A Compositional Proof System for the
Modal p-Calculus

Henrik Reif Andersen*

Department of Computer Science
Technical University of Denmark
DK-2800 Lyngby, Denmark
E-mail: hra@id.dtu.dk

Abstract

We present a proof system for determining
satisfaction between processes in a fairly general
process algebra and assertions of the modal p-
calculus. The proof system is compositional n
the structure of processes. It extends earlier work
on compositional reasoning within the modal -
calculus and combines it with techniques from
work on local model checking. The proof system
1s sound for all processes and complete for a class
of finite-state processes.

1 Introduction

The propositional p-caleulus of Kozen [11] which
was introduced as a powerful extension of propo-
sitional dynamic logic, has received growing in-
terest as a logic for concurrent systems. This
is mainly due to the expressiveness of the logic,
which is known to subsume many modal and tem-
poral logics, and the fact that very few opera-
tors are needed in achieving this: The logic is
an extension of relativized, minimal modal logic
K — also known as Hennessy-Milner logic in the
process algebra community — with minimum and
maximum fixed points. It is due to this connec-
tion (explained in Stirling [18]) that we use the
name the modal p-calculus.

It is customary to consider Kripke models or,
equivalently, labelled transition systems as mod-
els for interpretation of the logic. Since labelled
transition systems are used in giving operational
semantics of process languages, it is straightfor-
ward to view the modal p-calculus as a language
for expressing properties of processes. Despite the
expressiveness, 1t turns out that validity i1s de-
cidable for the modal p-calculus, and for finite-
state processes the problem of deciding satisfac-
tion between a process and an assertion is decid-
able too. A range of algorithms and proof systems
for this problem has been given in the literature,

g. [10, 5, 12,19, 7, 26, 9, 3, 22, 13, 8, 2]. They
mostly rely on globally or locally computing the

*Supported by the Danish Technical Research Council.
tBasic Research in Computer Science, Centre of the
Danish National Research Foundation.

Colin Stirling

Lab. for Foundations of Comp. Sc.
University of Edinburgh
Edinburgh EH9 3J7Z, UK

E-mail: cps@dcs.edinburgh.ac.uk

Glynn Winskel

BRICS! Comp. Sc. Dept.
Aarhus University
DK-8000 Aarhus C, Denmark
E-mail: gwinskel@daimi.aau.dk

underlying transition system. However, what we
seek here is a method that is compositional in the
structure of processes, and which does not rely on
computing the underlying transition system.

Compositionality is important for at least the
following reasons. Firstly, it makes the verifica-
tion modular, so that when changing part of a sys-
tem only the verification concerning that particu-
lar part must be redone. Secondly, when designing
a system or synthesising a process the composi-
tionality makes it possible to have undefined parts
of a process and still be able to reason about it.
For instance, it might be possible to reveal incon-
sistencies in the specification or prove that with
the choices already taken in the design no com-
ponent supplied for the missing parts will ever be
able to make the overall system satisfy the orig-
inal specification. Thirdly, it makes it possible
to decompose the verification task into potentially
simpler tasks. Finally, it can make possible the
reuse of verified components; their previous veri-
fication can be used to show that they meet the
requirements on the components of a larger sys-
tem.

Our method will be a compositional proof sys-
tem, sound for arbitrary processes and complete
for a class of finite-state processes. Earlier work on
compositional proof systems related to the modal
p-calculus includes work by Stirling [16, 15, 17],
Winskel [24, 25, 27, 28], Larsen and Xinxin [14],
Andersen and Winskel [4]. The proof system pre-
sented here is along the lines of the work by Stir-
ling and Winskel, but it extends their early work
for Hennessy-Milner logic to a proper treatment of
recursive processes and the full modal p-calculus.
It also gives new rules for parallel composition
and the other static operators. Actually, to a cer-
tain extent, the system can be seen as a result of
turning the operational reductions of Larsen and
Xinxin and the syntactic reductions of Andersen
and Winskel into proof rules. But the match is not
exact; apart from the new static rules the treat-
ment of fixed points is closer to the work on local

model checking [12, 19, 7, 26].

Qo
pP—Pp
o
p+q—p
Qo gy
Pp—pP q4—4q

axp
pxq = p xq

o F *

p—p

p=p app

p{(E} 2y (=)

N} gy
—4 . t[recx.t/xc]vﬁt o
! rec xt — 1t
p=p
o) = — L L aeA
(o) =8 plASp A

Figure 1: Operational rules.

2 Languages

The process language has a general parallel com-
position operator called a product, tq x t;, that
allows the components to proceed both syn-
chronously and asynchronously. Synchronization
can then be enforced — or disallowed — through a
restriction operator and synchronized actions can
be given proper names through a relabelling oper-
ator. We refrain from giving details of how this
allows a wide range of parallel operators to be en-
coded (see for example [23] or [2]), and we stick
to introducing the language.

Let Act be a set of basic actions not containing
the idling action x. The set of composite actions
Act, is the free *, x-algebra over Act U {*} such
that * x * = *x. We let a,b,... range over ba-
sic actions, «, 3, ... over composite actions, and &
over sets of composite actions. The set of process
terms are generated from the grammar:

tii:0|a.t|t0—|—t1|t0Xt1|t{E}|t[A|
x| rec a.l

The term constructors are called: nil, prefiz, sum,
product, relabelling, restriction, process variable,
and recurston. The restricting set A is any sub-
set of Act. containing {*}; the relabelling func-
tion = @ Act, — Act. must be strict on idling
actions, i.e. Z(*) = *. The operational semantics
of this process language is given as a labelled tran-
sition system 7 = (P, Act,, —), where P is the set
of closed process terms (the notions of open and
closed terms are as usual) and —C P x Act, x P
is given as the least relation satisfying the rules of
figure 1. We shall refer to elements of P simply
as processes.

