
Schema Revisited

Colin Stirling

Division of Informatics
University of Edinburgh
Edinburgh EH9 3JZ, UK

cps@dcs.ed.ac.uk

1 Introduction

Two schema problems from the 1970s are examined, monadic recursion schemes
and first-order recursion schemas. Research on these problems halted because
they were shown to be equivalent to the problem of decidability of language
equivalence between DPDA (deterministic pushdown automata). Recently a de-
cidability proof for equivalence of DPDA was given by Sénizergues [10, 11], which
therefore also solves the schema problems. However Sénizergues proof is quite
formidable. A simplification of the proof was presented by the author [13] using
ideas from concurrency theory (for showing decidability of bismilarity [9, 12])
and crucial insights from Sénizergues’s intricate proof.

In this abstract we concentrate on first-order schemes and we outline a so-
lution, based on the DPDA equivalence proof, which is reasonably close to its
original formulation. We make use of Courcelle’s work [1, 2], which shows how
to reduce this schema problem to decidability of language equivalence between
strict deterministic grammars. And the proof in [13] of decidability of DPDA
equivalence proceeds via (a small extension of) these grammars.

2 Monadic recursion schemes

A monadic recursion scheme, following Garland and Luckham [6], is defined rel-
ative to a set of basis monadic functions F = {f1, . . . , fk} and a set of predicates
P = {P1, . . . , Pl} as a finite family

F1x
def
= if P1x then α1x else β1x

...
...

Fnx
def
= if Pnx then αnx else βnx

where each Fi is distinct and each αi and βi is a string of defined and basis
functions, a member of (F ∪ DF)∗ when DF = {F1, . . . , Fn}, and each Pi ∈ P.
The scheme is usually identified by the initial defined function F1.

Example 1 A simple example is Fx
def
= if Px then fx else FFfx. 2

A computation of a scheme is defined with respect to an interpretation I
which fixes the meanings of the basis functions, predicates and variable. An
interpretation I over a non-empty value space D is a mapping such that I(x) ∈
D, I(fi) ∈ D → D and I(Pi) ∈ D → {tt, ff}. A computation relative to I is
then defined using the following transition rules

F1x → F1d if I(x) = d δfid → δd′ if I(fi)(d) = d′

δFid → δαid if I(Pi)(d) = tt δFid → δβid if I(Pi)(d) = ff

The value of a scheme Fx relative to I, written ValI(Fx), is a member of D⊥. If
Fx −→∗ d then ValI(Fx) = d and if the computation never ends ValI(Fx) =⊥.

Two schemes F and G are strongly equivalent, written F ∼ G, if for all
interpretations I, ValI(Fx) = ValI(Gx). The classical equivalence problem for
monadic recursion schemes is to show whether or not there is a decision procedure
for F ∼ G. For background and significance of the problem, see Garland and
Luckham [6] and references cited therein.

An interpretation I is free if the domain D = F
∗{x} and I(f) = f and

I(x) = x. The result of a computation relative to a free I is a word (or ⊥).

Example 2 Let I be the free interpretation for example 1 where I(P)(fnx) = tt

iff n > 0. Therefore Fx −→ FFfx −→ Fffx −→ fffx, and ValI(Fx) = fffx.
In contrast, if I(P)(fnx) = tt iff n is odd then ValI(Fx) =⊥. 2

Relationships with language theory were underpinned by the following result
in Garland and Luckham.

Fact 1 F ∼ G iff for all free interpretations I, ValI(Fx) = ValI(Gx).

Garland and Luckham showed that the decision problem for schemes reduces
to the problem of decidability of DPDA, and Friedman showed that the con-
verse also holds using jump DPDA [5]. We shall now provide a cleaner variant
reduction to the DPDA problem, inspired by these authors.

First we assume a “Greibach” normal form for a scheme. In Fi
def
= if Pix then

αix else βix each αi and βi has one of the forms ǫ or fj or Fj or Fjfk or FjFk.
It is straightforward to transform a scheme into normal form by adding auxilary

definitions. For instance, example 1 becomes Fx
def
= if Px then fx else Gfx and

Gx
def
= if Px then FFx else FFx.

Let B be the set of boolean arrays of size l. If b ∈ B then bi is the ith entry of
b: the idea is that bi = tt means that Pi is true. A stack symbol is an element
of DF, a state is a boolean b and the alphabet consists of elements bfb′ where
f ∈ F. A configuration of the DPDA has the form bδ where δ ∈ DF

∗ is a sequence

of stack symbols. Transitions have the form bδ
bfb′

−→ b′δ′ or bδ
ǫ

−→ b′δ′. Let δR be

the reverse of δ. Assume a scheme with definition Fx
def
= if Pix then αx else βx.

