximum �xedpoint.1Remark We shall refer to the rules in the se-quel by names constructed from the operators of1An alternative to the tags is to change the proof systeminto a tableau system where a similar e�ect is achieved bygiving global success/failure criteria on the proof tree. Seefor example Stirling and Walker [19] for an explanation ofthe relationship between the two approaches.

0 ` [�]A a:t ` ha; �iAt ` Aa:t ` [a; �]At ` A a:t ` [�]A a 62 �t0 + t1 ` [�]At0 ` [�]A t1 ` [�]At0 + t1 ` h�iAt0 ` h�iA t0 + t1 ` h�iAt1 ` h�iArec x:t ` [�]At[rec x:t=x] ` [�]A rec x:t ` h�iAt[rec x:t=x] ` h�iAFigure 3: Dynamic process operators. All rulesassume � 62 �.the term and assertion that is involved in therule. When this does not give a unique name weadd numbers starting from 0. Using this nam-ing scheme the rules of �gure 2 are named (^),(_0), (_1), ([]�), (hi�0), (hi�1), (�), (�0) and �-nally (�1). �3.2 Rules for the dynamic operatorsWhat is missing now are rules for assertions wherethe top-level operator is a modality which do notinvolve an idling action. These remaining ruleswill depend on the structure of the process term,in di�erent ways for the dynamic and the staticoperators. For the dynamic process operatorsthey are rather direct consequences of the oper-ational semantics, see �gure 3, once the followingis observed for the recursion operator:Proposition 1 Assume rec x:t is a closed pro-cess term, A a closed assertion, and � a set ofcomposite actions not containing �. Thenrec x:t j= [�]A , t[rec x:t=x] j= [�]A;rec x:t j= h�iA , t[rec x:t=x] j= h�iA:It is important that the top-level assertion is amodality: The successor states of rec x:t and itsunfolded version are syntactically identical (sinceunfolding is the only operational rule for recur-sion), and thus satis�es the same set of assertions.But rec x:t satis�es �Xfrec x:tgA whereas this isnot necessarily the case for t[rec x:t=x].Again we shall refer to the rules by names con-structed from the process operators and assertionoperators involved. Thus the names for the rulesof �gure 3 are: (0[]), (:hi), (:[]0), (:[]1), (+[]),(+hi0), (+hi1), (rec[]), and (rechi).3.3 Rules for the static operatorsIn order to give rules for the static operators weshall extend the assertions with operators express-ing the \preimages" of the corresponding process

tf�g ` [�]At ` [��1(�)](Af�g) tf�g ` h�iAt ` h��1(�)i(Af�g)t�� ` [�]At ` [�\ �](A��) t�� ` h�iAt ` h� \ �i(A��)t ` Af�gtf�g ` A t ` A��t�� ` A t0 ` A=t1t0 � t1 ` AFigure 4: Rules for eliminating relabelling andrestriction from the process, and the three shiftrules. The rules assume � 62 �.operators. For relabelling, this mean that we al-low assertions like Af�g with the semantic inter-pretation[[Af�g]]� = fp j pf�g 2 [[A]]�g:Thus t j= Af�g, if and only if, tf�g j= A. Hence,we include in the syntax these extended assertions:A ::= : : : j Af�g j A�� j A=tThe semantic interpretations of the last two oper-ators, restriction and quotienting, are:[[A��]]� = fp j p�� 2 [[A]]�g[[A=t]]� = fp j p� t 2 [[A]]�gThe new assertion operators will be used in givingrules for the modalities. For instance, one of therules for relabelling will betf�g ` [�]At ` [��1(�)](Af�g)Notice, that the operator f�g is applied to an as-sertion \guarded" by a box-modality. This box-modality can be removed by further applicationof the rules. At some point we might end up withf�g being applied at the top-level, and the rulewe choose to give for such an assertion is a shiftrule that shifts the operator back to the process,see �gure 4.Various versions of parallel composition hastraditionally posed the greatest di�culties in giv-ing compositional rules. To get an idea of thedi�culties, suppose we are confronted with thesatisfaction problem t0 � t1 ` A and we want todecompose this to satisfaction problems for t0 andt1 without inspecting the structure of t0 and t1.If we think of t0 � t1 as an element of the two-dimensional \plane", P � P, the assertion A willbe some two-dimensional \shape" in this plane. Adecomposition of A could now be constructed bytaking fragments A0 and A1 of the two axes, suchthat t0 should satisfy A0 and t1 should satisfy A1.However, for this to be a complete decomposition,valid for all t0 and t1, we would need to have Aequal to the product of A0 and A1. This product