The assertions of the modal p-calculus will be
given in a negation-free version and we use the
construction from Winskel [26] of tagging fixed
points with sets of processes. Thus the assertions
are constructed from the following grammar:

AZZIAQ\/Al |A0/\A1 | <K?>A | [I{]A|
X | pX{UYA | vX{U}A

where U C P is a set of tags and X ranges over
a set of assertion variables. The usual tag-free
fixed points 4 X.A and v X . A are special cases with
empty tag sets.

The semantics of assertions [A]p C P is given
by induction on the structure of A; the map p is
an environment taking all free variables of A to
subsets of P. For the fixed points we observe that

the bodies, when considered as functions of X, are
monotonic on the complete lattice (Pow(P),C)
and then appeal to the Knaster-Tarski fixed-point
theorem [20] for supplying a minimum fixed point,
denoted by g, and a maximum fixed point, de-

noted by v:
[[Ao vV Al]]p
[[Ao A Al]]p

[{~)A]p

[Aolp U [A1]p
[Aolp N [A1]p
{peP|Ja€x

I p =y &y € [Alp}

[[k]Alp = {peP|Vaex
vp'.p Sy = p € [Alp}
[XTp p(X)
[X{U}Alp = uV.([AlplV/X]\U)
[vX{U}Alp vV.([AlplV/XTUU)

Satisfaction between a process p and a closed as-
sertion A is now defined by, p = A, iff, p € [A]p
for all p. For future reference we define:

Definition 1 Let S, be the set of sub-term reach-
able states of the process p. l.e. the least set of
states closed under

pES,,

if ¢ € S, and ¢ = ¢ then ¢’ € 5,

it ¢ € S, and ¢’ is a closed subterm of ¢
then ¢’ € 5.

Let R,, the reachable states of p, be the least sub-
set of S, closed under (7) and (i¢). O

It is not hard to prove that if all recursive terms
in a process p are regular (i.e. the body is built
entirely from 0, +, a., #, and rec) then S, is finite.
A recursion rec x.t is said to be guardved if any
occurrence of x in ¢ is inside a prefix.

3 The proof system

The proof system will be presented as “goal-
oriented” proof rules defining inductively the rela-
tion FC P x ClAssn between processes and closed
assertions. 'The rules naturally fall into three
classes: Rules that do not involve the process op-
erators, rules for the dynamic process operators,
and finally rules for the static process operators.

tE Ag N Ay
itF Ay tF A4,
tE AV AL tE AV A
tF Ay th A
tF [+, k]A
tFA tF[x]4
tE {x, k)A L o)l
IFA ik <I€>A
t-pX{U}A
TF Al X (U, T} A]X]
tFuX{U}A
tFuX{U 1}A TF A X{U 1} A]X]

Figure 2: Rules for the boolean connectives, idling
modalities and fixed points.

3.1 Rules for the fixed points, boolean
connectives and idling modalities
The first class of rules, given in figure 2, only de-
pend on the structure of assertions. They encom-
pass rules for the boolean connectives, modalities
with the idling action and for the fixed points.
These are straightforward rules that need little
comment, except for the fixed-point rules. They
are based on the following observation, originally
due to Kozen, and later used as the key step in a

local model checker by Winskel:

Lemma 1 (Reduction lemma) (Kozen [11],
Winskel [26]) For ¢ a monotonic function on «
powerset Pow(D) with p € D, we have

peuVy(V) < ped(pV.(v(V)\{p})),

pevV(V) & pe V. ((V)U{p})).

(The last holds for an arbitrary set P and inclu-
sion instead of just for a singleton; the first not.)

The right-hand sides of the bi-implications in-
volve a slightly modified unfolding of the fixed
points. For the minimum fixed point a single
element, p, is removed in the unfolding; for the
maximum 1t is added. The tagged fixed-point as-
sertions were introduced to make this unfolding
expressible directly in the logic. Thus the first bi-
implication shows that p = uX{U} A, if and only
if, p = A[pX{U, p}A/X], which shows soundness
of the rule (g). Similarly, for the maximum fixed
point.!

Remark We shall refer to the rules in the se-
quel by names constructed from the operators of

1 An alternative to the tags is to change the proof system
into a tableau system where a similar effect is achieved by
giving global success/failure criteria on the proof tree. See
for example Stirling and Walker [19] for an explanation of
the relationship between the two approaches.

att {a,k)A

OF[KA =
4+ A 1 [k]A
a tl—[ajf] a.l b [k] rr

to + tl F [K?]A
to = [K?]A tl = [K?]A

to + tl F <K?>A
to = <K?>A

to + tl F <K?>A
tl = <K?>A

rec .t F [k]A
trec x.t/x]F [k]A

rec vt (k) A
trec x.t/x]F (k) A

Figure 3: Dynamic process operators. All rules
assume * € K.

the term and assertion that is involved in the
rule. When this does not give a unique name we
add numbers starting from 0. Using this nam-
ing scheme the rules of figure 2 are named (A),

(VO), (1), ([]4), ({)%0), ((*1), (), (»0) and fi-

nally (v1). O

3.2 Rules for the dynamic operators
What is missing now are rules for assertions where
the top-level operator is a modality which do not
involve an idling action. These remaining rules
will depend on the structure of the process term,
in different ways for the dynamic and the static
operators. For the dynamic process operators
they are rather direct consequences of the oper-
ational semantics, see figure 3, once the following
is observed for the recursion operator:

Proposition 1 Assume rec x.t is a closed pro-
cess term, A a closed assertion, and k a set of
composite actions not containing x. Then

rec x.t = [K]|A & t[rec x.t/x] E []A,
rec £t = (K)A & tlrec xt/x] |E (k) A.