Basic transitions for bF are determined from the scheme as follows.

bF
bfb′

−→ b′α′ if either bi = tt and αR = fα′

or bi = ff and βR = fα′

bF
ǫ

−→ bα′ if either bi = tt and αR = α′ and α ∈ DF
∗

or bi = ff and βR = α′ and β ∈ DF
∗

There is also the prefix rule, if bF
a

−→ b′α′ then bFδ
a

−→ b′α′δ. Basic transitions
obey the following two deterministic properties:

if bF
ǫ

−→ bδ then not(bF
bfb′

−→ b′δ′) for any b′δ′

if bF
a

−→ b′δ′ and bF
a

−→ b′′δ′′ then b′ = b′′ and δ′ = δ′′

The result is therefore a DPDA.

The language of a configuration bδ, written L(bδ), is the set of words w ∈
(B × F × B)∗ recognised by bδ using these transition rules, where ǫ-transitions
are swallowed in the usual way, and assuming empty stack acceptance, L(bδ) =

{w : bδ
w

−→ b′ǫ for some b′}. The following is a consequence of Fact 1 and the
construction.

Proposition 1 F ∼ G iff for all b, L(bF) = L(bG).

There is a routine transformation of a DPDA into a context-free grammar
(which is strict deterministic [7, 8], more on this later). First one transforms the
DPDA into normal form where ǫ-transitions only pop the stack, by examining
what happens under repeated basic ǫ-transitions. Next one transforms the nor-
malised DPDA into a context free grammar whose nonterminals are triples of the
form bFb′ and whose alphabet is the same as that of the DPDA. The idea is that,
for instance, a basic transition of the DPDA of the form bF

a
−→ b′′GH becomes

in the grammar the family of transitions for each b′′′, bFb′
a

−→ b′′Gb′′′ b′′′Hb′.
Hence the language accepted by the nonterminal bFb′, L(bFb′), is the set of words

w such that bF
w

−→ b′ǫ. Hence F ∼ G iff for all b and b′, L(bFb′) = L(bGb′).
Decidability of monadic recursion schemes follows from the following theorem.

Theorem 1 It is decidable whether L(bFb′) = L(bGb′).

In this abstract there is only an intimatation of the procedure in section 4,
because we shall concentrate on the second schema problem.

3 Recursive program schemes

A recursive program scheme, following Courcelle [1, 2], is defined relative to a set
of basis functions F = {f1, . . . , fk} and a set of basis variables V = {x1, . . . , xl}.
Each basis function f has an associated arity ρ(f) > 0, and therefore need not
be monadic. A scheme is a finite family of the form

F1(x1, . . . , xm1
)

def
= t1

...
...

Fn(x1, . . . , xmn
)

def
= tn

where each Fi is distinct, and has an associated arity ρ(Fi) = mi, and where
terms ti are built from the basis and defined functions and variables, and there-
fore have the form xj or fj(t1, . . . , tρ(fj)) or Fj(t1, . . . , tρ(Fj)). A scheme is again
usually identified with its head function F1. We let DF be the set of defined
functions.

Example 1 A simple example is F (x)
def
= f(F (gx), g(x)).

The interpretation of a scheme is either the undefined tree or a completed
tree whose depth is finite or infinite and where internal nodes are labelled with
elements of F and leaves are labelled with elements of V. The following transition
rules generate the tree and they are applied down the depth of the tree starting
with F1(x1, . . . , xρ(F1))

xi −→ xi

Fi(t
′
1, . . . , t

′
ρ(Fi)

) −→ ti{t′1/x1, . . . , t
′
ρ(Fi)

/xρ(Fi)}

if t′j −→ t′′j , 1 ≤ j ≤ ρ(fi), then fi(t
′
1, . . . , t

′
ρ(fi)

) −→ fi(t
′′
1 , . . . , t′′ρ(fi)

)

where {·/·} is simultaneous substitution. For instance in the case of example 1

Fx −→ f(F (gx), gx) −→ f(f(F (ggx), ggx), gx) −→ . . .

The value of a scheme belongs to the family T ω
⊥ of appropriate trees.

