
SlicStan: Improving Probabilistic Programming using
Information Flow Analysis

Extended Abstract

Maria I. Gorinova
University of Edinburgh

United Kingdom
m.gorinova@ed.ac.uk

Andrew D. Gordon
Microsoft Research Cambridge

United Kingdom
adg@microsoft.com

Charles Sutton
University of Edinburgh

United Kingdom
csutton@inf.ed.ac.uk

1 Introduction
Probabilistic programming languages provide a concise and
abstract way to specify probabilistic models, while hiding
away the underlying inference algorithm. However, those
languages are often either not efficient enough to use in prac-
tice, or restrict the range of supported models and require
understanding of how the compiled program is executed.

This work seeks ways in which programming language
and static analysis techniques can be used to improve the in-
creasingly mature probabilistic language Stan. We design and
implement SlicStan1— a probabilistic programming language
that compiles to Stan and uses information flow analysis to al-
low for more abstract and flexible models. SlicStan is novel in
two ways: (1) it allows variable declarations and statements to
be automatically shredded into different components needed
for efficient Hamiltonian Monte Carlo inference, and (2) it
introduces user-defined functions that allow for new model
parameters to be declared as local variables.

2 Stan and SlicStan
Stan [2] is an imperative probabilistic programming language,
with syntax similar to that of BUGS [3, 4], that compiles to
an efficient Hamiltonian Monte Carlo (HMC) inference algo-
rithm [5]. The language is increasingly used for real-world
scalable projects in statistics and data science (for example,
Facebook’s Prophet [7]), and it is a convenient way to share
and reproduce results of statistical models.

Even though increasingly mature, and very powerful, Stan
sacrifices some of its usability to make automatic inference
possible. One language design choice, made in order to make
compilation to an efficient HMC algorithm possible, is the
presence of program blocks. Data needs to be defined in a
particular block, parameters in another; blocks must appear
in order; changing the block a variable is defined in could
result in a semantically equivalent, but more or less efficient
program. Stan allows a wide range of models to be defined
in its modelling language, but requires of the programmer to
understand specifics of the underlying inference algorithm in

1“Slightly Less Intensely Constrained Stan” (pronounced slick-Stan).

PPS’18, January 9, Los Angeles, CA, USA.

order to write efficient code. The block syntax makes reason-
ing about a program as a composition of other Stan programs
difficult, which also may affect usability.

Our goal is to use static analysis techniques to allow for
a more compositional and flexible syntax of Stan, while re-
taining Stan’s efficiency and a syntax that is natural for the
statistics community. We achieve this by designing SlicStan
to have a similar syntax to that of a subset of Stan, but al-
lowing the interleaving of statements that would belong to
different program blocks if the program was written in Stan.
This makes the language more compositional, and allows
for related declarations and statements to be kept close to
each other, similarly to the Python libraries Edward [8] and
PyMC3 [6]. The language also supports more flexible user-
defined functions, as it is no longer restricted by the necessity
to group parameter declarations in a specific block.

Below, we show an example of a Stan program (left), and
the same program written in SlicStan (right). In both cases,
the data y is an array of real numbers coming from a normal
distribution with some unknown mean mu and standard devia-
tion sigma, where sigma is defined in terms of the precision
tau. We also define the variance v in terms of sigma.

Stan
data{
int N;
real y[N];
}
parameters{
real mu;
real tau;
}
transformed parameters{
real sigma = pow(tau,-0.5);
}
model{
tau ∼ gamma(0.1,0.1);
mu ∼ normal(0,1);
y ∼ normal(mu,sigma);
}
generated quantities{
real v = pow(sigma,2);
}

SlicStan
data int N;
data real[N] y;
real tau ∼ gamma(0.1,0.1);
real mu ∼ normal(0,1);
real sigma = pow(tau,-0.5);
y ∼ normal(mu, sigma);
real v = pow(sigma,2);

.

The two programs consist of the same set of statements.
However, due to the absence of blocks, SlicStan is more
compact and allows statements to be written in any order,



PPS’18, January 9, Los Angeles, CA, USA
Maria I. Gorinova, Andrew D. Gordon, and Charles Sutton

as long as variables are not used before they are declared.
Using information flow analysis and type inference, SlicStan’s
compiler can infer what block each variable belongs to, and
shred the program to produce the Stan code on the left.

3 Information Flow in SlicStan
3.1 Blocks in Stan
A Stan program consists of 6 blocks,2 all of which are op-
tional with the exception of the model block. Each block has
a different purpose, and can reference only variables declared
in itself or previous blocks. Below is a summary of the order
blocks must appear in, and their purpose:

• data: declarations of the input data.
• transformed data: definition of known constants and

preprocessing of the data.
• parameters: declarations of the parameters of the model.
• transformed parameters: declarations and statements

defining transformations of the data and parameters.
• model: statements defining the distributions of random

variables in the model.
• generated quantities: declarations and statements that

do not affect inference, used for post-processing, or pre-
dictions for unseen data.

We define each block to have one of three levels, DATA,
MODEL, or GENQUANT, as summarised in Table 1. Knowing
that each block can only access variables declared within
itself or a previous block, we see that information flows from
variables of level DATA, through those of level MODEL, to
those of level GENQUANT, but never in the opposite direction.

Block Execution3 Level

data — DATA
transformed data per chain DATA
parameters — MODEL
transformed parameters per leapfrog MODEL
model per leapfrog MODEL
generated quantities per sample GENQUANT

Table 1. Program blocks in Stan. Adapted from [1].