It is important that the top-level assertion is a
modality: The successor states of rec x.t and its
unfolded version are syntactically identical (since
unfolding is the only operational rule for recur-
sion), and thus satisfies the same set of assertions.
But rec x.1 satisfies v X {rec 2.t} A whereas this is
not necessarily the case for t[rec x.1/x].

Again we shall refer to the rules by names con-
structed from the process operators and assertion
operators involved(. hI‘)hu(s <t>l3e I(laﬁn)es go[lj t)he(ru[l]e)s
of figure 3 are: (O[]), (.{}), (.[J0), (.[]1), (+]]),
(+00), (+(1), (rec), and (rec).

3.3 Rules for the static operators

In order to give rules for the static operators we
shall extend the assertions with operators express-
ing the “preimages” of the corresponding process

Figure 4: Rules for eliminating relabelling and
restriction from the process, and the three shift
rules. The rules assume * € &.

operators. For relabelling, this mean that we al-
low assertions like A{Z} with the semantic inter-
pretation

[4{=}p = {p|p{Z} € [Alr}.
Thus ¢ = A{=}, if and only if, t{=} &= A. Hence,

we include in the syntax these extended assertions:
A= L JAEYATA At

The semantic interpretations of the last two oper-
ators, restriction and quotienting, are:

[ATA]p {plplA€[A]p}
[A/tlp {p|pxte[A]p}

The new assertion operators will be used in giving
rules for the modalities. For instance, one of the
rules for relabelling will be

HE} F [x]A
tEETHR)IA{ED)

Notice, that the operator {Z} is applied to an as-
sertion “guarded” by a box-modality. This box-
modality can be removed by further application
of the rules. At some point we might end up with
{Z} being applied at the top-level, and the rule
we choose to give for such an assertion is a shift
rule that shifts the operator back to the process,
see figure 4.

Various versions of parallel composition has
traditionally posed the greatest difficulties in giv-
ing compositional rules. To get an idea of the
difficulties, suppose we are confronted with the
satisfaction problem #y x t;1 F A and we want to
decompose this to satisfaction problems for g and
t1 without inspecting the structure of {5 and ;.
If we think of ¢; x t; as an element of the two-
dimensional “plane”, P x P, the assertion A will
be some two-dimensional “shape” in this plane. A
decomposition of A could now be constructed by
taking fragments Ay and A; of the two axes, such
that #g should satisfy Ag and #; should satisfy A;.
However, for this to be a complete decomposition,
valid for all ¢, and ¢;, we would need to have A
equal to the product of Ay and A;. This product

would always be a “rectangle” — something which
is certainly not true for arbitrary A. One way to
get around this problem is to approximate A from
the inside by a set of pairs of assertions (A}, A})
forming rectangles, the union of which forms ex-
actly A. However, as Winskel argues in [28] the
presence of fixed points can force this to be an
infinite set; resulting in a poor decomposition.?

Fortunately, if we are slightly less ambitious
and allow ourselves to inspect the structure of
one of the two components, we can do better. In
the suggested picture, this corresponds to the fact
that if we fix a point on one of the axes, we can
project to the other and get a subset of P. The
task of decomposition is now to find the asser-
tion expressing this projection. As we shall see
in section b, if the component is finite-state, it is
possible to directly compute the projected asser-
tion. But in the rules we will be more general and
impose no restrictions on finiteness; in fact, the
rules will be local and for the dynamic operators
follow very closely the rules of figure 3. The main
difference is that we are now considering a process
t'in a ‘context’ ¢ x _which, however, play no active
role in the rules; all the rules are guided solely by
the structure of ¢'.

As before with the idling modalities, we shall
need some rules that allow actions idling in the
right component to be taken outside of the modal-
ities. In order to state these rules we use the auxil-
lary operation s/« of quotienting a set of actions
with respect to a particular action. This opera-
tion is defined by s/a = {8 | f x o € k}. We
also use £ \ _ X x for the set of actions o X 8 € k
for which g is not *. These rules are given as the
first three rules of figure 5. They are easily seen
to be sound. The next eight rules of figure 5 are
the rules for the dynamic operators.

When the right component ¢’ is headed by a
static operator, we simplify the right component
at the expense of the left. Let the operation {(A)
reassociate every modality and every tag of the
form _x(_x_)in A to the left. Then, we change the
product ¢ x (tg xt1) to (¢ xtg) xt; and perform the
corresponding rearrangement on A by replacing
it by {(A). Analogously, when t’ is a relabelling
we will exploit that ¢ x (#{Z}) is equivalent to
(txt"){Id x =}, where Id is the identity relabelling
and the product of relabellings =y x =1 1s defined
by

[1]

- _ Eo(Ozo) X El(al) if o= g X]
oxEi(a) = { o otherwise.