Alternatively one can view T ω
⊥ as a domain1 of trees. The meaning of a scheme

is the least fixed point with respect to the free tree interpretation, following
Damm [3, 4]. In the case of example 1

F 0(x) =⊥ F i+1(x) = f(F i(gx), gx)

So F 2(x) = f(((f ⊥), ggx), gx). The resulting tree in T ω
⊥ is Fω(x) =

⊔
i≥0 F i(x)

which is the meaning of Y (λF. λx. f(F (gx), gx))(x) with respect to the free
interpretation. Thus schemes are only “first-order”. Higher order schemes are
considered by Damm [3, 4].

Two schemes F and G with arity n are equivalent, written F ∼ G, if they
produce the same tree, that is if Fω(x1, . . . , xn) = Gω(x1, . . . , xn). The classical
equivalence problem for recursion schemes is to show whether or not there is a
decision procedure for F ∼ G. For background and significance of the problem
see [1, 2] and references cited therein.

1 With ordering ⊥⊑ T and Ti ⊑ T ′

i for each i implies fj(T1, . . . , Tρ(fj)) ⊑

fj(T
′

1, . . . , T
′

ρ(fj)).

The equivalence problem for schemes was shown to be interreducible to the
DPDA problem by Courcelle [2], via grammars. A key idea is to represent a tree
T ∈ T ω

⊥ as the language of its finite branches, B(T). The following finite tree
f(g(x1, x2), f(x1, h(x3))) is given as {f1g1x1, f

1g2x2, f
2f1x1, f

2f2h1x3}. Each
word is a branch. One splits each basis function f of arity k into terminal symbols
f1, . . . , fk reflecting the different directions that can be taken to obtain the
branch. In the case of T generated by example 1 above B(T) is the deterministic
context-free language {f2g1x, f1f2g1g1x, f1f1f2g1g1g1x, . . .}.

If T = T ′ then B(T) = B(T ′). But the converse need not hold. Consider

the trees generated by the schemes Fx
def
= f(Fx) and Gx

def
= g(Gx). These trees

are not “locally finite” [2]. A tree T is locally finite if whenever u is a prefix
of a branch of T then there is a finite word v such that uv ∈ B(T). Locally
finite trees with the same branch language are equal. It is straightforward as
Courcelle notes to guarantee local finiteness by increasing the arity of the basis
functions by one and adding a new variable. Consider the transformed schemes

Fxy
def
= f(Fxy, y) and Gxy

def
= g(Gxy, y). Two schemes are equivalent iff their

transformations are also equivalent. Hence we can restrict attention to schemes
that generate locally finite trees, and for these the following holds, as shown by
Courcelle [2].

Fact 1 F ∼ G iff B(Fω(x1, . . . , xn)) = B(Gω(x1, . . . , xn)).

Following Courcelle, the next step is to transform a scheme into a context-
free grammar which generates its branch language. We exclude the case where
a scheme generates a single node tree xi: it is easy to directly check equivalence
betweeen such schemes. With this exclusion, we assume that schemes are given
in “Greibach” normal form. Each term ti in the definition of Fi has the form
f(rt1, . . . , rtρ(f)) where f ∈ F and where each rtj is built from variables and
defined function symbols only and where the depth of their embedding is at
most two. This normal form is easy to achieve by introducing auxilary defined
functions.

An ǫ-free context-free grammar in 3-Greibach normal form consists of a finite
set N of nonterminals, a finite alphabet A and a finite family of basic transitions,
each of the form X

a
−→ α where X ∈ N, a ∈ A and α ∈ N

∗ such that its length,
|α| is less than 3. A simple configuration is a sequence of nonterminals whose

behaviour is determined by the basic transitions and the prefix rule: if X
a

−→ α
then Xβ

a
−→ αβ where β ∈ N

∗. The language accepted by a simple configuration
α, L(α), is the set of words {w ∈ A

∗ : α
w

−→ ǫ}.

Given a scheme in normal form we associate a grammar with it as follows.
The alphabet A is the set of split functions f j , 1 ≤ j ≤ ρ(f) for f ∈ F.
The nonterminals N is the set F j , 1 ≤ j ≤ ρ(F). Assume in the scheme that

F (x1, . . . , xρ(F))
def
= f(rt1, . . . , rtρ(f)). The basic transitions are defined as fol-

lows, for each nonterminal F i and alphabet symbol f j.