would always be a \rectangle" { something whichis certainly not true for arbitrary A. One way toget around this problem is to approximate A fromthe inside by a set of pairs of assertions (Ai0; Ai1)forming rectangles, the union of which forms ex-actly A. However, as Winskel argues in [28] thepresence of �xed points can force this to be anin�nite set; resulting in a poor decomposition.2Fortunately, if we are slightly less ambitiousand allow ourselves to inspect the structure ofone of the two components, we can do better. Inthe suggested picture, this corresponds to the factthat if we �x a point on one of the axes, we canproject to the other and get a subset of P. Thetask of decomposition is now to �nd the asser-tion expressing this projection. As we shall seein section 5, if the component is �nite-state, it ispossible to directly compute the projected asser-tion. But in the rules we will be more general andimpose no restrictions on �niteness; in fact, therules will be local and for the dynamic operatorsfollow very closely the rules of �gure 3. The maindi�erence is that we are now considering a processt0 in a `context' t� which, however, play no activerole in the rules; all the rules are guided solely bythe structure of t0.As before with the idling modalities, we shallneed some rules that allow actions idling in theright component to be taken outside of the modal-ities. In order to state these rules we use the auxil-iary operation �=� of quotienting a set of actionswith respect to a particular action. This opera-tion is de�ned by �=� = f� j � � � 2 �g. Wealso use � n � � for the set of actions � � � 2 �for which � is not �. These rules are given as the�rst three rules of �gure 5. They are easily seento be sound. The next eight rules of �gure 5 arethe rules for the dynamic operators.When the right component t0 is headed by astatic operator, we simplify the right componentat the expense of the left. Let the operation l(A)reassociate every modality and every tag of theform �(�) inA to the left. Then, we change theproduct t�(t0�t1) to (t�t0)�t1 and perform thecorresponding rearrangement on A by replacingit by l(A). Analogously, when t0 is a relabellingwe will exploit that t � (t0f�g) is equivalent to(t�t0)fId��g, where Id is the identity relabellingand the product of relabellings �0 ��1 is de�nedby�0��1(�) = ��0(�0)� �1(�1) if � = �0 � �1� otherwise:The corresponding change on an assertion A is toreplace every tag of the form � (f�g) by a tag2An example of a di�cult assertion is the assertion Bfrom [2] expressing bisimilarity: p � q j= B, i�, p and qare strongly bisimilar. Hence, B forms a diagonal in the\plane". A decomposition would include a rectangle foreach equivalence class.

t� t0 ` [�]At ` [�=�](A=t0) t� t0 ` [� n � �]At� t0 ` h�iAt ` h�=�i(A=t0) t� t0 ` h�iAt� t0 ` h� n � �iAThe rules below all assume �=� = ;t � 0 ` [�]At� a:p ` [�]At ` [�=a](A=p) t� a:p ` h�iAt ` h�=ai(A=p)t� (t0 + t1) ` [�]At� t0 ` [�]A t� t1 ` [�]At � (t0 + t1) ` h�iAt� t0 ` h�iA t� (t0 + t1) ` h�iAt� t1 ` h�iAt� rec x:t0 ` [�]At� t0[rec x:t0=x] ` [�]At� rec x:t0 ` h�iAt� t0[rec x:t0=x] ` h�iAt� (t0 � t1) ` A(t� t0) � t1 ` l(A)t� (t0f�g) ` A(t� t0)fId� �g ` lf�g(A)t� (t0 ��) ` A(t� t0)� (Act� � �) ` l��(A)Figure 5: Product rules. We use the abbreviations�=� = f� j � � � 2 �g and � n � � = f� � � j� 6= �g.(�)f�g. Let lf�g(A) be the result of performingthis operation on A.Finally, for restriction we exploit the equiva-lence between t0�(t1 ��) and (t0�t1)� (Act� � �)using the operation l��(A) to change the tags of Afrom � (��) to (�) � (Act� � �). This givesrise to the last three rules of �gure 5 for the staticoperators.4 Soundness and completenessThe rules are sound for arbitrary processes andcomplete for a set of �nite-state processes, i.e. pro-cesses with only guarded regular recursions.Theorem 1 (Soundness) Assume a process tand a closed assertion A. If t ` A can be provenusing the rules of �gure 2, 3, 4 and 5 then t j= A.Central in our proof of completeness will be awell-founded relation on assertions:

Lemma 2 The relation � de�ned on closed as-sertions with tags from a �nite set S byA � A0 i� A is a proper subassertion of A0, orA0 � �XfUgB andA � B[�XfU; tgB=X] for some t 62 U ,where � is one of � and �, is well-founded.The relation � embodies the fact that the smallmodi�cations to the tags when unfolding the �xedpoints is enough to ensure that the �xed-pointrules can only be applied a �nite number of timesbefore t 2 U . It captures in a very precise mannerthe reason for termination of model checking al-gorithms based on the �xed-point rules (�), (�0)and (�1) as in the works of Stirling and Walker[19], Cleaveland [7] and Winskel [26].The proof strategy in proving completeness isas follows. Assume a process p with a �nite setof sub-term reachable states Sp. By well-foundedinduction using � we show that for all t 2 Sp, ift j= A then t ` A. When A is of the form [�]Bor h�iB this will involve inspecting the structureof the term t. Thus we shall show by anotherinduction, this time on t, how to construct fromproofs of some t1 ` B; : : : ; tn ` B where ti isless than t and ti j= B, a proof of t ` A. The\less than" ordering we use on terms is based on ameasure w(t) that is roughly \the maximal depthto a pre�x, nil or variable in t," which, however,gives more weight to the second component of aproduct than to the �rst. Hence, simplifying thesecond component at the expense of the �rst, asit is done in the static rules, is still considered away of making progress.Theorem 2 (Completeness for �nite-stateprocesses) If p is a process with guarded regularrecursions then, for all closed assertions A withtags in Sp, if p j= A then p ` A.Proofs of this theorem and lemma 2 can be foundin the appendix.To show an example of the usage of the rules,we will consider the CCS parallel composition jas an abbreviation for (�)��f�g where � and� are as follows. First, the actions Act are sup-posed to include a distinguished internal action �and the remaining actions are called names. As-sociated with each name a is a co-name �a; suchthat � forms a bijection on Act n � . Then, take� = fa� �a; a0 � �; � � a0 j a 2 Act n �; a0 2 Actg,and let �(a � �a) = �;�(a0 � �) = �(� � a0) = a0and on other actions �, �(�) = �. It is not hardto see that (p � q) � �f�g will behave exactly aspjq.Example This example illustrates how the com-positionality facilitates proving a property abouta process that contain in�nite-state components{ when the in�nite-state behaviour is irrelevantfor the property: Assume p and q � rec x:�:x+ t

pjq ` �Xfgh� iX--- (�1)pjq ` h� i�Xfpjqgh� iX--- (f�ghi)(p� q)�� ` h��1(�)i(�Xfpjqgh� iX)f�g--- (��hi)p� q ` h�i(�Xfpjqgh� iX)f�g��--- (�rechi)p� (�:q + t[q=x]) ` h�i(�Xfpjqgh� iX)f�g��--- (� + hi0)p� �:q ` h�i(�Xfpjqgh� iX)f�g��-- (�hi � 1)p � �:q ` h� n � �i(�Xfpjqgh� iX)f�g��-- (�:hi)p ` h�i(�Xfpjqgh� iX)f�g��=q-- (hi � 0)p ` (�Xfpjqgh� iX)f�g��=q--- (�); (��); (f�g)pjq ` �Xfpjqgh� iX--- (�0)Figure 6: A proof tree for the example.are in�nite-state processes (x might be free in t).We shall consider the process pjq and prove that ithas an in�nite � -loop as expressed by the assertion�Xfgh� iX.Let � = � \ ��1(�) = fa � �a j a 2 Act n �g [f� � �; �� �g. The proof tree is given in �gure 6.Note that in the application of rule (�:hi), we areusing (� n � �)=� = f�g.5 ReductionsThere is an alternative approach to composition-ality, followed in [4] and to some extent in [14],based on the idea of reductions. A reduction trans-forms a satisfaction problem for a composite pro-cess op(t1; : : : ; tn) ` A into a boolean expressionover satisfaction problems t1 ` A1; : : : ; tn ` Anfor the subterms of the process { independent ofthe structure of these. Simple examples of reduc-tions can be derived from:t0 + t1 j= [�]A , (t0 j= [�]A) and (t1 j= [�]A);t0 + t1 j= h�iA , (t0 j= h�iA) or (t1 j= h�iA):In general, the reductions will be more involved.However, for the relabelling and restriction it ispossible to give quite concise reductions. Theysimply change the modalities (and the tags) of theassertion and leave everything else unchanged. Inthe context of our proof rules such a reduction canbe seen as a means for eliminating the extendedassertions. I.e. for any assertion A, equivalent as-sertions e(Af�g) and e(A � �) with f�g and � �removed, can be found. Figure 7 shows these re-ductions. An alternative to the rules (f�g[]) and(f�ghi) could now betf�g ` At ` e(Af�g)Thus, no extended assertion will be introduced bythis new rule.If t is a �nite-state process, also the quotientingA=t can be removed by a reduction. To give this