The corresponding change on an assertion A is to
replace every tag of the form _x ({Z}) by a tag

2An example of a difficult assertion is the assertion B
from [2] expressing bisimilarity: p x ¢ = B, iff, p and ¢
are strongly bisimilar. Hence, B forms a diagonal in the
“plane”. A decomposition would include a rectangle for
each equivalence class.

tx ¢ F [K]A
TF R/ (A7) ixtF[r_x+A

{x 1k (K)A

tE {s/+)(AJ)

txt'F(k)A
txt'F{k_x*A

The rules below all assume «/* =)
t x 0k [k]A

t x apt [k]A txapk (k)A
tE[w/a(A/p) TF (s/a)(A/p)

it x (to —|—t1) F [K?]A
tXto"[Ki]A tthl_[K?]A

it x (to —|—t1) F <K?>A
t x g = <K?>A

it x (to —|—t1) F <K?>A
it x1 = <K?>A

t x rec z.d' F [k]A
t x U'[rec x "/« F [k]A

t x rec vt F(K)A
t x trec x ' [2]F (k) A

tX(toth)l_A
(tXto)thl_l(A)

tx (1{EHF A
A x {Idx 2} F [z, (4)

tx (' TA)F A

U<) [(Ack x A)F In(A)

Figure 5: Product rules. We use the abbreviations
kja={B | Bxa€rtand k_x*={ax |
54 43,

(Lx_){E}. Let l;=3(A) be the result of performing
this operation on A.

Finally, for restriction we exploit the equiva-
lence between tox (11 [A) and (tgxt1) [(Acte x A)
using the operation fa (A) to change the tags of A
from _x (_IA) to (_x _)[(Acty x A). This gives
rise to the last three rules of figure 5 for the static
operators.

4 Soundness and completeness
The rules are sound for arbitrary processes and
complete for a set of finite-state processes, i.e. pro-
cesses with only guarded regular recursions.

Theorem 1 (Soundness) Assume a process 1
and a closed assertion A. If t = A can be proven

using the rules of figure 2, 3, 4 and & then t | A.

Central in our proof of completeness will be a
well-founded relation on assertions:

Lemma 2 The relation < defined on closed as-
sertions with tags from a finite set S by

A< A" iff A is a proper subassertion of A, or
A'=oX{U}B and
A= BloeX{U,t} B/ X] for somet & U,

where o 1s one of p and v, is well-founded.

The relation < embodies the fact that the small
modifications to the tags when unfolding the fixed
points is enough to ensure that the fixed-point
rules can only be applied a finite number of times
before ¢t € U. It captures in a very precise manner
the reason for termination of model checking al-
gorithms based on the fixed-point rules (u), (v0)
and (v1) as in the works of Stirling and Walker
[19], Cleaveland [7] and Winskel [26].

The proof strategy in proving completeness is
as follows. Assume a process p with a finite set
of sub-term reachable states .S,. By well-founded
induction using < we show that for all ¢ € S, if
t = A then t F A, When A is of the form [x]B
or (k) B this will involve inspecting the structure
of the term t. Thus we shall show by another
induction, this time on ¢, how to construct from
proofs of some t; + B,...,t, = B where t; is
less than ¢ and ¢; |= B, a proof of t H A. The
“less than” ordering we use on terms is based on a
measure w(t) that is roughly “the maximal depth
to a prefix, nil or variable in ¢,” which, however,
gives more weight to the second component of a
product than to the first. Hence, simplifying the
second component at the expense of the first, as
it is done in the static rules, 1s still considered a
way of making progress.

Theorem 2 (Completeness for finite-state
processes) If p is a process with guarded regular
recurstons then, for all closed assertions A with

tags in Sp, ifpl= A then pb A,

Proofs of this theorem and lemma 2 can be found
in the appendix.

To show an example of the usage of the rules,
we will consider the CCS parallel composition |
as an abbreviation for (_x _) [A{Z} where A and
= are as follows. First, the actions Act are sup-
posed to include a distinguished internal action T
and the remaining actions are called names. As-
sociated with each name a is a co-name a; such
that =~ forms a bijection on Act \ 7. Then, take
A={axa,d x*x,xxd |a€ Act\ 7,d € Act},
and let Z(a x @) = 7,2(a’ x *) = BE(x x a') = o
and on other actions «, Z(«) = «. Tt is not hard
to see that (p x ¢) | A{Z} will behave exactly as

plg.

Example This example illustrates how the com-
positionality facilitates proving a property about
a process that contain infinite-state components
— when the infinite-state behaviour is irrelevant
for the property: Assume p and ¢ = rec x.7.x + 1

plg F v X{}{n)X

plg b (r)vX{plg}{r)

(1)

(px P IAF EH)X {plg}{r) X){E}

px qF (k) X{plg}{r) X){Z} 1A

px (rg+tg/z]) F (k) (v X{plgH{r) X){E}TA
p x 7.q = (&) (v X{plg{r) X){E} TA

px1g b R\ X)X {plg}(r) X{E}TA

p ()X {plgHr) X){E}TA/

p - (wX{plg{r) X){=}TA/g

plg - v X{plg}(r)X

(¥0)

Figure 6: A proof tree for the example.

are infinite-state processes (# might be free in).
We shall consider the process p|g and prove that it
has an infinite 7-loop as expressed by the assertion
v X{HrX.