F i fj

−→ ǫ if rtj = xi

F i fj

−→ Gk if rtj = G(rt′1, . . . , rt
′
ρ(G)) and rt′k = xi

F i fj

−→ GkH l if rtj = G(rt′1, . . . , rt
′
ρ(G)) and

rt′k = H(rt′′1 , . . . , rt′′ρ(H)) and rt′′l = xi

The grammar is defined so that the language accepted by a nonterminal F i is
the set of words w ∈ A

+ such that wxi ∈ B(Fω(x1, . . . , xρ(F))). For example in
the case of the second transition rule because G has xi in its kth position in the
definition of F it follows that {f jw : w ∈ L(Gk)} ⊆ L(F i). Hence the following
result holds.

Fact 2 F ∼ G iff for each i, L(F i) = L(Gi).

4 The decision procedure

The disjoint union of two recursion schemes is a single scheme and therefore we
need only consider a single grammar. The equivalence problem is then to show
that for each i, L(F i) = L(Gi) for F , G ∈ DF. We assume that the grammar is
“tidied” as usual by removing redundant nonterminals (those not reachable from
any F i and Gi and those whose language is ∅). In the following we use X , Y and
Z to range over nonterminals and α, β to range over sequences of nonterminals.

The decision procedure consists of two semi-decision procedures. One half is
easy, if L(F i) 6= L(Gi) then there is a smallest word which distinguishes them.
The other half is more difficult. We show that F ∼ G iff there is a finite tableau
proof for this. Tableaux have been used for proving decidability of bisimulation
equivalence [9, 12]. They are also implicit in Sénizergues’s proof [11] where they
appear as strategies.

The tableau proof system is goal directed, and consists of two kinds of rules,
simple and conditional. Simple rules have the form

Goal

Subgoal1 . . . Subgoaln
C

where Goal is what currently is to be proved and the subgoals are what it reduces
to, provided the side condition C holds. A conditional rule has the form

Goal1
...

Goalk
... C

Goal
Subgoal

where Goal is the current goal to be shown and there is a single subgoal to
which it reduces provided that the goals Goal1,. . .,Goalk occur above Goal on
the path between it and the root (starting goal) and provided that the side
condition C holds. The use of conditional tableau rules is a new innovation,
which is essentially due to Sénizergues.

There is also the important notion of when a current goal counts as final.
Final goals are classified as either successful or unsuccessful. A tableau proof for
a starting Goal is a finite proof tree, whose root is Goal and all of whose leaves
are successful final goals, and all of whose inner subgoals are the result of an
application of one of the rules.

The first tableau proof rule is the initial simple rule, INIT.

F = G

F 1 = G1 . . . Fn = Gn

The initial goal F = G, “are schemes F and G equivalent?” reduces to the
subgoals F i = Gi, “is L(F i) = L(Gi)?”, for each i.

The main idea of the tableau proof system is to reduce goals to subgoals by
following branches down the trees for F and G. F i represents the subtree for F
all of whose branches end in xi. The configuration (F i ·w) represents the subtree
for F given by taking path w down the subtree F i: it is therefore the subtree
whoses branches are {v : wvxi is a branch of the tree for F}. Clearly F ∼ G iff
for all w and i, (F i ·w) ∼ (Gi ·w). We show that the subtree (F i ·w) is naturally
described in the grammar.

Basic transitions of the grammar induced by a scheme are “almost” deter-

ministic. If F i fj

−→ ǫ and F i fj

−→ α then α = ǫ because xi is in the jth position
of f and nothing else is thereby allowed. However if the jth position of f is

G(rt′1, . . . , rt
′
ρ(G)) then it is possible that F i fj

−→ α and F i fj

−→ β when α 6= β.

However α and β are “similar”: if α = Gkα′ then β must have the form Glβ′

and if l = k then α′ and β′ must again be similar (both of the form H l′). The
grammar is in fact strict deterministic [7, 8].

Let ≡ be a partition of the nonterminals N of a context-free grammar (in
normal form). The partition ≡ is extended to sequences of nonterminals, α ≡ β
if α = β or there is a δ such that α = δXα1 and β = δY β1 and X ≡ Y and
X 6= Y . A partition ≡ on N is strict if the basic transitions obey the following
two conditions:

if X
a

−→ α and Y
a

−→ δ and X ≡ Y then α ≡ δ

if X
a

−→ α and Y
a

−→ α and X ≡ Y then X = Y

A context-free grammar is strict deterministic if there exists a strict partition
of its nonterminals. The partition on the grammar induced by a scheme is given
by F i ≡ F j for each F and indices i and j. Clearly the two strictness conditions
hold2. Hence for α, β 6= ǫ and α 6= β, α ≡ β if α = δF iα′ and β = δF jβ′ for
i 6= j.
2 Similarly the context-free grammar induced by a monadic recursion scheme is strict