e(Xf�g) = Xe(A0 ^A1f�g) = e(A0f�g) ^ e(A1f�g)e(A0 _A1f�g) = e(A0f�g) _ e(A1f�g)e([�]Af�g) = [��1(�)]e(Af�g)e(h�iAf�g) = h��1(�)ie(Af�g)e(�XfUgAf�g) = �XfUf�gge(Af�g)e(�XfUgAf�g) = �XfUf�gge(Af�g)e(X ��) = Xe(A0 ^A1 ��) = e(A0 ��) ^ e(A1 ��)e(A0 _A1 ��) = e(A0 ��) _ e(A1 ��)e([�]A��) = [� \ �]e(A��)e(h�iA��) = h� \ �ie(A��)e(�XfUgA��) = �XfU ��ge(A��)e(�XfUgA��) = �XfU ��ge(A��)Figure 7: Reductions for relabelling and restric-tion. Recall, Uf�g = fp j pf�g 2 Ug andU �� = fp j p�� 2 Ug.reduction we need to introduce tagged simultane-ous �xed points. Let � be any one of � and �.Then the syntax is:�X1fU1g : : :XnfUng(A1; : : : ; An) # Xi;abbreviated as � ~Xf~Ug ~A # Xi. The semanticsshould be clear. The reduction is given in �gure8. An alternative rule for product could now bet0 � t1 ` At0 ` e(A=t1) ;which, again, does not introduce any extended as-sertion. The price is, that the new rule is onlyapplicable for �nite-state processes, and we mustnow consider simultaneous �xed points. The si-multaneous �xed points can be converted into sim-ple �xed points using the Scott-Beki�c principle [6],thereby potentially increasing the size of the as-sertion considerably. A more appealing approach

e(X=p) = Xpe(A0 _A1=p) = e(A0=p) _ e(A1=p)e(A0 ^A1=p) = e(A0=p) ^ e(A1=p)e(h�iA=p) = Wfh�ie(A=p0) j 9�� � 2 �: p �! p0ge([�]A=p) = Vf[�]e(A=p0) j 9�� � 2 �: p �! p0ge(�XfUgA=p) = �Xp1fU=p1g � � �XpnfU=png:(e(A=p1); : : : ; e(A=pn)) # Xpwhere fp1; : : : ; png = RpFigure 8: Reduction for quotienting. Recall, U=p = ft j t� p 2 Ug.would be to extend the �xed-point rules to si-multaneous �xed points. Then, for example, (�)should be replaced byt ` � ~Xf~Ug ~A # Xit ` Ai[� ~Xf~U 0g ~A= ~X] ;where ~U 0 = (U1; : : : ; Ui�1; U [ftg; Ui+1; : : : ; Un)and the substitution [� ~Xf~U 0g ~A= ~X] is an abbre-viation for [� ~Xf~U 0g ~A # X1=X1; : : : ; � ~Xf~U 0g ~A #Xn=Xn].(Proving the above reductions correct is an easygeneralisation to tagged �xed points of the proofsin [4] and [2].)6 ConclusionThe idea of compositionality being \not lookinginto the structure of subprocesses" could be for-malised using a set of \meta-variables" x̂; ŷ; : : :distinct from the recursion variables. We shouldthink of a variable x̂ as being a yet unde�ned pro-cess { a \hole" in the term. Any proof carried outwith such variables appearing in the terms, wouldthen be valid for all instantiations of the variable{ capturing the reusability of proofs. However,in de�ning the substitution on terms with meta-variables, a little care must be taken. In, for ex-ample, rec x:a:ŷ we have the unde�ned processŷ, which we might at some point decide to in-stantiate to the term x. Thus we would require(rec x:a:ŷ)[x=ŷ] = rec x:a:x. (Also, a substitutionlike ŷ[rec x:a:ŷ=x] cannot be reduced.)It is interesting that the rules for recursionin combination with the tagging could actuallyhelp us in �nding appropriate instantiations ofmeta-variables. Consider as an example the termrec x:a:ŷ and the assertion �XfghaiX expressingthe existence of an in�nite a-path. Using, in se-quence, the rules (�1),(rechi),(:hi) we will end upwith ŷ[rec x:a:ŷ=x] ` �Xfrec x:a:ŷghaiX:Suppose we would try to apply rule (�0) in prov-ing this valid. Then we would have to solve theequation ŷ[rec x:a:ŷ=x] = rec x:a:ŷ. A solutionis to substitute x for ŷ, arriving at rec x:a:x `