Let k =ANZ"Yr)={axa|ae Act\ T} U
{7 x *,* x 7}. The proof tree is given in figure 6.
Note that in the application of rule (x.{}), we are

using (k \ _x *)/7 = {*}.
5 Reductions

There is an alternative approach to composition-
ality, followed in [4] and to some extent in [14],
based on the idea of reductions. A reduction trans-
forms a satisfaction problem for a composite pro-
cess op(ty,...,tn) F A into a boolean expression
over satisfaction problems t; F Ay,... ¢, F A,
for the subterms of the process — independent of
the structure of these. Simple examples of reduc-
tions can be derived from:

to+11 E [K]A & (to E [5]4) and (11 = [x]A),
to+t1 = (k)A & (to | (k)A) or (1 E (k)A).

In general, the reductions will be more involved.
However, for the relabelling and restriction it is
possible to give quite concise reductions. They
simply change the modalities (and the tags) of the
assertion and leave everything else unchanged. In
the context of our proof rules such a reduction can
be seen as a means for eliminating the extended
assertions. L.e. for any assertion A, equivalent as-
sertions e¢(A{Z}) and e(A [A) with {Z} and [A
removed, can be found. Figure 7 shows these re-
ductions. An alternative to the rules ({Z}[]) and

({E}()) could now be

t{=Z}F A
tF e(A{Z])

Thus, no extended assertion will be introduced by
this new rule.

If ¢ 1s a finite-state process, also the quotienting
A/t can be removed by a reduction. To give this

e(X{=}) = X
e(Ag N A{E}) = e(Ao{E}) A e(A1{E})
e(do v AL{E}) = e(Ag{=}) V e(A{E})
e[/ A{Z)) = [E-1(m)]e(A{Z})
e((x) A{E]) = {E-}(n))e(A[Z})
e(vX{UIA{Z)) = vX{U{Z} Je(A{E))
e(uX {UYA(E)) = pX{U{Z} }e(A(E))
e(XTA) =X
6(A0 A Al [A) = 6(A0 [A) A 6(A1 [A)
6(A0 vV Al [A) = 6(A0 [A) vV 6(A1 [A)
e([x]ATA) = [ANKle(A]A)
e((m)ATA) = (AN k)e(A]A)
e(X{UATA) = vX{UTA}e(ATA)
e(nX{U}ATA) = pX{U [Ale(ATA)

Figure 7: Reductions for relabelling and restric-
tion. Recall, U{Z} = {p | p{E} € U} and
UlA={p|plAeU}.

reduction we need to introduce tagged simultane-
ous fixed points. Let o be any one of y and v.
Then the syntax is:

O'Xl{Ul} .. Xn{Un}(Al, .. ,An) l XZ',
abbreviated as cX{U}A | X;. The semantics
should be clear. The reduction is given in figure
8. An alternative rule for product could now be

tothl_A

to"@A;tl !

which, again, does not introduce any extended as-
sertion. The price is, that the new rule 1s only
applicable for finite-state processes, and we must
now consider simultaneous fixed points. The si-
multaneous fixed points can be converted into sim-
ple fixed points using the Scott-Bekié principle [6],
thereby potentially increasing the size of the as-
sertion considerably. A more appealing approach

e(X/p) = X
e(AoV Ai/p) = e(Ao/p)Ve(Ai/p)
e(Ao AN A1/p) = e(Ao/p) Ae(AL/p)
e({r)A/p) = V{
e([x]A/ ;

(@)e(A/p') |Fa x B en plp)

Alale(A/p) |3a x 8 € x. p 2 3/}
o Xp AU/p1} - Xp AU /pnt(e(Afp1), .. e(A/pn)) | Xp
where {p1,...,pn} = Rp

Figure 8: Reduction for quotienting. Recall, U/p={t |t x p € U}.

would be to extend the fixed-point rules to si-
multaneous fixed points. Then, for example, ()
should be replaced by

i uX{UYA | X;
tE Ai[pX{U'YA/X]

where U/ = Uy, .. Ui, UU{t}, Uigr, ..., Uy)
and the substitution [puX{U’'}A/X] is an abbre-
viation for [uX{U'}A | X1/Xy1,... pX{U'}A |

n(PrgVing the above reductions correct is an easy

generalisation to tagged fixed points of the proofs
in [4] and [2].)

6 Conclusion

The idea of compositionality being “not looking
into the structure of subprocesses” could be for-
malised using a set of “meta-variables” 2y, ...
distinct from the recursion variables. We should
think of a variable & as being a yet undefined pro-
cess —a “hole” in the term. Any proof carried out
with such variables appearing in the terms, would
then be valid for all instantiations of the variable
— capturing the reusability of proofs. However,
in defining the substitution on terms with meta-
variables, a little care must be taken. In, for ex-
ample, rec x.a.y we have the undefined process
y, which we might at some point decide to in-
stantiate to the term x. Thus we would require
(rec x.a.y)[x/y] = rec z.a.xz. (Also, a substitution
like glrec x.a.y/x] cannot be reduced.)

It 1s interesting that the rules for recursion
in combination with the tagging could actually
help us in finding appropriate instantiations of
meta-variables. Consider as an example the term
rec x.a.y and the assertion v X {}({a)X expressing
the existence of an infinite a-path. Using, in se-
quence, the rules (v1),(rec{})),(.{)) we will end up
with

g[rec w.a.g/x] F vX{rec z.a.y}{a)X.

Suppose we would try to apply rule (v0) in prov-
ing this valid. Then we would have to solve the
equation g[rec z.a.y/x] = rec x.a.y. A solution
is to substitute x for y, arriving at rec z.a.x

vX{rec x.a.x}{a) X, which by rule (v0) is valid.?