deterministic when the partition is given by bFb′ ≡ bFb′′

The strictness conditions generalise to words (replacing a with w ∈ A
+

throughout). It therefore follows that if X ≡ Y then the languages accepted
by X and Y are prefix-disjoint and if X 6= Y then they accept disjoint lan-
guages. That is, if w ∈ L(F i) and i 6= j then no prefix of w including w belongs
to L(F j). This is clear from the tree generated by F : if wxi is a branch then
this excludes vxj as a branch whenever v is a prefix of w.

A simple configuration of a grammar is a sequence of nonterminals β. A
composite configuration is a finite family of simple configurations, β1 + . . .+ βn.
The language accepted by a composite configuration is the union of the languages
acccepted by the components, L(β1 + . . .+βn) =

⋃
L(βi). For simplicity we also

assume that the empty sum, ∅, is also a configuration. Our main concern is with
a subset of such configurations: β1 + . . .+βn is admissible if βi ≡ βj for each pair
of components βi and βj . Note that the singleton member ǫ is admissible and so
is ∅. Subtrees of (the tree for) F such as (F i · w) are represented as admissible

configurations. Let (F i · a) be defined as
∑

{α : F i a
−→ α is a basic transition}

which is an admissible configuration because the grammar is strict. L((F i ·a)) is
{w : awxi is a branch in the tree for F}. If A = X1β1+ . . .+Xnβn is admissible

then (A · a) is
∑

{αi1β1 : X1
a

−→ αi1} + . . . +
∑

{αin
βn : Xn

a
−→ αin

},
which is also admissible. The notation is extended to words. (A · ǫ) = A and
(A · aw) = (A · a) · w, where (∅ · w) = ∅. It is easy to check that for any w, if A
is admissible then (A · w) is also admissible.

We now return to the tableau construction. We let A, B, C and D range
over admissible configurations. Goals in the tableau proof system (except for
the initial goal F = G) have the form A = B. The next tableau proof rule is
again a simple rule, UNF (unfold). Let A = {a1, . . . , ak}.

A = B

(A · a1) = (B · a1) . . . (A · ak) = (B · ak)

UNF allows one to walk down the trees for F i and Gi. UNF is the strategy TA

in Sénizuergues’s proof.

The size of an admissible configuration A = β1 + . . . + βn, written |A|, is
the length of its largest sequence, max{|βi| : 1 ≤ i ≤ n}. A has many different
“shapes”, as it can be written in many different ways using obvious equalities
(such as B(C + D) = BC + BD). A basic shape is a head nonterminal form
X1A1 + . . . + XkAk where Xi 6= Xj , i 6= j, and Xi ≡ Xj. In this case the Xis
are heads and Ais are tails. Another head form is α1A1 + . . . + αnAn + B where
αi ≡ αj and |αi| = |αj | and no Aj = ǫ and |B| ≤ |αi|. Instead one may focus
on tail forms. If (Xi · w) = Di (where Di may be ∅ and for no prefix v of w is
Xi · v = ǫ) then (X1A1 + . . . + XkAk · w) = D1A1 + . . . + DkAk. The shape
D1A1+ . . .+DkAk highlights the tails Ai. Because the grammar is in 3-Greibach
normal form |Di| ≤ 1 + |w| for each i.

Associated with any nonterminal F i is a smallest word w(F i) such that
w(F i) ∈ L(F i), and so (F i ·w(F i)) = ǫ. Note that if (F i · v) = ǫ and j 6= i then
(F j ·v) = ∅. An important measure is M which is max{|w(X)| : X is a nonterminal}.

UNF allows one to proceed down the trees for F and G. Any subgoal A = B
can be thought of as (F i · w) = (Gi · w) where w is a prefix of a branch. The
next step is to permit tree surgery and transplantation to “balance” the subtree
expressions. We give the tableau rule BAL(L). This is a conditional tableau rule.
In Sénizuergues’s proof this is the strategy TB.