�Xfrec x:a:xghaiX; which by rule (�0) is valid.3Returning to the proof system, we notice thatcompared to the earlier work of Stirling, Winskel,and Andersen and Winskel, the rules are few andquite simple. In particular, only three simple rulesare needed to deal with �xed-point assertions, twoto deal with recursive processes.A useful amendment to the system is the pos-sibility of relaxing the condition in (�0) that tshould be an element of the tags of the maximum�xed-point to simply be strongly bisimilar to oneof the tags. This amendment is straightforwardsince satisfaction in the modal �-calculus is invari-ant under strong bisimulation, provided the tagsare interpreted as equivalences classes. Anotheruseful amendment would then be to combine theproof system with a proof system for bisimulationequivalence on processes.Appendix. ProofsThis appendix contains proofs of lemma2 and the-orem 2.Lemma 2 The relation � de�ned on closed as-sertions with tags from a �nite set S byA � A0 i� A is a proper subassertion of A0, orA0 � �XfUgB andA � B[�XfU; tgB=X] for some t 62 U ,where � is one of � and �, is well-founded.Proof: Take the predicate Q(A) on closed asser-tions A with tags in S to be de�ned byQ(A) ,def all �-decreasing sequencesfrom A are �nite:Extend this to open terms byQ+(A) ,def8� : FV (A)! ClAssn:(8X 2 FV (A):Q(�(X)))) Q(A[�]):3The reduction for recursion given in [4] would, usingsome simpli�cation steps, transform the satisfaction prob-lem rec x:a:ŷ ` �X:haiX into the problem ŷ ` �X:(haiX_fxg), where fxg is an assertion true at the variable x {called a state identi�er there. Thus it can immediatelybe seen that substituting x for ŷ yields a solution. Thatreduction, however, is rather more involved and does notseem to give rise easily to a corresponding proof rule.

Observe that if A is closed Q+(A) is simplyQ(A). The proof is by well-founded induction ona slightly di�erent relation �0 de�ned byA0 �0 A i� A0 is a proper subassertion of A, orA � �XfUgB andA0 � �XfU; tgB for some t 62 U:Since tags belong to the �nite set S this rela-tion is easily seen to be well-founded. Thus as-sume for all A0 �0 A, Q+(A) holds and 8X 2FV (A):Q(�(X)). We consider the possible �rstsuccessor A0 in a �-decreasing sequence A[�] � A0and argue that any continuation of the sequencemust be �nite. We consider the two possible rea-sons for A[�] � A0.Case 1. A0 is a proper subassertion of A[�]. Theneither there exists a subassertion A00 of A suchthat A00[�] � A0, or A0 is a subassertion of some�(X). In the �rst case the result follows from theinduction hypothesis since A00 �0 A; in the sec-ond it follows immediately from the assumptionQ(�(X)).Case 2. In this case, A0 � B[�XfU; tgB=X] andA[�] � �XfUgB. Either A � Y and �(Y) =�XfUgB or A � �XfUg(B0[�]) for some B0. Inthe �rst case the result follows from the assump-tion of Q(�(Y)); in the second it can be shownfrom the induction hypothesis as follows. SinceB � B0[�] and X 62 FV (A), we can write A0 asB0[�][�XfU; tg(B0[�])=X] � B0[�XfU; tgB0=X][�]:Hence, since �XfU; tgB0 �0 �XfUgB0 itfollows from the induction hypothesis thatQ+(�XfU; tgB0) holds.Take �0(Y) = �(Y) for Y 6= X and �0(X) =�XfU; tg(B0[�]). Thus we have just arguedQ(�0(X)) and surely Q(�0(Y)) for all Y 6= X.Since B0 is a subassertion of A and thereforeB0 �0 A we can again use the induction hypothesisto conclude Q(A[�]).�Let the measure w(t) be de�ned by structural in-duction on terms t byw(0) = w(x) = 0w(a:t) = 0w(t0 + t1) = 1 + maxfw(t0); w(t1)gw(rec x:t) = 1 + w(t)w(tf�g) = w(t��) = 1 + w(t)w(t0 � t1) = 1 + w(t0) + 2w(t1):We can now prove the following lemma:Lemma 3 Assume a closed assertion B and aclosed term t with guarded, regular recursions.If t j= [�]B (t j= h�iB) then there exists some