Returning to the proof system, we notice that
compared to the earlier work of Stirling, Winskel,
and Andersen and Winskel, the rules are few and
quite simple. In particular, only three simple rules
are needed to deal with fixed-point assertions, two
to deal with recursive processes.

A useful amendment to the system is the pos-
sibility of relaxing the condition in (v0) that ¢
should be an element of the tags of the maximum
fixed-point to simply be strongly bisimilar to one
of the tags. This amendment 1s straightforward
since satisfaction in the modal p-calculus is invari-
ant under strong bisimulation, provided the tags
are interpreted as equivalences classes. Another
useful amendment would then be to combine the
proof system with a proof system for bisimulation
equivalence on processes.

Appendix. Proofs
This appendix contains proofs of lemma 2 and the-
orem 2.

Lemma 2 The relation < defined on closed as-
sertions with tags from a finite set S by

A< A" iff A is a proper subassertion of A, or
A'=oX{U}B and
A= BloeX{U,t} B/ X] for somet & U,

where o 1s one of p and v, is well-founded.
Proof: Take the predicate Q(A) on closed asser-
tions A with tags in S to be defined by

Q(A) <. all <-decreasing sequences
from A are finite.

Extend this to open terms by

QT (A) <.
V6 : FV(A) — ClAssn.
(VX € FV(A).Q(O(X))) = Q(A[9)).

3The reduction for recursion given in [4] would, using
some simplification steps, transform the satisfaction prob-
lem rec z.a.g - vX.{a)X into the problem g - vX.({a)X VvV
{x}), where {z} is an assertion true at the variable z —
called a state identifier there. Thus it can immediately
be seen that substituting = for ¢ yields a solution. That
reduction, however, is rather more involved and does not
seem to give rise easily to a corresponding proof rule.

Observe that if A is closed Qt(A) is simply
Q(A). The proof is by well-founded induction on
a slightly different relation <’ defined by

A" <" Aiff A’ is a proper subassertion of A, or
A=oX{U}B and
A= o X{U,t}B for some t g U.

Since tags belong to the finite set S this rela-
tion is easily seen to be well-founded. Thus as-
sume for all A" <’ A, QT (A) holds and VX €
FV(A4).Q(0(X)). We consider the possible first
successor A’ in a <-decreasing sequence A[f] - A’
and argue that any continuation of the sequence
must be finite. We consider the two possible rea-

sons for A[f] = A’

Case 1. A’ is a proper subassertion of A[6]. Then
either there exists a subassertion A’ of A such
that A”[6] = A’, or A’ is a subassertion of some
0(X). In the first case the result follows from the
induction hypothesis since A" <’ A; in the sec-
ond it follows immediately from the assumption
QO(X)).

Case 2. In this case, A’ = Bloe X{U,t}B/X] and
Alf] = oX{U}B. Either A = Y and 6(Y) =
o X{U}B or A = o X{U}(B'[0]) for some B’. In
the first case the result follows from the assump-
tion of Q(A(Y)); in the second it can be shown
from the induction hypothesis as follows. Since

B = B'[0] and X ¢ FV(A), we can write A’ as

[0)/x] =

Hence, since oX{U t}B" <' o¢X{U}B" it
follows from the induction hypothesis that
QT (e X{U,t}B’) holds.

Take #/(Y) = 6(YV) for Y # X and #(X) =
o X{U,t}(B'[A]). Thus we have just argued
Q(0'(X)) and surely Q(¢'(Y)) for all ¥ # X.
Since B’ is a subassertion of A and therefore
B’ <" A we can again use the induction hypothesis

to conclude Q(A[A]).
a

Let the measure w(t) be defined by structural in-
duction on terms ¢ by

B[X {U,t}(B'

w(0) = w(x) =0
w(at) =0
w(to+t1) = 1+ max{w(te), w(t1)}
w(rec x.1) = 1+ w(?)
wtH{E}) = wt[A) = 14+ w(?)
w(ty X tl) =1+ w(to) + 2w(t1)

We can now prove the following lemma:

Lemma 3 Assume a closed assertion B and a
closed term t with guarded, regular recursions.

Ift = [K]B (t = (k)B) then there exists some

B'leX{U,t}B'/X][0].

ty,. ..ty witht; = B and fromt, - B,... t, F B
there is a proof of t F [k]B (¢t F (k) B).

Proof: We prove the claim by showing V¢. P(#) us-
ing well-founded induction on ¢ with the ordering
induced by w(t) where

P(t) <4 for all closed, extended assertions A,
if ¢ = [k]A then
Fty,.. .ty t; E A, and

t F [k]A can be proven from {t; F A};.

We shall only consider the case for the box-
modality, the case of diamond-modality is similar.
Thus assume for all ' with w(¢') < w(?) that P(¢')
holds and assume further that ¢ = [k]A. We shall
establish P(t) on these assumptions by consider-
ing the possible forms of ¢.

However, consider first the case where * € k.
Then from the semantics we observe that ¢ = A

and ¢t = [k \ *]A. The first is already on the re-
quired form hence take t; = ¢; for t = [\ %] A the
steps below assuming * & & provides the required
remaining fs,...,t, to establish P(¢) using rule
([]#). Thus assume in the sequel * & &.

t = 0. Immediate from rule (0[]).

t=at'. If a € k then t' = A and rule (.[J0) gives
a proof of a.t’ I [k]A from a proof of t' + A. This
shows P(t) in this case.