X1A1 + . . . + XkAk = B
... C

D1A1 + . . . + DkAk = B′

D1(B · w(X1)) + . . . + Dk(B · w(Xk)) = B′

where C is the condition: there are exactly M applications of UNF between the
top goal and bottom goal and no other rule is applied, and each Di 6= ǫ. To
understand the rule assume that D1A1 + . . . + DkAk = B′ is the current goal.
This reduces to the subgoal beneath it provided that the top goal appears above
it in the proof tree and condition C holds. There is also the symmetric rule
BAL(R) where the premises are B = . . . and B′ = . . ., and the conclusion is
B′ =

Consider the top goal of BAL(L), A = B. Let B have shape β1B1 + . . . +
βnBn+C where |βi| = M+1. Because (Xi·w(Xi)) = ǫ it follows that (A·w(Xi)) =
Ai. Therefore if the top goal is true then L(Ai) = L(B · w(Xi)). It is this
substitution of (B · w(Xi)) for Ai for each i in the bottom goal which the rule
sanctions. Moreover (B·w(Xi)) is (β1·w(Xi))B1+. . .+(βn·w(Xi))Bn+(C·w(Xi))
because |w(Xi)| < |βj |. Also B′ has the shape B′

1B1 + . . . + B′
nBn + C′ (where

|C′|, |B′
i| ≤ 2M + 1). Putting all this together it means that the subgoal has the

following form, where some of the A′
i and B′

j may be ∅ and Bn+1 = ǫ.

A′
1B1 + . . . + A′

nBn + C′′Bn+1 = B′
1B1 + . . . + B′

nBn + C′Bn+1

We think of this subgoal as “balanced” because they have this common tail form,
and all their heads have bounded size.

Introducing balanced subgoals is not sufficient for showing decidability. For
the sizes of the common tails may keep growing. There is one more tableau rule,
CUT, which allows one to cut the common tails. The exact formulation relies
on families of auxiliary nonterminals ranged over by V , each of which has an

associated definition V
def
= B. We say that (V1, . . . , Vn) is a family of recursive

nonterminals if for each i either Vi
def
= Ai1V1 + . . .+AinVn where Ai1 + . . .+Ain

is admissible and does not contain auxiliary nonterminals, or Vi
def
= Vj and j ≤ i

and Vj
def
= Vj . An auxiliary nonterminal can only appear as a final element in a

sequence of nonterminals. Admissibility is extended to such families of sequences.
A configuration which is a singleton V is admissible and β1V

′
1 + . . . + βkV ′

k is
admissible if the head β1 + . . . + βk is admissible and each βi is distinct, and
there is a family of recursive nonterminals (V1, . . . , Vn) such that each V ′

i is one
of the Vjs. An admissible configuration can therefore be presented in tail form

A = A1V1 + . . . + AnVn. The definition of (A · w) is refined. If (Ai · w) = ǫ and

Vi
def
= B then (A · w) = B. The language accepted by A is the set of words w

such that (A · w) = Vi where Vi
def
= Vi. Two configurations containing auxiliary

nonterminals are equivalent if they accept the same words and agree on their
terminating nonterminals.

The idea of CUT is that a balanced goal

(1) A1B1 + . . . + AnBn = C1B1 + . . . + CnBn

where the Ais and Cis do not contain recursive nonterminals, can be reduced to
a subgoal of the form

(2) A1V1 + . . . + AnVn = C1V1 + . . . + CnVn

where (V1, . . . , Vn) is a family of recursive nonterminals. The mechanism for re-
ducing goal (1) to goal (2) involves constructing the recursive family (V1, . . . , Vn)
from a subsidary family of goals, Ai

1B1 + . . .+Ai
nBn = Ci

1B1 + . . .+Ci
nBn where

i ≥ 1, with the same tails as (1).
We now state an important result which underpins the rule CUT.

Lemma 1 Assume 0 < m ≤ n. If for all i : 1 ≤ i ≤ m, L(Ai
1B1 + . . . +

Ai
nBn) = L(Ci

1B1 + . . .+Ci
nBn) then there is a family of recursive nonterminals

(V1, . . . , Vn) such that

1. For each i : 1 ≤ i ≤ m, L(Ai
1V1 + . . . + Ai

nVn) = L(Ci
1V1 + . . . + Ci

nVn),

2. If Vj
def
= A′

1V1 + . . . + A′
nVn then L(Bj) = L(A′

1B1 + . . . + A′
nBn),

3. If Vi
def
= Vj then L(Bi) = L(Bj).

The recursive family (V1, . . . , Vn) which issues from the proof of Lemma 1 is said
to be “canonical” for the family Ai

1B1 + . . .+Ai
nBn = Ci

1B1 + . . .+Ci
nBn of true

goals. The construction of canonical nonterminals is independent of the tails Bi.