t1; : : : ; tn with ti j= B and from t1 ` B; : : : ; tn ` Bthere is a proof of t ` [�]B (t ` h�iB).Proof: We prove the claim by showing 8t:P (t) us-ing well-founded induction on t with the orderinginduced by w(t) whereP (t),def for all closed, extended assertions A;if t j= [�]A then9t1; : : : ; tn: ti j= A; andt ` [�]A can be proven from fti ` Agi:We shall only consider the case for the box-modality, the case of diamond-modality is similar.Thus assume for all t0 with w(t0) < w(t) that P (t0)holds and assume further that t j= [�]A. We shallestablish P (t) on these assumptions by consider-ing the possible forms of t.However, consider �rst the case where � 2 �.Then from the semantics we observe that t j= Aand t j= [� n �]A. The �rst is already on the re-quired form hence take t1 � t; for t j= [� n �]A thesteps below assuming � 62 � provides the requiredremaining t2; : : : ; tn to establish P (t) using rule([]�). Thus assume in the sequel � 62 �.t � 0. Immediate from rule (0[]).t � a:t0. If a 2 � then t0 j= A and rule (:[]0) givesa proof of a:t0 ` [�]A from a proof of t0 ` A. Thisshows P (t) in this case.If a 62 � then rule (:[]1) immediately gives a proofof a:t0 ` [�]A showing P (t) in this case.t � t0+ t1. It follows from the semantics of asser-tions that t0 j= [�]A and t1 j= [�]A, hence sincew(t0) < w(t) and w(t1) < w(t) if follows by induc-tion that there exists t10; : : : ; tm0 and t11; : : : ; tn1 withti0 j= A and tj1 j= A such that proofs of t0 ` A andt1 ` A can be constructed from proofs of ti0 ` Aand tj1 ` A. Thus using rule (+[]) we can get aproof of t0 + t1 ` A completing this case.t � rec x:t0. It follows from proposition 1 thatt0[rec x:t0=x] j= [�]A. Now, since all recur-sions are guarded and regular w(t0[rec x:t0=x]) <w(rec x:t0) hence by the induction hypothesisthere exists t1 j= A; : : : ; tn j= A such that a proofof t0[rec x:t0=x] ` [�]A can be constructed fromproofs of ti ` A. Applying rule (rec[]) to such aproof we have shown P (t) in this case.t � t0f�g. It follows from downwards soundnessof rule (f�g[]) that t0 j= [��1(�)](Af�g). Sincew(t0) < w(t) it follows by induction that there ex-ists t01; : : : ; t0n such that t0i j= Af�g and that fromproofs of t0i ` Af�g we can construct a proof oft0 ` [��1(�)](Af�g). Now, to extend this to aproof of t0f�g ` [�]A �rst take ti � t0if�g. Hencefrom proofs of ti ` A, i.e. t0if�g ` A, we get proofsof t0i ` Af�g using rule (f�g). Finally, using rule(f�g[]) we get a proof of t0f�g ` [�]A from a proof