If a € £ then rule (.[J1) immediately gives a proof
of a.t' I [k]A showing P(?) in this case.

t =ty +t;. It follows from the semantics of asser-
tions that g = [k]A and t; = [k]A, hence since
w(ty) < w(t) and w(ty) < w(t) if follows by induc-
tion that there exists g, ...t and tl, ... 17 with
ti |= A and] |= A such that proofs of ¢, - A and
t1 F A can be constructed from proofs of t§ F A

and # F A. Thus using rule (+[]) we can get a
proof of ty + ¢; = A completing this case.

t = rec x.t’. It follows from proposition 1 that
A [rec zt'/2] | [k]A. Now, since all recur-
sions are guarded and regular w(t [rec x.t'/x]) <
w(rec x.4') hence by the induction hypothesis
there exists t; |: A, ... t, E A such that a proof
of ¥[rec w.t'/x] & [k]A can be constructed from
proofs of ¢; = A. Applying rule (rec[]) to such a
proof we have shown P(%) in this case.

t = t'{=}. Tt follows from downwards soundness
of rule ({Z}[]) that ¢’ | [E71(k)](A{=}). Since
w(t") < w(t) it follows by induction that there ex-
ists ¢}, ..., 1, such that ¢} = A{E} and that from
proofs of t{ = A{E} we can construct a proof of
[”_1(N(A{E}). Now, to extend this to a
proof of t/{E} - [k]A first take t; = t/{Z}. Hence
from proofs of t; F A, i.e. t/{=} - A, we get proofs
of t; = A{E} using rule ({Z}). Finally, using rule
({Z}]]) we get a proof of '{E} F [£] A from a proof

of t' F [271(x)](A{=}) which as we have just ar-
gued can be proven from ¢, - A, ... t, F A.

t =t A As above but using rules ([A) and
(TA[D-

t =1y x ty.

If k/+ #) we can remove the set (k/#) x
{*} by applying rule (x[]*) and proceed
as below — exactly like in the case of
€ Kk considered in the beginning of
the proof. Hence, in the sequel assume
k/* = () and consider the possible forms
of tl .

= 0, = Cl.t/, = tll —|—t/1/, =
rec x.t'. Analogous to the cases above.
See the discussion in section 3.3 about
the relationship between the product
dynamic rules and the dynamic rules.

t; =) x t]. A little bit of arithmetic
shows w((tg x #]) x t}) < w(t):

w((to x t7) x 1Y)

14+ w(to x t]) + 2w(t))
L (1 4 w(to) + 2w(ty)) + 2w(ty)
14+ w(te) + 14 2w(t)) + 2w(ty)
1+ w(to) +2(1 + w(t)) + w(t“))
w(to x (ty x 1)) = w(?)

Thus P(t) follows from the induction
hypothesis and rule (x x).

~—~~

[
’
1
[

A0

t; = t{E}. As above we compute:

w((to x t1){=})

1+ w(to X tl)

14+ (14 w(to) + 2w(ty))
14+ w(to) + 2(1 + w(ty))
w(to x (t1{Z}))

Thus P(t) follows from the induction
hypothesis and rule (x{=}).

ty =) A, As above.

AN

d

The proof of completeness now follows by well-
founded induction on the relation <:

Theorem 2 (Completeness for finite-state
processes) If p is a process wilh guarded regu-
lar recursions then for all closed assertions A with
tags in Sp,

pEA = pF A

Proof: Let Q(A) be defined on closed assertions
with tags in .S, by

Q(A) S VtES, tEA = tF A

We prove Q(A) for all closed assertions with tags
in S, by induction on <. Hence assume Q(A’) for
all A" < A.

We consider the potential forms of A.

A= X.

closed.

A= Ag A Ay Since t |E Ag A Ay implies t = Ag
and ¢t E Aj, and, moreover, Ay < A, and 4; < A
the result follows from the induction hypothesis
applying rule (A).

A= AgV Ay Since t | AV A; implies t = Ag
ort = Ay, and, moreover, Ag < A, and 4; < A
the result follows from the induction hypothesis
applying either rule (V0) or (V1).

A = pX{U}B. From lemma 1 it follows that if
t = pX{U}B then t = B[pX{U,t}B/X] and as
it can easily be seen from the semantics of tagged
minimum fixed points, ¢ € U. Thus rule gu)
can be applied to yield a proof of t F uX{U}B
from a proof of t + B[uX{U,t}B/X]. Since

BlpX{U,t}B/X] < uX{U} B we have by the in-
duction hypothesis a prootf of B[uX{U,t}B/X]
completing this case.

A = vX{U}B. If t € U, rule (v0) immedi-
ately yields a proof of ¢+ - vX{U}B. If t ¢
U but ¢ vX{U}B if follows from lemma
1 that ¢t E BpX{U,t}B/X] thus rule (v1)
gives a proof of ¢ = vX{U}B from a proof of
t F BlvX{U,t}B/X]. Since BlpvX{U,t}B/X] <
vX{U} B we have by the induction hypothesis a
proof of B[uX{U,t}B/X] completing this case.

A = [k]B, A = (k)B. Assuming ¢ = [k]B it
follows from lemma 3 that there exists ¢1,...,¢,
such that ¢; = B and t | [£]B can be proven
from proofs of ¢; F B. However, since B < [k]B
it follows from the induction hypothesis that such
proofs do indeed exist, completing the case for the
box-modality. The case for the diamond-modality
is similar.

d

Impossible since A is assumed to be

References

[1] Henrik Reif Andersen. Model checking and
boolean graphs (extended abstract). In
B. Krieg-Brickner, editor, Proceedings of
4’th European Symposzum on Programming,
ESOP’92, Rennes, France, volume 582 of
LNCS. Springer—Verlag, 1992.