Fact 1 If (V1, . . . , Vn) is canonical for Ai
1B1 + . . .+Ai

nBn = Ci
1B1 + . . .+Ci

nBn

then it is also canonical for the family Ai
1D1 + . . .+Ai

nDn = Ci
1D1+ . . .+Ci

nDn,
where i : 1 ≤ i ≤ k.

The proof of Lemma 1 assembles the canonical family in stages. At stage
j, the family (V j+1

1 , . . . , V j+1
n) is constructed from (V j

1 , . . . , V j
n). If each V j+1

i

has the same definition as V j
i then the construction terminates. In fact it must

terminate by stage j = n − 1. The building of the V j+1
i s from the V j

i s appeals

to a smallest distinguishing word uj+1 for L(A′) 6= L(C′), where A′ is Al
1V

j
1 +

. . . + Al
nV j

n and C′ is Cl
1V

j
1 + . . . + Cl

nV j
n for some l. The depth of a canonical

family is given by the sum over all stages of the distinguishing words,
∑

|uj |.
We need to consider how to introduce recursive nonterminals when the family

of goals need not all be true. The idea is to approximate canonicity by defining
when a recursive family (V1, . . . , Vn) is “canonical to depth d” where d ≥ 0, for a

family of goals Ai
1B

1 + . . .+Ai
nBn = Ci

1B1 + . . .+Ci
nBn. The construction is the

same as for the proof of Lemma 1, except that we stop at the first stage j ≥ 0
with (V j

1 , . . . , V j
n) as the required family of recursive nonterminals if the sum of

the distinguishing words sj = |u1| + . . . + |uj | is no larger than d, and for all w

such that |w| ≤ d−sj, w ∈ L(Ai
1V

j
1 +. . .+Ai

nV j
n) iff is w ∈ L(Ci

1V
j
1 +. . .+Ci

nV j
n),

for each i.
The rule CUT, where k ≤ n, is as follows.

A1
1B1 + . . . + A1

nBn = C1
1B1 + . . . + C1

nBn

...
Ak

1B1 + . . . + Ak
nBn = Ck

1 B1 + . . . + Ck
nBn

... C
A1B1 + . . . + AnBn = C1B1 + . . . + CnBn

A1V1 + . . . + AnVn = C1V1 + . . . + CnVn

where C is the condition that (V1, . . . , Vn) is canonical to depth d for the family
of goals Ai

1B1 + . . . + Ai
nBn = Ci

1B1 + . . . + Ci
nBn, 1 ≤ i ≤ k, and there are at

least d applications of UNF (as well as possibly applications of BAL) between
Ak

1B1 + . . . + Ak
nBn = Ck

1 B1 + . . . + Ck
nBn and the final goal in the premises

A1B1 + . . . + AnBn = C1B1 + . . . + CnBn. CUT is essentially the strategy TC

in S̀’enizuergues’s proof (although he uses regular expressions and not recursive
nonterminals).

From Fact 1 it follows that for any other family of goals with different tails Di

but the same heads Ai
j , Ci

j the same recursive nonterminal family is introduced.
It is this feature which guarantees that there is a finite tableau proof for F ∼ G.

We have now seen all the tableau proof rules, INIT, UNF, BAL(L), BAL(R)
and CUT. There is also the important notion of when a current goal counts
as final. Final goals are classified as either successful or unsuccessful. A tableau

proof for the starting goal F = G is a finite proof tree, whose root is F = G
and all of whose leaves are successful final goals, and all of whose inner subgoals
are the result of an application of one of the rules. Successful final goals are as
follows:

A = B
... UNF at least once

A = A A = B

An identity and a goal which is repeated count as successful. Unsuccessful final
goals are

∅ = B and L(B) 6= ∅ A = ∅ and L(A) 6= ∅ Vi = Vj and i 6= j

The tableau rules are sound and complete, which we now explain. First UNF
is complete in the sense that if the premise is true then so are the subgoals.

Completeness for BAL is that if the premise goals (those above the subgoal) are
true then so is the subgoal. The statement of completeness for CUT is that there
are correct applications of it. If (V1, . . . , Vn) is canonical for the first k premises
then there is a depth d for which it is canonical. Moreover (V1, . . . , Vn) needs to
be a recursive family for the true goal A1B1 + . . .+AnBn = C1B1 + . . .+BnCn,
in which case the subgoal follows.