of t0 ` [��1(�)](Af�g) which as we have just ar-gued can be proven from t1 ` A; : : : ; tn ` A.t � t0 � �. As above but using rules (� �) and(��[]).t � t0 � t1.If �=� 6= ;we can remove the set (�=�)�f�g by applying rule (�[]�) and proceedas below { exactly like in the case of� 2 � considered in the beginning ofthe proof. Hence, in the sequel assume�=� = ; and consider the possible formsof t1.t1 � 0, t1 � a:t0, t1 � t01 + t001 , t1 �rec x:t0. Analogous to the cases above.See the discussion in section 3.3 aboutthe relationship between the productdynamic rules and the dynamic rules.t1 � t01 � t001 . A little bit of arithmeticshows w((t0 � t01)� t001) < w(t):w((t0 � t01)� t001)= 1 + w(t0 � t01) + 2w(t001)= 1 + (1 +w(t0) + 2w(t01)) + 2w(t001)= 1 + w(t0) + 1 + 2w(t01) + 2w(t001)< 1 + w(t0) + 2(1 + w(t01) + 2w(t001))= w(t0 � (t01 � t001)) = w(t)Thus P (t) follows from the inductionhypothesis and rule (��).t1 � t01f�g. As above we compute:w((t0 � t1)f�g)= 1 + w(t0 � t1)= 1 + (1 +w(t0) + 2w(t1))< 1 + w(t0) + 2(1 + w(t1))= w(t0 � (t1f�g))Thus P (t) follows from the inductionhypothesis and rule (�f�g).t1 � t01 ��. As above.�The proof of completeness now follows by well-founded induction on the relation �:Theorem 2 (Completeness for �nite-stateprocesses) If p is a process with guarded regu-lar recursions then for all closed assertions A withtags in Sp, p j= A) p ` A:Proof: Let Q(A) be de�ned on closed assertionswith tags in Sp byQ(A),def 8t 2 Sp: t j= A) t ` A:We prove Q(A) for all closed assertions with tagsin Sp by induction on �. Hence assume Q(A0) forall A0 � A.We consider the potential forms of A.

A � X. Impossible since A is assumed to beclosed.A � A0 ^ A1. Since t j= A0 ^ A1 implies t j= A0and t j= A1, and, moreover, A0 � A, and A1 � Athe result follows from the induction hypothesisapplying rule (^).A � A0 _ A1. Since t j= A0 _ A1 implies t j= A0or t j= A1, and, moreover, A0 � A, and A1 � Athe result follows from the induction hypothesisapplying either rule (_0) or (_1).A � �XfUgB. From lemma 1 it follows that ift j= �XfUgB then t j= B[�XfU; tgB=X] and asit can easily be seen from the semantics of taggedminimum �xed points, t 62 U . Thus rule (�)can be applied to yield a proof of t ` �XfUgBfrom a proof of t ` B[�XfU; tgB=X]. SinceB[�XfU; tgB=X] � �XfUgB we have by the in-duction hypothesis a proof of B[�XfU; tgB=X]completing this case.A � �XfUgB. If t 2 U , rule (�0) immedi-ately yields a proof of t ` �XfUgB. If t 62U but t j= �XfUgB if follows from lemma1 that t j= B[�XfU; tgB=X] thus rule (�1)gives a proof of t ` �XfUgB from a proof oft ` B[�XfU; tgB=X]. Since B[�XfU; tgB=X] ��XfUgB we have by the induction hypothesis aproof of B[�XfU; tgB=X] completing this case.A � [�]B; A � h�iB. Assuming t j= [�]B itfollows from lemma 3 that there exists t1; : : : ; tnsuch that ti j= B and t j= [�]B can be provenfrom proofs of ti ` B. However, since B � [�]Bit follows from the induction hypothesis that suchproofs do indeed exist, completing the case for thebox-modality. The case for the diamond-modalityis similar.�References[1] Henrik Reif Andersen. Model checking andboolean graphs (extended abstract). InB. Krieg-Br�uckner, editor, Proceedings of4'th European Symposium on Programming,ESOP'92, Rennes, France, volume 582 ofLNCS. Springer-Verlag, 1992.[2] Henrik Reif Andersen. Veri�cation of Tem-poral Properties of Concurrent Systems. PhDthesis, Department of Computer Science,Aarhus University, Denmark, June 1993. PB-445.[3] Henrik Reif Andersen. Model checking andboolean graphs. Theoretical Computer Sci-ence, April 1994. To appear. Extended ab-stract as [1].[4] Henrik Reif Andersen and Glynn Winskel.Compositional checking of satisfaction. For-mal Methods In System Design, 1(4), Decem-ber 1992.