[2] Henrik Reif Andersen. Verification of Tem-
poral Properties of Concurrent Systems. PhD
thesis, Department of Computer Science,
Aarhus University, Denmark, June 1993. PB-
445,

[3] Henrik Reif Andersen. Model checking and
boolean graphs. Theoretical Computer Sci-
ence, April 1994. To appear. Extended ab-
stract as [1].

[4] Henrik Reif Andersen and Glynn Winskel.
Compositional checking of satisfaction. For-
mal Methods In System Design, 1(4), Decem-
ber 1992.

[5]

André Arnold and Paul Crubille. A linear
algorithm to solve fixed-point equations on
transitions systems. Information Processing

Letters, 29:57-66, 1988.

H. Beki¢. Definable operations in general al-
gebras, and the theory of automata and flow
charts. In C.B.Jones, editor, Hans Bekié:
Programming Languages and Their Defini-
tion, volume 177, pages 30-b5. Springer-
Verlag, 1984.

Rance Cleaveland. Tableau-based model
checking in the propositional mu-calculus.

Acta Informatica, 27:725-747, 1990.

Rance Cleaveland, Marion Dreimuller, and
Bernhard Steffen. Faster model checking for
the modal mu-calculus. In v. Bochmann and

Probst [21], pages 383-394.

Rance Cleaveland and Bernhard Steffen.
A linear-time model-checking algorithm for
the alternation-free modal mu-calculus. In
Kim G. Larsen and Arne Skou, editors, Pro-
ceedings of the 3rd Workshop on Computer
Aided Verification, July 1991, Aalborg, vol-
ume 575 of LNCS. Springer-Verlag, 1992.

E. Allen Emerson and Chin-Luang Lei. Ef-
ficient model checking in fragments of the
propositional mu-calculus. In Symposium
on Logic in Computer Science, Proceedings,

pages 267-278. IEEE, 1986.

Dexter Kozen. Results on the propositional
mu-calculus. Theoretical Computer Science,

27, 1983.

Kim G. Larsen. Proof systems for Hennessy-
Milner logic with recursion. In M. Dauchet
and M. Nivat, editors, Proceedings of CAAP,
Nancy, Franch, volume 299 of Lecture Notes
. Computer Science, pages 215-230, March
1988.

Kim G. Larsen. Efficient local correctness
checking. In v. Bochmann and Probst [21].

Kim G. Larsen and Liu Xinxin. Composi-
tionality through an operational semantics of
contexts. In M.S. Paterson, editor, Proceed-
wngs of ICALP, volume 443 of LNCS, pages
526-539. Springer-Verlag, 1990.

Colin Stirling. A complete compositional
modal proof system for a subset of CCS. vol-
ume 194 of Lecture Notes in Computer Sci-
ence, pages 475-486. Springer-Verlag, 1985.

Colin Stirling. A complete modal proof sys-
tem for a subset of SCCS. volume 185 of Lec-
ture Notes in Computer Science, pages 253—

266. Springer-Verlag, 1985.

[17]

[18]

Colin Stirling. Modal logics for communicat-
ing systems. Theoretical Computer Science,

49:311-347, 1987.

Colin Stirling. Modal and Temporal Log-
ics. In S. Abramsky, D. Gabbay, and
T. Maibaum, editors, Handbook of Logic in
Computer Science, volume 2, pages 477-563.
Oxford University Press, 1992.

Colin Stirling and David Walker. Local model
checking in the modal mu-calculus. Theoret-

ical Computer Science, 89(1):161-177, 1991.

A. Tarski. A lattice-theoretical fixpoint the-
orem and its applications. Pacific Journal of

Mathematics, 5:285-309, 1955.

G. v. Bochmann and D. K. Probst, editors.
Proceedings of the 4th Workshop on Com-
puter Aided Verification, CAV’92, June 29
- July 1, 1992, Montreal, Quebec, Canada,
volume 663 of LNCS. Springer-Verlag, 1992.

Bart Vergauwen and Johan Lewi. A linear
algorithm for solving fixed-point equations
on transition systems. In J.-C. Raoult, edi-
tor, Proceedings of 17’th Colloguium on Trees
. Algebra and Programming, CAAP’92,
Rennes, France, volume 581 of LNCS, pages
322-341. Springer-Verlag, 1992.

Glynn Winskel. Synchronisation trees. The-
oretical Computer Science, 34:33, 1984.

Glynn Winskel. On the composition and de-
composition of assertions. Technical Report
TR-59, Computer Laboratory, University of
Cambridge, 1985.

Glynn Winskel. A complete proof system for
SCCS with modal assertions. Fundamenta
Informaticae, 1X:401-420, 1986.

Glynn Winskel. A note on model checking the
modal v-calculus. In G. Ausiello, M. Dezani-
Ciancaglini, and S. Ronchi Della Rocca, ed-
itors, Proceedings of ICALP, volume 372 of
LNCS, pages 761-772. Springer-Verlag, 1989.

Glynn Winskel. A compositional proof sys-
tem on a category of labelled transition sys-

tems. [Information and Computation, 87,
1990.
Glynn Winskel. On the compositional check-

ing of wvalidity. In J.C.M. Baeten and
J.W. Klop, editors, Proceedings of CONCUR
’90, volume 458 of LNCS, pages 481-501.
Springer-Verlag, 1990.