For soundness of the tableau rules consider global soundness of the proof
system. The overall idea is that if there is a successful tableau whose root is
false then there is a path through the tableau within which each subgoal is
false. The idea is refined using approximants. If F i 6∼ Gi then there is smallest
distinguishing word w. One can define n-equivalence between F i and Gi, if for
all words w such that |w| ≤ n, w does not distinguish between F i and Gi. UNF
obeys the simple soundness property that if the goal is not n+1-equivalent then a
subgoal is not n-equivalent. Therefore if the root is false then there is an offending
path (of false goals) through the tableau within which the approximant indices
decrease whenever rule UNF has been applied, and hence this would mean that
a successful final goal is false (which, as we shall show, is impossible). Soundness
of the conditional rules is that if the premises are on an offending path then the
subgoal preserves the falsity index of the goal immediately above it. In the case of
BAL(R) assume that the offending path passes through the premise goals. There
is a least n such that for the initial premise B is n-equivalent to X1A1+. . .+XkAk

and B is not n + 1-equivalent to X1A1 + . . . + XkAk. As there are exactly M
applications of UNF between the initial and final premise it follows that B′ is
(n−M)-equivalent to D1A1 + . . .+DkAk. However, as this is the offending path
B′ is not (n+1−M)-equivalent to D1A1 + . . .+DkAk. A small argument shows
that B′ is not (n + 1 − M)-equivalent to D1(B · w(X1)) + . . . + Dk(B · w(Xk))
(because Ai is (n − M)-equivalent to (B · w(Xi). There is a similar soundness
argument for CUT. The idea of this style of soundness is essentially due to
Sénizuergues (although he uses the different framework of deduction systems).

The main result is as follows, and a similar result holds for monadic resursion
schemes.

Theorem 1 F ∼ G iff there is a finite tableau proof for F = G.

5 Conclusion

We have sketched decidability of equivalence for two old schema problems. How-
ever there are many open questions for further work. First we do not have a
complexity bound for the decision procedures. Secondly we have only shown de-
cidability for first-order recursion schemes. There is a known hierarchy of schema
problems at higher order [3, 4]. The branch languages of higher-order schemes
are deterministic context-sensitive languages, as illustrated by the following 2nd-
order scheme

Φ(G, H)(x)
def
= f(Φ(Gg, Hh)(x), G(Hx))

starting from Φ(g, h)(x). And so little is known about deterministic context-
sensitive languages.

References

1. Courcelle, B. (1978). A representation of trees by languages I, Theoretical Com-

puter Science, 6, 255-279.
2. Courcelle, B. (1978). A representation of trees by languages II, Theoretical Com-

puter Science, 7, 25-55.
3. Damm W, (1977). Languages defined by higher type program schemes, Lecture

Notes in Computer Science, 52, 164-179.
4. Damm W, (1979). An algebraic extension of the Chomsky-hierarchy. Lecture

Notes in Computer Science, 74, 266-276.
5. Friedman, E. (1977). Equivalence problems for deterministic context-free lan-

guages and monadic recursion schemes. Journal of Computer and System Sci-

ences, 14, 344-359.
6. Garland, S., and Luckham, D. (1973). Program schemes, recursion schemes, and

formal languages. Journal of Computer and System Sciences, 7, 119-160.
7. Harrison, M. (1978). Introduction to Formal Language Theory, Addison-Wesley.
8. Harrison, M., and Havel, I. (1973). Strict deterministic grammars. Journal of

Computer and System Sciences, 7, 237-277.
9. Hüttel, H., and Stirling, C. (1991). Actions speak louder than words: proving

bisimilarity for context free processes. Proceedings 6th Annual Symposium on

Logic in Computer Science,IEEE Computer Science Press, 376-386.
10. Sénizergues, G. (1997). The equivalence problem for deterministic pushdown au-

tomata is decidable. Lecture Notes in Computer Science, 1256, 671-681.
11. Sénizergues, G. (1998). L(A) = L(B)? Tech. Report LaBRI, Université Bordeaux I,

pp. 1-166. (To appear in Theoretical Computer Science.)
12. Stirling, C. (1998). Decidability of bisimulation equivalence for normed pushdown

processes. Theoretical Computer Science, 195, 113-131.
13. Stirling, C. (1999). Decidability of DPDA equivalence. Tech. Report LFCS-99-411,

University of Edinburgh, pp. 1-25. (To appear in Theoretical Computer Science.)