[5] Andr�e Arnold and Paul Crubille. A linearalgorithm to solve �xed-point equations ontransitions systems. Information ProcessingLetters, 29:57{66, 1988.[6] H. Beki�c. De�nable operations in general al-gebras, and the theory of automata and
owcharts. In C.B.Jones, editor, Hans Beki�c:Programming Languages and Their De�ni-tion, volume 177, pages 30{55. Springer-Verlag, 1984.[7] Rance Cleaveland. Tableau-based modelchecking in the propositional mu-calculus.Acta Informatica, 27:725{747, 1990.[8] Rance Cleaveland, Marion Dreim�uller, andBernhard Ste�en. Faster model checking forthe modal mu-calculus. In v. Bochmann andProbst [21], pages 383{394.[9] Rance Cleaveland and Bernhard Ste�en.A linear-time model-checking algorithm forthe alternation-free modal mu-calculus. InKim G. Larsen and Arne Skou, editors, Pro-ceedings of the 3rd Workshop on ComputerAided Veri�cation, July 1991, Aalborg, vol-ume 575 of LNCS. Springer-Verlag, 1992.[10] E. Allen Emerson and Chin-Luang Lei. Ef-�cient model checking in fragments of thepropositional mu-calculus. In Symposiumon Logic in Computer Science, Proceedings,pages 267{278. IEEE, 1986.[11] Dexter Kozen. Results on the propositionalmu-calculus. Theoretical Computer Science,27, 1983.[12] Kim G. Larsen. Proof systems for Hennessy-Milner logic with recursion. In M. Dauchetand M. Nivat, editors, Proceedings of CAAP,Nancy, Franch, volume 299 of Lecture Notesin Computer Science, pages 215{230, March1988.[13] Kim G. Larsen. E�cient local correctnesschecking. In v. Bochmann and Probst [21].[14] Kim G. Larsen and Liu Xinxin. Composi-tionality through an operational semantics ofcontexts. In M.S. Paterson, editor, Proceed-ings of ICALP, volume 443 of LNCS, pages526{539. Springer-Verlag, 1990.[15] Colin Stirling. A complete compositionalmodal proof system for a subset of CCS. vol-ume 194 of Lecture Notes in Computer Sci-ence, pages 475{486. Springer-Verlag, 1985.[16] Colin Stirling. A complete modal proof sys-tem for a subset of SCCS. volume 185 of Lec-ture Notes in Computer Science, pages 253{266. Springer-Verlag, 1985.

[17] Colin Stirling. Modal logics for communicat-ing systems. Theoretical Computer Science,49:311{347, 1987.[18] Colin Stirling. Modal and Temporal Log-ics. In S. Abramsky, D. Gabbay, andT. Maibaum, editors, Handbook of Logic inComputer Science, volume 2, pages 477{563.Oxford University Press, 1992.[19] Colin Stirling and DavidWalker. Local modelchecking in the modal mu-calculus. Theoret-ical Computer Science, 89(1):161{177, 1991.[20] A. Tarski. A lattice-theoretical �xpoint the-orem and its applications. Paci�c Journal ofMathematics, 5:285{309, 1955.[21] G. v. Bochmann and D. K. Probst, editors.Proceedings of the 4th Workshop on Com-puter Aided Veri�cation, CAV'92, June 29- July 1, 1992, Montreal, Quebec, Canada,volume 663 of LNCS. Springer-Verlag, 1992.[22] Bart Vergauwen and Johan Lewi. A linearalgorithm for solving �xed-point equationson transition systems. In J.-C. Raoult, edi-tor, Proceedings of 17'th Colloquium on Treesin Algebra and Programming, CAAP'92,Rennes, France, volume 581 of LNCS, pages322{341. Springer-Verlag, 1992.[23] Glynn Winskel. Synchronisation trees. The-oretical Computer Science, 34:33, 1984.[24] Glynn Winskel. On the composition and de-composition of assertions. Technical ReportTR-59, Computer Laboratory, University ofCambridge, 1985.[25] Glynn Winskel. A complete proof system forSCCS with modal assertions. FundamentaInformaticae, IX:401{420, 1986.[26] GlynnWinskel. A note on model checking themodal �-calculus. In G. Ausiello, M. Dezani-Ciancaglini, and S. Ronchi Della Rocca, ed-itors, Proceedings of ICALP, volume 372 ofLNCS, pages 761{772. Springer-Verlag, 1989.[27] Glynn Winskel. A compositional proof sys-tem on a category of labelled transition sys-tems. Information and Computation, 87,1990.[28] Glynn Winskel. On the compositional check-ing of validity. In J.C.M. Baeten andJ.W. Klop, editors, Proceedings of CONCUR'90, volume 458 of LNCS, pages 481{501.Springer-Verlag, 1990.