3.2 SlicStan’s Type System
In SlicStan, we define a lattice

(
{DATA,MODEL,GENQUANT} ,

≤
)

of level types, where DATA < MODEL < GENQUANT. We
use standard information flow typing rules [9] to ensure that
in a well-typed SlicStan program, information flows only in
the direction outlined above. The only rule that needs care
is that of the model statement, x ∼ foo(a, b). In Stan, such
statements have the same meaning as incrementing a special

2Excluding the functions block, which we omit for simplicity.
3‘Chain’, ‘sample’ and ‘leapfrog’ refer to different parts of the sampling
algorithm. There are many leapfrogs per sample and many samples per chain.

variable target, which contains the accumulated log probabil-
ity density: target += foo_lpdf(x | a, b). This variable can
be accessed only from the model block, thus we can see the
model statement as an assignment to a MODEL level variable:

(MODEL)
Γ ⊢ E : τ,MODEL Γ ⊢ D : τ,MODEL

Γ ⊢ E ∼ D : MODEL

Finally, to allow for level types to be automatically inferred,
we implement type inference by generating constraints on
the levels that variables may assume according to the type
system, and finding a satisfying assignment. In many cases,
the block to place a variable is not fully determined by the
information flow between variables. For example, moving
transformed data definitions of a well-formed Stan program
to its transformed parameters block does not change the
meaning of the program. Thus, we refer to Table 1 once more,
to see that code associated with different blocks is executed
different number of times. This gives us a performance order-
ing on level types: DATA < GENQUANT < MODEL, meaning
that, in terms of performance, it is preferable if a variable is of
level DATA, and it should be of level MODEL only if needed.

3.3 Translation to Stan
Having resolved the type inference constraints and inferred
level types of the variables in the SlicStan program, we can
translate it to Stan. This is done in two steps.

1. Elaboration: calls to user-defined functions are stati-
cally unrolled. This is needed, as different local vari-
ables might need to be defined into different Stan blocks.

2. Transformation: variable declarations and statements
of the elaborated SlicStan program are shredded into
different program blocks depending on the level types
of the variables involved, whether variables have been
assigned to elsewhere in the program, and whether
statements access the target variable.

Implemented this way, SlicStan supports more-flexible user
defined functions compared to Stan. Unlike Stan, user-defined
functions in SlicStan can declare new parameters, meaning
that the code for a large set of desirable transformations (such
as model reparameterisation) can be better reused.

4 Conclusions and Future Work
We designed SlicStan, formalised its type system and trans-
lation rules, and implemented a compiler that turns SlicStan
to Stan. The language successfully makes use of static anal-
ysis to allow Stan programs to be more concise, and easier
to write and modify. This opens a range of possibilities for
future work that uses programming language techniques to
aid probabilistic programming and inference. For example, a
future version of SlicStan could support vectorisation of user-
defined functions, allowing for models to be specified even
more compactly. Semantics-preserving transformations could
be applied, depending on the specific program, to compile to
a better optimised and better behaved sampling algorithm.



SlicStan
PPS’18, January 9, Los Angeles, CA, USA

References
[1] Michael Betancourt. 2014. Hamiltonian Monte Carlo and Stan. Machine

Learning Summer School (MLSS) lecture notes (2014).
[2] Bob Carpenter, Andrew Gelman, Matthew Hoffman, Daniel Lee, Ben

Goodrich, Michael Betancourt, Marcus Brubaker, Jiqiang Guo, Peter Li,
and Allen Riddell. 2017. Stan: A Probabilistic Programming Language.
Journal of Statistical Software, Articles 76, 1 (2017), 1–32. https://doi.
org/10.18637/jss.v076.i01

[3] W R Gilks, A Thomas, and D. J. Spiegelhalter. 1994. A language and
program for complex Bayesian modelling. The Statistician 43 (1994),
169–178.

[4] David Lunn, Christopher Jackson, Nicky Best, Andrew Thomas, and
David Spieghalter. 2013. The BUGS Book. CRC Press.

[5] Radford M Neal et al. 2011. MCMC using Hamiltonian dynamics.
Handbook of Markov Chain Monte Carlo 2, 11 (2011).

[6] John Salvatier, Thomas V. Wiecki, and Christopher Fonnesbeck. 2016.
Probabilistic programming in Python using PyMC3. PeerJ Computer
Science 2 (April 2016), e55. https://doi.org/10.7717/peerj-cs.55

[7] Sean J Taylor and Benjamin Letham. 2017. Forecasting at Scale. (2017).
https://facebookincubator.github.io/prophet/.

[8] Dustin Tran, Alp Kucukelbir, Adji B. Dieng, Maja Rudolph, Dawen
Liang, and David M. Blei. 2016. Edward: A library for probabilistic
modeling, inference, and criticism. arXiv preprint arXiv:1610.09787
(2016).

[9] Dennis Volpano, Cynthia Irvine, and Geoffrey Smith. 1996. A sound
type system for secure flow analysis. Journal of computer security 4,
2-3 (1996), 167–187.

https://doi.org/10.18637/jss.v076.i01
https://doi.org/10.18637/jss.v076.i01
https://doi.org/10.7717/peerj-cs.55
https://facebookincubator.github.io/prophet/

	1 Introduction
	2 Stan and SlicStan
	3 Information Flow in SlicStan
	3.1 Blocks in Stan
	3.2 SlicStan's Type System
	3.3 Translation to Stan

	4 Conclusions and Future Work
	References

